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Abstract
Compilers must make choices between different optimizations; in this paper we present an analytic cost model that

can be used to compare several compile-time optimizations for memory-intensive, matrix-based codes. These optimiza-
tions increase the spatial locality of references to improve cache hierarchy performance. Specifically, we consider loop
transformations, array restructuring, and address remapping, as well as combinations thereof. Our cost model compares
the effectiveness of these optimizations and provides a good basis for deciding which optimization to use.

To evaluate the cost model and the decisions taken based on it, we simulate eight applications on a variety of input
sizes and with a variety of manually applied restructuring optimizations. We find that a single fixed strategy delivers
suboptimal performance, and that it is necessary to adjust the chosen optimization to each code. Our model generally
predicts the best combination of restructuring optimizations among those we examined. The set of best optimizations
under our model yields performance within a geometric mean of 5% of the best combination of candidate optimizations,
regardless of the benchmark or its input dataset size.

1. Introduction

Compilers use cost models to choose among optimization strategies. If cost models are not available, choices must be
heuristic or ad hoc. In this paper, we present a cost model that evaluates combinations of code and data restructuring
optimizations to increase memory locality. Such optimizations can be used to improve the utilization of current multi-
level memory subsystems. Better memory hierarchy performance translates into better execution times for applications
that are latency and bandwidth-limited, particularly scientific computations containing complex loops that access large
data arrays.

The optimizations we address focus on array-based applications, and they improve cache locality by transforming
the iteration space [3, 4, 5] or by changing the data layout [6, 7]. Theseloop transformationsandarray restructuring
techniques can be complementary and synergistic. Combining these optimizations is therefore often profitable, but
exactly which set of transformations performs best depends on which of the variations has the minimum overall cost
on a particular application. We useintegrated restructuringto refer to the ability to combine legal, complementary
code and data restructuring optimizations.

Other researchers integrate data restructuring with loop transformations [6, 4], but they only consider static array
restructuring, and do not address profitability-analysis mechanisms for the various possible choices. Their efforts
provide a foundation on which to base our research, but combine restructuring optimizations in an ad hoc manner.
This paper explores the feasibility of using a cost model to guide the compiler’s choices among various restructuring
techniques. Specifically:

� We demonstrate via simulation that integrated restructuring is not always a win, and that it should be applied
carefully.

. This paper is an expanded version of a conference paper [1] and is based on the first author’s MS thesis [2].
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double A[N][N],B[N][N],C[N][N];
for (i=0;i<N;i++)

for (j=0;j<N;j++)
for (k=0;k<N;k++)

C[i][j] = C[i][j] + A[i][k]*B[k][j];

Figure 1. matmultKernel

� We introduceremapping-based array restructuring, an optimization that exploits hardware support for remap-
ping from a smart memory controller.

� We present acost modelthat incorporates the costs/benefits of hardware support from a smart memory controller,
which enables appropriate decisions as to whether hardware support should be used.

� We model the memory cost of whole applications, not just individual loop nests, and we have developed an
integrated analytic frameworkfor reasoning about hardware/software tradeoffs in restructuring optimizations.

Programs optimized based on the results of our model achieve performance within 5% of the best observed for our set
of eight benchmarks. In contrast, the performance of any fixed optimization is at best 24% of the best combination.

In Section 2, we present an overview of existing program restructuring optimizations and describe remapping-
based array restructuring, a new memory controller-based locality optimization. In Section 3, we develop the analytic
framework to estimate costs and benefits for individual restructuring optimizations. We explain the assumptions built
into our framework and discuss how they affect performance estimation. In Section 4, we describe our simulation
methodology, benchmark suite, and experimental results. Details for individual benchmarks are described in the
appendix. In Section 5, we compare our cost-model driven optimizations to existing integration strategies, emphasizing
the differences in strategies and the resulting tradeoffs. In Section 6, we discuss extending this initial cost model to
address a broader class of applications with greater accuracy, and in Section 7, we summarize our conclusions.

2. Background

We briefly review the compiler restructuring optimizations on which this work is based: loop transformations, the stan-
dard copying-based form of array restructuring, and a new version of array restructuring based on hardware remapping.
The loop transformations we consider are permutation, fusion, distribution, and reversal. Together with tiling, these
are the most common examples of loop restructuring. Given the complexity of calculating cross-interference and
self-interference misses in complex loop nests, we omit loop tiling from the analytic models developed in this study.

In addition to evaluating the costs and benefits of the traditional implementation of array restructuring, we also
consider implementing dynamic data restructuring with hardware support. Run-time changes in array layout have
heretofore been implemented by physically moving data. Our work on the Impulse memory controller [8, 9, 10] shows
how hardware support for address remapping can be used to change data structure layout. The tradeoffs involved in
remapping optimizations differ from those for traditional copying-based array restructuring, and our model is able to
reflect this.

2.1 Loop Transformations

Loop transformations improve performance by changing the execution order of loops in a nest, transforming the
iteration space to increase the temporal and spatial locality of a majority of data accesses [3, 4, 5]. These compile-time
transformations incur no run-time overhead, but they cannot always improve the locality ofall arrays in a given loop
nest. For example, if an array is accessed via two conflicting patterns (e.g.,a[i][j] anda[j][i]), no loop ordering exists
to improve locality for all accesses. Furthermore, loop transformation cannot be applied when there are complex,
loop-carried dependences; insufficient or imprecise compile-time information; or non-trivial, imperfect nests. Even
when the optimization can legally be applied, it may fail to increase locality for enough data accesses in the nest.

To see a simple example of the potential impact of loop permutation, consider the matrix multiplication code
shown in Figure 1. ArrayB is accessed with a stride of8 � N bytes, which yields low locality of reference: all
but one element ofB loaded with any cache line are evicted without being used. For a 32-Kbyte L1 cache with 32-
byte lines and eight-byte array elements, only 25% of each cache line is referenced. In addition, cache performance
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innermost loop
array references i j k

A[i][k] N �N
2 1�N

2 1

16
N �N2

B[k][j] 1�N2 1

16
N �N2 N �N2

C[i][j] N �N2 1

16
N �N2 1�N2

total 2N3 +N2 1

8
N3 +N2 17

16
N3 +N2

Table 1. Carr, McKinley, and Tseng’s cost model applied to matrix multiply

degrades even more if the length of a column walk exceeds 1024. Similarly, this program fragment exhibits poor TLB
performance, even for small values ofN . To see why, assume a TLB of 128 entries, where each maps a four-Kbyte
page. In one column walk, the code touches a memory span of8 � N2 bytes, or8�N

2

4096 pages. When8�N
2

4096 > 128
(i.e.,N > 216), a TLB miss is taken for every traversal of a column. Permuting the loops fromijk to ikj order yields
zero or unit stride for all arrays. The row-major access patterns drastically reduce the TLB and cache footprints. For
large arrays, the performance speedup can be significant.

Carr et al. [3] analyze loop transformations using a simple cost model based on the estimated number of cache
lines accessed within a nest. They defineloop costto be the estimated number of cache lines accessed by all arrays
when that loop is placed innermost in the nest. Evaluating all loop costs and ranking the loops in descending cost
order (subject to legality constraints) yields a permutation with least cost. Consider the matrix multiply loop nest
in Figure 1; calculating loop costs gives the results in Table 1. Descending cost order isi > k > j, and thus the
recommended permutation isikj. A, B, andC are now accessed sequentially. This model provides the basis for the
model we develop in Section 3.

2.2 Traditional Array Restructuring

Array restructuring transforms the physical data layout to improve cache performance [7] either at compile time or
at run time. Static (compile-time) array restructuring changes the array layout to match the direction in which the
data are most often accessed; e.g., the compiler stores an array in column-major rather than row-major order when
column walks dominate. If the array is accessed in the same manner throughout the program’s execution, such static
restructuring can dramatically improve performance.

In this paper we do not compare against static array restructuring. If array access patterns change at run time,
or if the patterns cannot be determined at compile time, static array restructuring is not feasible. Instead, dynamic
restructuring can be used at run time to create new data structures that have better locality.2 The “dynamic” part of
the restructuring is the run-time change in the application’s view of an array. In the remainder of the paper, we shall
use “array restructuring” to mean “dynamic array restructuring”.

Unlike loop restructuring, array restructuring affects only the locality of a single target array, as opposed to all
arrays in a nest. Static restructuring incurs no run-time costs, but dynamic restructuring incurs run-time overhead
costs; dynamic transformations are therefore only profitable when these costs are dwarfed by the improved latency
of the high-locality, restructured accesses. Nonetheless, dynamic restructuring is more versatile, and more widely
applicable, than loop restructuring.

Many scientific applications contain non-unit stride accesses to multi-dimensional arrays. Array restructuring can
directly improve the array layouts in memory. Consider the example loop nestir kernelin Figure 2. With row-major
storage, arraysU andV are accessed sequentially, whereU enjoys spatial locality, andV enjoys temporal locality.
ArrayW enjoys temporal locality in the innermost loop, but is accessed along columns in the outer loops. ArrayX is
accessed diagonally, and will suffer poor cache and TLB performance. Array restructuring creates new arrayscX and
cW , wherecW isW transposed, andcX is a diagonal layout ofX (as in Figure 3).

Transformation matrices specify how new indices incX and cW relate to original array indices. Leung and
Zahorjan derive formalisms to create index transformation matrices [12]. In this case,X is transformed such that
cX [i� j +N ][j] maps toX [i][j], andW such thatcW [j][i] maps toW [i][j]. Figure 4 shows the code with copying-
based array restructuring. To keep the example simple, we do not tile the copying phase, but tiling would improve
performance. As illustrated by the shaded regions of the restructured array depicted in Figure 3, this optimization may

2. The code to implement array restructuring optimizations—even those we call dynamic—can be generated at compile-time, or even at run-time
by systems such as Dynamo [11].
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double U[N], V[N], W[N][N], X[3N][N];
for (i=0;i<N;i++)

for (j=0;j<N;j++)
for (k=0;k<N;k++)

U[k] += V[i] + W[j][i] + X[i+j+k][k];

Figure 2. ir kernelcode

waste storage. In this case,cX contains4N2 � 3N2 = N2 extra, unused elements. Leung and Zahorjan show that
further transformations can reduce the unused memory. Their algorithm bounds the restructured array size to at most
N ! times that of the original, withN being the array dimensionality [12].

The innermost loop now accessescX with unit stride, and the outermost loops accesscW with unit stride. Spatial
locality of reference in the transformed code is thus much greater than in the original. Nonetheless, whether the
transformation improves performance depends on the input parameters. If an array is large and rarely accessed, the
cost of creating the new array might dominate the benefits of improved spatial locality. In Figure 4, it is unlikely that
copyingW is worthwhile, since no cache misses are saved; they are merely moved from the main loop to the copying
loop. In Section 3.1.2, we develop a formula to decide when array restructuring can be used profitably.

2.3 Remapping Array Restructuring

With appropriate hardware support, array restructuring can be implemented without copying. Instead, a new alias
array can be createdvirtually by remapping addresses. Remapping-based array restructuring is similar in spirit to
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Create new array such that access

row−major storage order)
direction is horizontal (i.e., match 

Original Array (X) Restructured Array (cX)

in array cX are

Thus, X[i+j+k][k]      cX[i+j+N][k]

Shaded regions

unused/wasted

   X[i][j]      cX[i−j+N][j]

Figure 3. Visualizing copy restructuring ofir kernel’s X array

double U[N],V[N],W[N][N],X[3N][N],cX[4N][N],cW[N][N];
// copy W into its transposed version cW
for (i=0; i<N; i++)

for (j=0; j<N; j++)
cW[j][i] = W[i][j];

// copy X into its transposed version cX
for (i=0; i<3*N; i++)

for (j=0; j<N; j++)
cX[i-j+N][j] = X[i][j];

for (i=0; i<N; i++)
for (j=0; j<N; j++)

for (k=0; k<N; k++)
U[k] += V[i] + cW[i][j] + cX[i+j+N][k];

Figure 4. ir kerneloptimized via copying-based restructuring
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Figure 5. Address remapping in an Impulse system

copying-based array restructuring. The difference is in its implementation, which depends on the ability remap physi-
cal memory.

Our study assumes that remapping-based data restructuring is implemented with an intelligent memory controller.
The Impulse memory system expands the traditional virtual memory hierarchy by adding address translation hardware
to the main memory controller [8, 9, 10]. Impulse takes physical addresses that would be unused in conventional
systems and uses them as remapped aliases of real physical addresses. For instance, in a system with 32-bit physical
addresses and one Gbyte of installed DRAM, physical addresses in the range [0x40000000 – 0xFFFFFFFF] normally
would be considered invalid. We refer to such otherwise unused physical addresses asshadow addresses.

Figure 5 shows how addresses are mapped in an Impulse system. The real physical address space is directly
backed by physical memory; its size is exactly the size of installed physical memory. The shadow address space does
not directly point to any real physical memory (thus the termshadow), and can be remapped to real physical addresses
through the Impulse memory controller. This virtualization of unused physical addresses provides different views of
data stored in physical memory. For their kernelcode, the Impulse controller can create pseudo-copies ofW andX
that function much the same ascW andcX . The difference is that the hardware fetches the correct elements from
W andX when the pseudo-copies are accessed; no copying is performed. Gathering elements within the memory
controller allows the data to be buffered so that elements are transmitted over the bus only when requested, which
consumes less bus bandwidth and uses processor cache space more efficiently. The operating system manages all of
the resources in the expanded memory hierarchy and provides an interface for the application to specify optimizations
for particular data structures. The programmer or compiler inserts appropriate system calls into application code to
configure the memory controller.

Consider an example in which the application creates a virtual transpose of a two-dimensional arrayA. The
application makes a system call to allocate a contiguous range of virtual addresses large enough to map a transposed
version ofA, the virtual address of which is returned inrA. System call parameters include the original array’s starting
virtual address, element size, and dimensions. The OS allocates a range of shadow physical addresses to contain the
remapped data structure, i.e., the transposed array. It then configures Impulse to respond appropriately to accesses
within this shadow physical address range.

Configuring Impulse takes two steps: setting up a page table and initializing a set of control registers. The OS uses
I/O writes to these registers to indicate remapping-specific information such as what address range is being configured,
what kind of remapping Impulse should perform (in this case, matrix transposition), the size of the elements being
remapped, and the location of the corresponding page table. After configuring Impulse, the OS maps the shadow
physical addresses to an unused portion of the virtual address space and places a pointer to it inrA. Finally, the user
program flushes the original array from the cache to prevent improper aliasing.

When the user process accesses a remapped address in the virtual transpose array, the processor TLB or MMU
converts this virtual address to the corresponding shadow physical address. Impulse translates the shadow address into
the real physical addresses for the data that comprises that shadow cache line, and then passes these physical addresses
to an optimized DRAM scheduler that orders and issues the reads, buffers the data, and sends the gathered data back to
the processor. The controller contains an address calculation unit, a large cache to buffer prefetched data, and its own
TLB, which caches entries from the page table created by the OS during the system call that sets up the remapping.

We use both transpose and base-stride remapping to implement the array restructuring in this study. Base-stride
remapping is more general than transposition, and is used to map a strided data structure to a dense alias array. For
instance, consider a set of diagonal accesses to be remapped, as withX in the loop in Figure 2. Each access has a
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double U[N],V[N],W[N][N],X[3N][N],*rW,*rX;
map_shadow(&rW, TRANSPOSE, W_params);
map_shadow(&rX, BASESTRIDE, X_params);
for (i=0; i<N; i++)

for (j=0; j<N; j++){
offset = (i+j)*N;
remap_shadow(&rX, offset);
for (k=0; k<N; k++)

U[k] += V[i] + rW[i][j] + rX[k];
flush_cache(rX);

}

Figure 6. ir kerneloptimized via remapping restructuring

fixed stride from the start of the diagonal, but for each diagonal, the base address differs. Before accessing each new
diagonal, the application issues a system call to specify a new base address to Impulse.

Figure 6 shows how the memory controller is configured to support remapping-based array restructuring for
ir kernel. The firstmapshadow()system call configures the memory controller to map referencerW [i][j] toW [j][i].
The secondmapshadow()call configures the memory controller to map referencerX [k] to X+offset+k � stride,
wherestride isN +1. Theoffset, which is(i+ j)�N , is updated each iteration of thej loop to reflect the new values
of i andj — i.e., the new diagonal being traversed. Thus,rX [k] translates toX + (i+ j) �N + k � (N + 1), which
is simply the original referenceX [i+ j + k][k]. We flushrX from the cache to maintain coherence.

After applying the remapping-based restructuring optimization, all accesses are inarray order, i.e., their access
patterns match their element storage order. The cost of setting up a remapping is small compared to that of copying.
However, subsequent accesses to the remapped data structure are slower than accesses to an array restructured via
copying, because the memory controller must translate addresses on-the-fly and gather data from disjoint regions of
physical memory. The amount of data reuse in a loop nest directly influences the overhead of using remapping-based
array restructuring. Remapping is preferable to copying when the cumulative recurring access costs of remapping are
less than the one-time setup cost of copying. In general, a cost/benefit analysis is necessary to decide whether to apply
data restructuring, and if so, whether to use remapping versus a copying-based implementation.

3. Analytic Framework

A compiler first chooses part of the program to optimize and a particular optimization to apply. It then transforms the
program and verifies that the transformation does not change the meaning of the program (or at least that it changes
it in a way that is acceptable to the user). Baconet al. [13] consider the first step a “black art”, since it is difficult
and not well understood. In this section, we explore an efficient mechanism that lets the compiler choose the code
portions to optimize for the domain of restructuring optimizations. We present cost models for each optimization and
analyze tradeoffs among individual restructuring optimizations, both qualitatively and quantitatively. We show why it
is beneficial to consider combining optimizations, and present a framework that aids in evaluating the costs and benefits
of integrated restructuring optimizations. Our cost model is not an algorithm for choosing the best optimizations to
use, but it provides the basis for inventing such algorithms.

3.1 Modeling Restructuring Strategies

Finding the best choice of optimizations to apply via detailed simulations or hardware measurements is slow and
expensive. An analytic model that provides a sufficiently accurate estimate of the cost/benefit tradeoffs between
various optimizations makes choosing the right strategy much easier. We have developed such an analytic model to
estimate the memory cost of applications at compile time. Like Carret al. [3], we estimate the number of cache lines
accessed within loop nests, and then use this estimate to choose which optimization(s) to apply.

The memory cost of an array reference,R�, in a loop nest is directly proportional to the number of cache lines it
accesses. Consider the line that referencesB in the loop nest in Figure 7. The array is accessed sequentiallyN times.
If the cache line size is 128 bytes and a “double” is eight bytes, then the number of lines accessed by that line isN

16,
and the memory cost of the array references is thus proportional to this number.
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double A[N+1], B[N], C[3N][N];
for (i=0;i<N;i++)

for (j=0;j<N;j++)
for (k=0;k<N;k++)

A[i+1] = A[i] + B[i] + C[i+j+k][k];

Figure 7. Example loop to illustrate cost model

Let clsbe the line size of the cache closest to memory,stridebe the distance between successive accesses of array
referenceR� in a nest,loopTripCountbe the number of times that the innermost loop whose stride is non-zero is
executed, andf be the fraction of cache lines reused from a previous iteration of that loop. The memory cost of array
referenceR� in the loop nest is estimated as:

MemoryCost(R�) =

 
loopTripCount

max( cls

stride; 1)
� (1� f)

!
(1)

Unfortunately, we do not have a framework for accurately estimatingf , but in most cases we expectf to be very
small for large working sets. For the benchmarks that we examine here, the working sets are indeed large, and data
reuse is very low. We therefore approximatef as zero, and we may neglect the(1 � f) term without introducing
significant inaccuracies (see the limitations discussed in Section 3.2). Using Equation 1, the memory cost of array
referenceC in Figure 7 is N3

max( cls

N+1
;1)

. If we assume thatN > 16, then the cost isN3.

We estimate the memory cost of the whole loop nest to be the sum of the memory costs of the independent array
references in the nest. We define two array references to beindependentif they access different cache lines in each
iteration. This distinction is necessary to avoid counting some lines twice. For example, referencesA[i] andA[i + 1]
are not independent, because we assume that they access the same cache line. In contrast, referencesA[i] andB[i] are
independent, because we assume they access different cache lines. The cost of a loop nest depends on theloop trip
count(total number of iterations of the nest), the spatial and temporal locality of the array references, the stride of the
arrays, and the cache line size. We estimate the memory cost of theith loop nest in the program to be:

MemoryCost(Li) =
X

�:independentRef

MemoryCost(R�) (2)

The memory cost of the entire program is estimated to be the sum of the memory costs of all loop nests. If there aren
loop nests in a program, then the memory cost of the program is:

MemoryCost(program) =

nX
i=1

MemoryCost(Li) (3)

Using these equations, the total memory cost of the loop in Figure 7 is
�
N3 + 2� N

cls

�
. Similarly, in their kernel

example in Figure 2, the memory cost of array referenceU [k] is N3

cls, V [i] is N

cls,W [j][i] isN2 andX [i+ j + k][k] is

N3. The total memory cost of the loop is
�
N3

cls + N

cls +N2 +N3
�

.

The cost model’s goal is to compute a metric for choosing the combination of array and loop restructuring op-
timizations with minimum memory cost for the entire program. We assume that the relative order of memory costs
determines the relative ranking of execution times. The above formulation of total memory cost of an application as
the sum of the memory costs of individual loop nests makes an important assumption – that the compiler knows the
number of times each loop nest executes, and that it can calculate the loop bounds of each loop nest at compile time.
This assumption holds for many applications. In cases where this does not hold, other means must be used to estimate
the frequencies of loop nests (e.g., profile-directed feedback). We also assume that the line size of the cache closest to
memory is known to the compiler.

3.1.1 MODELING LOOPTRANSFORMATION

When we consider only loop transformations, the recommendations from our model usually match those of the sim-
pler model by McKinleyet al. [14]. However, their model offers no guidance to drive data restructuring or integrated
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restructuring. We consider the total memory cost of the loop nests, allowing us to compare the costs of loop trans-
formations with those of independent array restructuring optimizations as well as of combinations of restructuring
optimizations.

3.1.2 MODELING COPYING-BASED ARRAY RESTRUCTURING

The cost of copying-based array restructuring is the sum of the cost of creating the new array, the cost of executing the
optimized loop nest, and the cost of copying modified data back to the original array. The setup cost equals the sum
of the memory costs of the original and new arrays in the setup loop.

MemoryCost(copyingSetup) =
�

originalArraySize� (min(
newArrayStride

cls
; 1) +

1

cls
)
�

(4)

In the setup loop of the code shown in Figure 4, the memory cost for writingcX is 3N2

max( cls
N+1

;1)
, and the memory cost

for readingX is 3N2

cls . The total setup cost is3N2 � (1 + 1

cls) if (N + 1) > cls (the usual case). The calculation for
cW is similar.
The cost of the optimized array reference in the loop nest is:

MemoryCost(restructuredReference) =
�

loopTripCount�
1

cls

�
(5)

The cost of the optimized loop nest (with optimized referencescX andcW ) is 2N3+N2+N
cls . Array restructuring is

expected to be profitable if:

MemoryCost(copyingSetup) + MemoryCost(restructuredReference) <
MemoryCost(originalReference)

(6)

For this example, the total cost of the array-restructured program (assumingcls= 16) is (N
3

8 + 69N2

16 + N
16 ), while

the cost of the original program is( 17N
3

16 + N
16 + N2). The latter is larger for almost allN , so our cost model will

estimate that array restructuring will always be profitable for this particular loop nest. Simulation results bear out this
decision for arrays exceeding theL2 cache size.

3.1.3 MODELING REMAPPING-BASED ARRAY RESTRUCTURING

When using remapping-based hardware support, we can no longer model the memory cost of an application as being
directly proportional to the number of cache lines accessed, since all cache line fills no longer incur the same cost.
Cache line fills to remapped addresses undergo a further level of translation at the memory controller, as explained
in Section 2.3. After translation, the corresponding physical addresses need not be sequential, and thus the cost of
gathering a remapped cache line depends on the stride of the array, the cache line size of the cache closest to memory,
and the efficiency of the DRAM scheduler. To accommodate this variance in cache line gathering costs, we model the
total memory cost of an application as proportional to the number of cache lines gathered times the cost of gathering
each cache line. The cost of gathering a normal cache line,Gc, is assumed to be fixed, and the cost of gathering a
remapped cache line,Gr, is assumed to be fixed for a given stride. We use a series of simulated microbenchmarks
with the Impulse memory system to build a table ofGr values indexed by stride. This table, a pictorial view of which
is given in Figure 8, determines the cost of gathering a particular remapped cache line. Thus, if a program accessesnc
normal cache lines,n1 remapped cache lines remapped with strides1, n2 remapped cache lines remapped with stride
s2, and so on, then the memory cost of the program is modeled as:

MemoryCost(program) = nc �Gc +
X
i

ni �Gr(si) (7)

The overhead costs involved in remapping-based array restructuring include the cost of remapping setup, the
costs of updating the memory controller, and the costs of flushing the cache. The initial overhead of setting up a
remapping through themapshadowcall is dominated by the cost of setting up the page table to cache virtual-to-
physical mappings. The size of the page table depends on the number of elements to be remapped. We model this cost
asK1 �#elementsToBeRemapped. Updating the remapping information via theremapshadowsystem call prior to
entering the innermost loop incurs a fixed cost, which we model asK2. We model the flushing costs as proportional
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Figure 8. Relationship betweenGr and stride

to the number of cache lines evicted, where the constant of proportionality isK3. We estimate these constants via the
simulation of microbenchmarks.

The memory cost of an array reference optimized with remapping support is:

MemoryCost(remappedReference) =

 
loopTripCount

max( cls
stride; 1)

!
�Gr(stride) (8)

MemoryCost(normalReference) =

 
loopTripCount

max( cls
stride; 1)

!
�Gc (9)

Returning to the example in Figure 6, the memory cost of arrayrX is 1
16 �N3 �Gr , whereGr is based on the

stride, which here is(N + 1). The total cost of the remapping-based array-restructured loop is( 1
16 (N

3 +N) �Gc +
1
16N

3�Gr(N +1)+K1� 3N2+K2�N2+K3�N �N2). This cost is less than the original program’s memory
cost, and so our model deems remapping-based array restructuring to be profitable.

The cost of gathering a remapped cache line,Gr, is influenced by two factors: the DRAM bank organization and
the hit rate in the memory controller’s TLB. See the first author’s thesis [2] for details of the microbenchmark used to
estimateGr. Figure 8 shows howGr varies with the stride in bytes. The spikes occur whenever the stride is a power
of two greater than 32, where the remapped accesses all reside in the same memory bank. We calculateGr for strides
ranging from four to 8192 bytes. The average value ofGr is 596 cycles, with the range spanning 429 to 1160 cycles.
SinceGr varies significantly with stride, our cost model uses a table to look upGr for each array.

3.2 Caveats

Our cost model has a number of known inaccuracies; improving its accuracy is part of ongoing work. First, we
do not consider the impact of any optimization on TLB performance. For some input sizes, TLB effects can dwarf
cache effects, so adding a TLB model is an interesting open issue. Second, we do not consider the impact of latency-
tolerating features of modern processors, such as hit-under-miss caches and out-of-order issue instruction pipelines.
This may lead us to overestimate the impact of cache misses on execution time. For example, multiple simultaneous
cache misses that can be pipelined in the memory subsystem have less impact on program performance than cache
misses that are distributed in time, but our model gives them equal weight. Third, we do not consider cache reuse
(i.e., we estimatef to be zero) or cache interference. We assume that the costs of different loop nests are independent,
and thus additive. If there is significant inter-nest reuse, our model overestimates the memory costs and recommends
an unnecessary optimization. Similarly, not modeling cache interference can result in the model’s underestimating
memory costs if there are significant conflict misses in the optimized applications. It should be noted, though, that
the goal of this cost model is not to accurately predict the exact performance of the code under investigation, but is
rather to provide a fast basis for deciding which optimizations are likely to result in performance improvements. It is
therefore an open question to which degree a more accurate modeling is necessary for this task.

In general, selecting the optimal set of transformations is an extremely difficult problem. Finding the combination
of loop fusion optimizations alone for optimal temporal locality has been shown to be NP-hard [15]. The problem
of finding the optimal data layout between different phases of a program has been proven to be NP-complete [16].
Researchers therefore use heuristics to make integrated restructuring tractable. Our analytic cost framework can help
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L1 cache L2 cache

size of cache 32 Kbytes 512 Kbytes
cache line size 32 bytes 128 bytes
associativity 2-way 2-way
access latency 1 cycle 8 cycle
index/tagged virtual/physical physical/physical
mode write-back write-back

non-blocking non-blocking

Table 2. Configuration of the memory subsystem

evaluate various optimizations, and optimization strategies driven by our cost model come closer to the best possible
performance across a range of benchmarks than any fixed optimization strategy.

4. Evaluation

In this section, we briefly describe our experimental framework, including the simulation platform and benchmarks
used. The appendix contains details on the composition and behavior of each benchmark; we summarize salient
features here. We then discuss the relative performance of the various combinations of optimizations, and define
several metrics to evaluate how well our cost model recommends appropriate choices.

4.1 Simulation Platform

We use URSIM [17] to evaluate the effectiveness of our cost models. This execution-driven simulator (derived from
RSIM [18]) models a microprocessor similar to the MIPS R10000 [19], with a split-transaction MIPS R10000 bus and
snoopy coherence protocol. The processor is superscalar (four-way issue) and out-of-order, with a 64-entry instruction
window. The base system has been extensively validated against real hardware [20] and exhibits high accuracy.

The memory system itself can be adjusted to model various target systems. The cache configuration used for this
study, shown in Table 2, models that of a typical SGI workstation. The instruction cache is assumed to be perfect, but
this assumption has little bearing on our study of data optimization techniques. The TLB maps both instructions and
data, has 128 entries, and is single-cycle, fully associative, and software-managed.

The eight-byte bus multiplexes addresses and data, has a three-cycle arbitration delay, and a one-cycle turn-around
time. The system bus, memory controller, and DRAMs all run at one-third the CPU clock rate. The memory imple-
ments a critical-word-first policy, returning the critical quad-word for a normal cache-line load 16 bus cycles after the
corresponding L2 cache miss. The main memory system models eight banks, pairs of which share an eight-byte bus
between DRAM and the Impulse memory controller.

4.2 Benchmark Suite

To evaluate our cost-model driven integration, we study eight benchmarks used in previous loop or data restructuring
studies. Four of our benchmarks—matmult, syr2k, ex1, and their kerneldiscussed in Section 2.2—have been studied
in the context of data restructuring. The former two are used by Leunget al. [7], and the latter two by Kandemiret
al. [4]. Three other applications—btrix, vpenta, cfft2d—are NAS kernels used to evaluate data and loop restructuring
in isolation [3, 21, 7]. Finally,kernel6is the sixth Livermore Fortran kernel, a traditional microbenchmark within the
scientific computing community.

Table 3 shows which optimizations are suitable for each benchmark. The candidates include copying-based array
restructuring (ac), remapping-based restructuring (ar), loop transformations (lx), a combination of loop and copying-
based restructuring (lc), and a combination of loop and remapping-based restructuring (lr ). A checkmark

p
indicates

that the optimization is possible,N indicates that the optimization is not needed, andI indicates that the optimization
is either illegal or inapplicable. In this study, we hand code all optimizations, but automating them via a compiler [22],
binary rewriting system [23], or run-time optimization system [11] would be straightforward.

Our study validates our model against the best combinations of optimizations. We run each benchmark over a
range of input sizes, with the smallest input size typically just fitting into the L2 cache. Whenever there are several
choices for a given restructuring strategy, we choose the best option by hand. In other words, the results we report for
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Application ac ar lx lc lr
matmult

p p p
N N

syr2k
p p

N N
p p

= Optimization possible
vpenta

p p p
N

p
I = Optimization illegal/inapplicable

btrix
p

I
p p p

N = Optimization not needed
cfft2d

p p
I I I

ex1
p p p p p

ir kernel
p p p p p

kernel6
p p

I I I

Table 3. Benchmark suite and candidates for optimizations

lx represent the best loop transformation choice (loop permutation, fusion, distribution or reversal) among the ones
we evaluate. Similarly, the results forlr are for the best combination of loop and remapping-based structuring. The
appendix gives more details of the experiments conducted using each benchmark and includes the relevant source code
for each baseline version.

4.3 Cost Model Results for btrix

We now generate the individual cost formulas for each benchmark and for each optimization or combination thereof.
Table 4 shows these formulas for one example code,btrix.3 They model both the memory access costs and the setup
costs for the data transformations, and hence provide a complete assessment of all estimated memory-related costs for
the complete benchmark execution.

Figure 9 plots these cost estimates for various strides, which gives an overview of the decision space. All graphed
values represent relative speedups compared to the original benchmark. The graph clearly shows the differences
in expected performance of the various optimizations, and illustrates the constant relationship among the individual
optimizations for large strides. AsN grows, the ratio between the cubic terms dominates all other terms. Loop
restructuring (lx) is therefore expected to outperform all other optimization combinations. In the following section,
we validate this against simulatedbtrix performance.

Note that the absolute values of the memory costs represented in the graph do not reflect the real, whole-program
speedups to be expected, but they correctly indicate the compiler’s desired ordering of the various optimizations.

4.4 Simulation Results

We summarize the results of our experiments in Figure 10. We describe the experiments in detail in the appendix.
For each input size, we simulate the original benchmark and the best version for each candidate optimization (ac for
array copying,ar for array remapping,lx for loop restructuring, andlc or lr for integrating loop restructuring and
array restructuring via copying or remapping, respectively). We also compute which version the cost modelcm selects
for a given input size. The cost model data are generated using the appropriate values ofGr (depicted in Figure 8)
to choose among optimization options. Our primary performance metric is the geometric mean speedup obtained for
each optimized version over the range of input sizes. We compare the speedups of each version with the post-facto
best set of candidate optimizationsb for a given benchmark/input combination.

3. Details on how to compute these formulas are included in the appendix of the first author’s thesis [2].

Optimization Total Memory Cost
Candidate of Program

base (157:78N3 + 2:34N2)Gc

lx (43:90N3 + 84N2)Gc

ac (43:40N3 + 111:375N2)Gc

lc (23:62N3 + 85N2)Gc

lr (40:03N3 + 84N2)Gc + 107N2 + 0:156N3Gr(N2)
lx’ (14:84N3 + 84N2)Gc

lr’ (36:75N3 + 84N2)Gc + 107N3 + 0:156N3Gr(N3)

Table 4. Total memory costs for the various btrix optimizations
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Figure 9. Computed relative memory costs for increasing stride

The results in Figure 10 show that using our cost model delivers an average of 95% of the best observed speedups
(1.68 versus 1.77), whereas the best single optimization, copying-based array restructuring, obtains only 77% (1.35
versus 1.77). Even within the same benchmark, the best optimization choice is dependent on input data size. The
cost-model strategy therefore performs well because it adapts its choices to each application/input. For example, in
syr2k, the cost model is able to choose betweenac andlr for different inputs, achieving a higher speedup (1.88) than
using eitherac or lr for all runs (i.e., it picksac whenlr performs poorly, and vice-versa). Overall, our cost model is
usually able to select the correct strategies over an entire range of inputs.

Our cost model can be inaccurate for several reasons. First, it is not exact, since it is a model: even though the
model is accurate when averaged over an entire range of inputs, it may not be accurate for specific input values. Second,
it does not model conflict misses. Third, it does not account for reuse of cache lines between outer loop iterations.
When none of these issues come into play, our model is accurate to within 1% ofb. When these issues arise, however,
our model can be inaccurate: performance can be from 5–15% less thanb. The first and second problems are of greater
significance: reuse of cache lines between outer loop iterations is not that frequent for programs with large data sets
and optimized inner loops.

No single optimization performs best for all benchmarks. Examining which optimization is the most beneficial
for the maximum number of benchmarks reveals a four-way tie betweenac, ar, lx andlr (syr2kandex1vote forac,
cfft2dandkernel6for ar, matmultandbtrix for lx, andvpentaand ir kernelfor lr ). Thus, it makes sense to choose
optimizations based on benchmark/input combinations, rather than to blindly apply a fixed set of optimizations.

Combining loop and array restructuring can result in better performance than either individual optimization achieves.
For example, invpenta, loop permutation optimizes the two most expensive loop nests, but the five remaining nests
still contain strided accesses that loop transformations alone cannot optimize. Combining loop permutation with
remapping-based array restructuring results in a speedup higher than either optimization applied alone. The cost
model predicts this benefit correctly.

Nonetheless, combining restructuring optimizations is not always desirable, even when they do not conflict. For
example, inbtrix, loop restructuring is able to bring three out of four four-dimensional arrays into loop order. The
remaining array can be optimized using either remapping-based or copying-based array restructuring. Unfortunately,
adding the array restructuring optimization degrades performance, because the overhead of array restructuring is higher
than its benefits. The cost model correctly recognizes this and chooses pure loop restructuring.
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Figure 11. Evaluating the cost model

Within a single benchmark, the choice of what optimization to apply differs depending on the loop and array
characteristics. For example, inkernel6remapping and copying are both beneficial and resulting in good speedups.
However, the cost model achieves an even higher speedup than either of these by choosing remapping when copying
is expensive and vice-versa.

4.5 Model Evaluation

To evaluate the accuracy of our cost model quantitatively, we employ four metrics:

� Best prediction hit rate. This metric calculates the cost model’s success in predicting the best optimization from
among the given choices over a large range of different input data set sizes.

The prediction success rate for the cost model across all benchmarks is 72%, on average. This is impressive,
considering that if choices were made completely at random, the prediction success rate would only be 22%.
Although this metric is fairly indicative of the accuracy of the cost model, it is somewhat conservative. It fails to
distinguish between “close second” and “dead last”. For example, invpenta, although the cost model’s choice
of lx was incorrect 89% of the time,lx is slower than the best choice oflr by only 5%. In contrast,ac is slower
by 58%, but either choice yields the same prediction hit rate.

� Quality of ranking. This metric quantifies the accuracy of the relative ranking of optimization choices and
therefore is able to compensate for the shortcoming of thebest prediction hit rateintroduced above.

Assume we haveN optimization choices.opt1, . . . ,optN , and have observed and estimated speedups for each.
We definePij as

P ((opti obs: > optjobs:jopti est: > optj est:) or (opti obs: < optjobs:jopti est: < optj est:))

for all i,j between1 andN , inclusive. We definequality of rankingfor the cost model as the arithmetic mean
of all these probabilities. For example, consider a case where there are four possible optimizations choices
(opt1, opt2, opt3 andopt4) for an application, and where three experiments have been run for this applica-
tion. Suppose the ranking of the estimated costs and observed costs for the first experiment is estimated as
opt1; opt3; opt4; opt2 and observed to beopt4; opt3; opt1; opt2; for the second, estimated asopt2; opt3; opt4; opt1
and observed to beopt2; opt1; opt3; opt4; for the third, estimated asopt1; opt3; opt4; opt2 and observed to be
opt1; opt3; opt4; opt2. Then,P12 = 1, P13 = 1=3, P14 = 1=3, P23 = 1, P24 = 1, andP34 = 2=3. The cost
model’squality of rankingfor this example, based on these three ranking pairs, is the arithmetic mean of 1, 0.33,
0.33, 1, 1, 0.67, which is 0.72 (72%).

The cost model’squality of rankingacross all benchmarks is 77%. Forvpenta, the cost model’squality of
rankingis 89%, which shows that the cost model accurately ranks all optimizations correctly except the first and
second (lr andlx respectively, which are very close).

� Worst vs. best. This metric tells us what the performance would be if the worst optimization choice were made
for each experiment, giving us a lower bound by which to evaluate the cost model.
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For example, applying the worst choice of optimizations tosyr2kresults in a version that runs 10 times slower
than one to which the best optimizations are applied. For the benchmarks studied, the average performance of
the worst optimized versions were 32.9% of the best versionsb. The cost model’s performance far exceeds this
low-water mark.

� Model vs. best. This metric measures how close the cost model’s choice of optimizations is to that ofb.

It is the primary metric for describing the accuracy of the cost model. In this metric, the cost model’s accuracy
is penalized only to the extent that the model’s predictions deviate from the best possible. For the benchmarks
under study, this metric is 94.8%, indicating that the cost model’s predictions are close to optimal for all bench-
marks.

Figure 11 shows the accuracy of the cost model using these quantitative metrics. We find that quantifying overheads
and access costs of the various restructuring optimizations allows us to make good decisions about which optimizations
or mix of optimizations to apply and in what order. There is no single best order of application, and one optimization
can permit, prevent, or change the effectiveness of another. The recommendations made by our cost model result in a
mean overall speedup of 95% of optimal (for the combinations of candidate optimizations we consider). In contrast,
the best performance from any single optimization choice is 77% of optimal in our experiments. These results indicate
that our cost model is useful and effective in driving restructuring optimizations.

5. Related Work

Software solutions for tackling the memory bottleneck have been studied widely. They include software prefetch-
ing [24], control and data restructuring techniques [3, 7, 5], cache-conscious structure layout [25], and cache-oblivious
algorithms [26]. We focus our comparison on program restructuring techniques for improving locality of arrays in
loop nests, and on analytical models for program and memory performance.

Loop Transformations McKinley, Carr and Tseng [14] present a loop transformation framework for data locality
optimization that guides loop permutation, fusion, distribution and reversal. Their framework is based on a simple,
yet effective, model for estimating the cost of a executing a given loop nest in terms of the number of cache lines
it accesses. They use the model to find the compound loop transformation that has the fewest accesses to main
memory. The key idea in their memory cost model is that if a loopl accesses fewer cache lines thanl0 when both
are considered as innermost loops, thenl will promote more reuse thanl0 at any outer loop position. Thus, to obtain
the loop permutation with the least cost, they simply rank the loops in descending order of their memory costs from
the outermost to the innermost, subject to legality constraints. They also present heuristics for applying loop fusion
and distribution using the same memory cost metric. The cost model that we propose is based on this cost model.
However, we model the memory costs of the whole program and not just a single loop in a loop nest. The advantage
of our approach is that we can compare loop transformations with other independent restructuring optimizations, such
as array restructuring, and determine which is more profitable. Also, we can predict whether the optimized portions of
the program will contribute significantly to the overall execution time or not using our cost model. However, if loop
transformations alone are considered, the framework developed by McKinleyet al. is adequate. The disadvantage of
our approach is its increased complexity and computation time.

Wolf and Lam [5] define four different types of reuse—self-spatial, self-temporal, group-spatialand group-
temporal—and present a mathematical formulation of each type of reuse using vector spaces. They introduce the
concept of areuse vector spaceto capture the potential of data locality optimizations for a given loop nest. They say
that there is reuse if the same data item is used in multiple iterations of a loop nest. This is an inherent characteristic
of the computation and is independent of the actual locality, which depends on the cache parameters. They also define
the localized iteration spaceas the iterations that can exploit reuse. They present a data locality optimizing algorithm
to choose a compound loop transformation involving permutation, skewing, reversal, and tiling that minimizes a lo-
cality cost metric. They represent loop dependences as vectors in the iteration space, and thus loop transformations
can be represented as matrix transformations. Their algorithm’s execution time is exponential in the number of loops
in the worst case; they prune their search space by considering only the loops that carry reuse. They use the number
of memory accesses per iteration of the innermost loop as their locality cost metric. They calculate the locality cost
metric by intersecting the reuse vector space with the localized vector space. Their metric is potentially more accurate
than the one derived by McKinleyet al. as it directly calculates reuse across outer loops. This cost metric can form
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the basis for extension in our cost model. Whether such a model would be more effective than the one derived by
McKinley et al. remains to be seen.

While both of the above techniques have proved to be very useful in improving application performance through a
combination of loop transformations, they do not consider data transformations that can be used in a complementary
fashion to get still better performance. As described in earlier sections, loop transformations alone are not sufficient
for achieving good data locality in many cases.

Data Transformations Leung and Zahorjan [7] introducedarray restructuring, a technique to improve the spatial
locality of arrays in loop nests. This technique is very effective in improving the performance of certain applications.
In general, though, array restructuring needs to be carefully applied because of its high overheads. In their work, Leung
and Zahorjan perform no profitability analysis to determine when array restructuring should be applied. Instead, they
use a simple heuristic that considers array restructuring to be profitable if theaccess matrixof the array has more
non-zero columns at the right than its rank. This heuristic is simplistic because it takes neither the size of the array nor
the loop bounds into account. Consequently, their decisions are always fixed for a particular application, regardless
of input. Inbtrix, their heuristic-based approach recommended that copying-based array restructuring not be done at
all. In contrast, our cost model estimated that copying-based array restructuring would be beneficial. The observed
performance validated our approach as we obtained a49% speedup despite the overhead of copying.

Callahanet al. [27] introducedscalar replacement. When an array element is invariant within the innermost loop
or loops, it can be loaded into a scalar before the inner loop. If the scalar is modified, it can be stored after the inner
loop. This optimization decreases the number of memory accesses since the scalar can typically be stored in a register
during the complete run of the inner loop, and eliminates unnecessary subscript calculations. We assume that the
optimization is done wherever possible throughout this paper. This assumption also simplifies the calculation of the
cost model.

Combined Transformations Cierniak and Li [6] propose a linear algebraic framework for locality optimization by
unifying data and control transformations. Their framework is designed to reduce false sharing in distributed shared
memory machines. The data transformations they use is restricted to index permutations of arrays. They also do not
consider multiple loop nests.

Kandemiret al. [4] extend Li’s work by considering a wider set of possible loop transformations. They handle
multiple loop nests by fixing the memory layout of arrays as determined in previous loops. They make anad hoc
decision to always optimize a loop nest for temporal locality, irrespective of whether the optimization causes poor
spatial locality for the remaining arrays. The remaining arrays are optimized for spatial locality by changing the data
layout, if possible. An implicit assumption in this algorithm is that the array sizes and loop trip counts are sufficiently
large that such a transformation is always profitable.

Both Li and Kandemir consider only static data transformations. Once an array is optimized in a particular way
in a loop nest, the array has a fixed layout throughout the program. The rest of the loop nests do not have a say
in the locality optimization of the array in question. Our integrated optimization strategy considers dynamic data
restructuring in which an array access is replaced by a locally-optimal alias or copy. Neither Li nor Kandemir do any
cost/benefit analysis to decide when to apply their optimizations, and simply assume that they are always profitable.
We employ profitability tests for all our optimizations.

Cost Models Saavedraet al.[28] develop a uniprocessor, machine-independentmodel (theAbstract Machine Model)
of program execution to characterize machine and application performance, and the effectiveness of compiler opti-
mization. It can predict with high accuracy the running time of a given benchmark on a given machine. Their model,
however, omits any consideration of cache and TLB misses. Since they encountered low cache and TLB misses in the
SPEC92 and Perfect benchmarks, the lack of a memory cost model did not pose a problem; however, modeling cache
and TLB misses caused their model to underestimate the running time of applications with high miss rates. In later
work, Saavedra and Smith [29] deal with the issue of locality and incorporate memory costs into their model. They
calculate cache and TLB parameters, miss penalty, associativity, and cache line size using a series of microbench-
marks that exercised every level of the memory hierarchy. However, they do not model or estimate the cache hit
rates of applications. Rather, they used published cache and TLB miss ratios for the SPEC benchmarks to compute
the additional execution time caused due to poor TLB and cache performance. The prediction errors in most of the
benchmarks decreased with the new parameters and model. We use a similar methodology to calculate the various
architectural cost parameters in our model.
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Ghoshet al. [30] introduce Cache Miss Equations (CMEs), a precise analytical representation of cache misses in
a loop nest. CMEs, however, have some deficiencies. They cannot determine if the cache is warm or cold before
entering a loop nest. They also cannot handle imperfect or multiple loop nests. However, they represent a promising
step towards being able to accurately model the cache behavior of regular array accesses. Their work is complementary
to ours and can be used to further enhance the accuracy of our model. Specifically, we would like to be able to estimate
f , the degree of cache reuse across iterations of the innermost loop, accurately. Such an estimate would allow us to
improve the accuracy of our cost model’s predictions, and also improve our results on small dataset sizes.

6. Future Work

The results of this initial study are promising, but are by no means definitive. The cost model currently covers several
basic, regular cases with sufficiently large working set sizes. The most significant addition would be a mechanism to
estimate cache line reuse within a loop nest. The current model will overestimate cache misses in codes that use a
neighborhood of matrix points during each innermost iteration, such as stencil methods.

Cache Miss Equations (CMEs) [30] represent the most exact means (known to date) of calculating this cache line
reuse. They create a precise description of which cache lines are reused based on an exact model of all references
within the particular loop nest. However, CMEs quickly become complicated, especially for complex loop constructs.
A less precise model probably suffices for the cost model discussed here.

One such possible (faster) approach would use the stencil footprint of each iteration as the basis for the cost model.
If the stencil is assumed to be applied at each element of the matrix, the stencil width characterizes the potential reuse:
for instance, a stencil that is three elements wide has the potential to reuse data from the two previous iterations. This
observation, combined with knowledge of the relative sizes of the matrix and the cache, should provide the required
information to estimate overall cache line reuse within the entire loop nest. Such an approach should also be able to
take limited cache sizes and limited working set sizes into account. Tiling could be modeled in a similar way.

Our cost model could incorporate information about inter-nest locality optimizations. For instance, Kandemir et
al. [31] demonstrate that optimizing different nests to take advantage of the cache contents left by earlier nests may
be beneficial. For two of the four benchmarks that they study, taking advantage of inter-nest locality results in better
performance than loop and data restructuring; in the other two, it results in worse performance. Integrating an analysis
of this tradeoff into our cost model would be a valuable generalization.

We did not evaluate the combination of using both remapping-based restructuring and copying-based restructuring
in the same program. A compiler could combine remapping with copying for one loop: for example, it could use
remapping to speed up the copying loop itself. It would be interesting to evaluate whether such a combination would
be valuable. Given that the number of optimization combinations grows exponentially in the number of optimizations,
we would probably need to implement the model in a compiler to evaluate the space of optimizations more fully.

Finally, our cost model could be made more accurate by modeling more architectural features, such as the TLB,
a two-level cache hierarchy, and memory controller-based prefetching. Optimizing for both the TLB and the cache
simultaneously is an open problem, at least with respect to blocking optimizations. Future work in this direction also
involves extending the cost model to include more types of remappings.

7. Conclusions

Program restructuring optimizations can be effective, but they do not always deliver equal benefits for all applications.
Previous work has integrated different restructuring optimizations; to our knowledge, our work is the first to analyt-
ically model the costs and benefits of combining restructuring strategies. This paper demonstrates that the memory
costs of applications can be modeled to allow the quantitative comparison of multiple locality optimizations—alone
or in combination. The accuracy of our cost model is encouraging, given its simplicity. This model should provide the
basis for a model that incorporates a wider integration of locality strategies, including tiling, blocking, and other loop
transformations.

This paper also describes how hardware support for address remapping enables a new data restructuring optimiza-
tion that has different costs and benefits from copying. Such hardware support enables more diverse data restructuring
techniques. We contend that combining the benefits of software-based and hardware-based restructuring optimiza-
tions is a valuable research direction, and we provide a framework for reasoning about the combined effects of such
optimizations.
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double A[M][L],B[N][M],C[N][L];
for (k=0;k<N;k++)

for (i=0;i<L;i++)
for (j=0;j<M;j++)

C[k][i] = C[k][i] + A[j][i]*B[k][j];

Figure 12. Matmultkernel

Our analysis and simulations demonstrate the following points about the optimizations we study:

� Copying-based array restructuring, although useful in improving locality for multi-dimensional array accesses,
is not widely applicable, because the overhead of copying can overwhelm the benefit derived from improved
locality. Applicability depends largely on input parameters and reuse of data resident in cache.

� Loop transformations can improve memory locality, but they are not sufficient for many applications. They can
be used in conjunction with array restructuring to achieve increased locality. These complementary optimiza-
tions can yield improved locality, but not necessarily better performance. Thus, integrated restructuring may be
useful, but must be done carefully.

� Our model helps to predict when which combination of restructuring optimizations is likely to be useful.

On average, the best optimizations under cost model deliver good speedups—within 5% of the geometric mean of
the best possible choice among the optimizations we consider. This efficient model helps compilers or programmers
to generate faster code for array-based applications, and it provides the foundation for a more comprehensive model
that will cover more types of codes, addressing multilevel memory hierarchies and the data reuse within them.

Acknowledgements

We gratefully thank Martin Schulz for providing us with a great deal of feedback and editorial assistance with this
paper, and with suggesting possibilities for future improvements of our model.

Appendix

This appendix summarizes how our cost model evaluates optimizations for each benchmark. As in the body of the
paper, we use the following abbreviations:ac for copying-based array restructuring;ar for remapping-based re-
structuring;lx for loop transformations;lc for a combination of loop and copying-based restructuring; andlr for a
combination of loop and remapping-based restructuring.

Matmult Matrix multiplication is among the most studied codes in scientific computing. There are many advanced
techniques to improve its performance: loop tiling [32], non-linear array layouts [33], recursive matrix multiplica-
tion [34], and using superpages to map the entire array with a single TLB entry [35]. We use it because it is used in so
many similar optimization studies, and it therefore allows us to relate our results to those of others.

Matmultmultiplies aN�M matrix,B[N ][M ], by anM�Lmatrix,A[M ][L], to generate product matrixC[N ][L]
(see Figure 12). For large arrays, this code suffers many TLB and cache misses, but remapping-based and copying-
based array restructuring generate unit-stride accesses for all of these arrays. Of our benchmarks, this is the only

matmult # of # of # of # of L1 L2 Miss TLB Mean
Lines Nests Loops Arrays Hit Hit Rate Hit Speedup

base 54 5 11 3 2-D 90.9 6.8 2.25 98.9 1.00
ar 72 5 11 1 1-D 98.8 0.2 1.05 99.9 1.24

3 2-D
ac 54 6 13 4 2-D 95.2 3.8 0.98 99.9 1.26
lx 53 5 11 3 2-D 95.3 3.7 0.96 99.9 1.34

Table 5. Performance characteristics ofmatmultoptimizations (meanbestspeedup = 1.46)
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int A[N][N],B[N][N],C[N][N];
for (i=1;i<N;i++)

for (j=i;j<min(i+2*b-2,N);j++)
for (k=max(i-b+1,j-b+1,1);k<min(i+b-1,j+b-1,N);k++)

C[j-i+1][i] += A[i-k+b][k]*B[j-k+b][k] + A[j-k+b][k] * B[i-k+b][k];

Figure 13. Syr2kkernel

Syr2k # of # of # of # of L1 L2 Miss TLB Mean
Lines Nests Loops Arrays Hit Hit Rate Hit Speedup

base 54 3 7 3 2-D 79.1 16.8 4.1 99.1 1.00
ar 105 3 7 4 1-D 89.4 10.0 0.6 99.9 0.75

3 2-D
ac 63 4 9 5 2-D 91.7 7.3 1.0 99.5 1.71
lr 105 3 7 6 2-D 96.0 3.6 0.4 99.9 1.56

Table 6. Performance characteristics ofsyr2koptimizations (meanbestspeedup = 2.00)

application for which loop permutation alone is sufficient to achieve unit stride for all arrays in the loop nest. While
array restructuring improvesmatmultperformance, loop restructuring usually achieves the same effect with lower
setup costs. Our cost model therefore recommends loop permutation over other options. Nonetheless, conflict misses
in the loop-restructured code may cause remapping to perform better for some input data sizes. Since conflict misses
are not represented in our cost model, it incorrectly recommends loop permutation for all cases, and achieves a lower
speedup than the best possible. Likewise, the model does not consider possible cache reuse between iterations of the
outer loops, and thus it it overestimates the original code’s memory costs for small data sets. The performance penalty
induced by this limitation in the cost model is low, though, because main memory performance is not a significant
performance bottleneck for codes that exhibit high locality. When array sizes greatly exceed cache size, the cost
model correctly prefers loop transformations (lx) to the baseline.

Figure 10 shows that had the best choice had been made for each data set, mean speedup would have been 46%.
Our cost model achieves a mean speedup of 34% over the original program (91.8% of optimal for our candidate set).
Table 5 shows the characteristics of each choice in our experiments.

Syr2k The syr2ksubroutine comes from the BLAS library [34]. It computes the banded matrix calculationC =
�ATB + �BTA + C. The arrays areN �N matrices, and the width of the band isb. Figure 13 shows the banded
matrix calculation’s unoptimized core kernel. The loop references four array elements from different rows and columns
during each iteration of the innermost loop, yielding poor cache and TLB hit rates. The number of accesses to band
elements isO(Nb2).

Table 6 shows the characteristics of each choice in our experiments. Data dependences rule out loop permutation,
so our model combines loop distribution and remapping-based array restructuring (lr ) to improve this kernel. Copying-
based array restructuring (ac) can be used effectively for large bands, where the fixed setup cost of copying (O(N2))
is amortized over the subsequent data reuse, but remapping performs better for small bands. The cost model correctly
identifies this tradeoff in most cases. As a result, the model correctly predcits that choosing between copying (ac) and
combined loop and remapping-based restructuring (lr ) achieves better performance than either in isolation. Since the
model is not exact, however, it does not always predict the correct choice for “medium-sized” bands, which results in
an average speedup 1.88 (94% ofb).

Vpenta Thevpentasubroutine performs large-stride accesses to eight two-dimensional arrays in seven loop nests.
Loop permutation can optimize the two most expensive loop nests. The remaining nests have strided accesses that loop
transformations cannot optimize. For the remaining array references with strided accesses, we consider remapping-
based restructuring. This combination of loop transformation (lx) and remapping-based array restructuring (lr ) results
in the best overall performance. Additional array restructuring has little impact, since the five loop nests where
remapping is legal only account for a small portion of overall execution time.

The cost model recommendslx, which performs 4% worse than a fixed choice oflr and 9% worse thanb. For
input sizes that are a power of two, remapping eliminates a significant number of conflict misses, but since our cost
model does not account for cache conflict effects, it underestimates the potential benefits that remapping achieves. A
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Vpenta # of # of # of # of L1 L2 Miss TLB Mean
Lines Nests Loops Arrays Hit Hit Rate Hit Speedup

base 382 13 19 7 2-D 92.0 3.3 4.8 99.2 1.00
2 3-D

ac 427 15 23 14 2-D 88.0 5.0 7.0 98.6 0.60
4 3-D

ar 698 13 19 8 1-D 89.7 8.9 1.4 99.8 1.11
7 2-D
2 3-D

lx 409 13 19 7 2-D 92.5 5.5 2.0 99.9 1.47
2 3-D

lr 631 13 19 8 1-D 92.7 6.1 1.2 99.9 1.61
7 2-D
2 3-D

Table 7. Performance characteristics ofvpentaoptimizations (meanbestspeedup = 1.65)

Btrix # of # of # of # of L1 L2 Miss TLB Mean
Lines Nests Loops Arrays Hit Hit Rate Hit Speedup

base 184 10 24 25 1-D 86.7 11.2 2.0 96.6 1.00
4 4-D

ac 218 14 40 25 1-D 95.7 3.1 1.2 99.9 1.49
7 4-D

lx 173 9 23 25 1-D 95.2 3.6 1.2 98.4 1.36
4 4-D

lx0 173 9 19 25 1-D 96.8 2.4 0.8 99.9 1.72
4 4-D

lc 188 10 27 25 1-D 96.5 3.2 1.3 99.9 1.43
5 4-D

lc0 188 10 27 25 1-D 96.5 2.8 0.7 99.9 1.67
5 4-D

lr + 246 9 24 26 1-D 96.2 2.7 1.1 98.6 1.24
4 4-D

lr 0 246 9 23 26 1-D 97.3 1.9 0.8 99.9 1.47
4 4-D

Table 8. Performance characteristics ofbtrix optimizations(meanbestspeedup = 1.80)

more sophisticated cost model that used cache miss equations [30] or similar mechanisms might recognize these cases,
but experimenting with more sophisticated models is beyond the scope of this work.

Btrix Btrix solves a block tridiagonal matrix equation along one dimension of a four-dimensional array. The in-
nermost loop is vectorizable and involves strided accesses across four four-dimensional arrays. Each of these arrays
shares the same innermost loop index in the first dimension, giving rise to huge strides between accesses. Figure 14
shows a portion of the code from the original program.

We optimize this program with loop fusion and permutation. Moving the innermost loopl to the outermost loop
position and fusing all subnests in the first loop nest yields an order ofj; l;m; n for subnest1:1 andj; l;m for subloop
nest1:4. Interchanging the outermost loops,j andl, brings arraysa, b andc into array order in the first loop nest.
Finally, loop nest2 can be permuted in two different ways, representing loop transformation strategieslx andlx0.

Loop transformations alone cannot bring all four arraysa, b, c, ands into array order, because the access pattern of
arrays conflicts with the others. We further optimize this nest using copying- and remapping-based array restructuring
to generate four more candidates (lr , lr 0, lc, lc0). None of these four choices performs better than eitherlx or lx0 alone
because of the high overhead in restructuring the arrays.

Our cost model correctly calculates these costs and benefits. It predicts thatlx0 is the best optimization; in eight
of nine experiments,lx0 performs best. The single misprediction occurs when the array dimensions are a power of
two, which induces many conflict misses inlx0. For this case,lc0 performs best, because all arrays have unit stride
and there are fewer conflict misses. Again, since we do not model conflict misses, the cost model erroneously says
that lx0 is better thanlc0, which leads to a performance penalty of 48%. The overall speedup for the cost model’s
recommendations is 1.72, while the best overall speedup is 1.80 (i.e., the cost model delivers 95.6% ofb).
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int s[6][N][N][N], a[N][N][6][6], b[N][N][6][6], c[N][N][6][6];
for (j=1; j<N; j++) /* loop nest 1*/
{

...
for (m = 1; m<=5; m++)/* subloop nest 1.1 */

for (n = 1; n<=5; n++)
for (l=1; l<N; l++)

b[l][j][n][m] = b[l][j][n][m]
- a[l][j][1][m] * b[l][j-1][n][1]
- a[l][j][2][m] * b[l][j-1][n][2]
- a[l][j][3][m] * b[l][j-1][n][3]
- a[l][j][4][m] * b[l][j-1][n][4]
- a[l][j][5][m] * b[l][j-1][n][5];

...
for (m=1; m<=5; m++) /* subloop nest 1.4 */

for (l=1; l<N; l++)
s[m][l][k][j] = s[m][l][k][j]
- a[l][j][1][m] * s[1][l][k][j - 1]
- a[l][j][2][m] * s[2][l][k][j - 1]
- a[l][j][3][m] * s[3][l][k][j - 1]
- a[l][j][4][m] * s[4][l][k][j - 1]
- a[l][j][5][m] * s[5][l][k][j - 1];

...
}
for (j=N-2; j>=1; j--) /* loop nest 2 */
{

for (m = 1; m<=5; m++)
for (l=1; l<N; l++)

s[m][l][k][j] = s[m][l][k][j]
- b[l][j][1][m] * s[1][l][k][j+1]
- b[l][j][2][m] * s[2][l][k][j+1]
- b[l][j][3][m] * s[3][l][k][j+1]
- b[l][j][4][m] * s[4][l][k][j+1]
- b[l][j][5][m] * s[5][l][k][j+1]

}
...

Figure 14. Btrix kernel
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Cfft2d # of # of # of # of L1 L2 Miss TLB Mean
Lines Nests Loops Arrays Hit Hit Rate Hit Speedup

base 212 11 23 1 2-D, 3 1-D 88.0 5.9 6.1 98.7 1.00
ac 239 13 27 2 2-D, 3 1-D 91.7 6.3 1.9 98.9 2.77
ar 238 13 23 2 2-D, 3 1-D 94.1 4.4 1.5 99.9 2.90

Table 9. Performance characteristics ofcfft2doptimizations(meanbestspeedup = 2.91)

double U[3N][3N],V[3N][3N];
for (i=0;i<N;i++)

for (j=0;j<N;j++)
for (k=0;k<N;k++)

U[i][j+k] = V[k][i+j+k];

Figure 15. Ex1kernel

Our cost model correctly predicts that copying-based array restructuring (ac) is beneficial. In contrast, Leung’s
heuristics recommend against copying-based array restructuring [7]. We do not use pure remapping-based array
restructuring (ar) for this benchmark, because doing so requires more than eight remappings, the maximum number
that the current Impulse implementation supports. Loop transformations, however, enable remapping-based array
restructuring by reducing the number of arrays that needed to be restructured.

Cfft2d Cfft2dimplements a two-dimensional FFT. It consists of two subroutines that perform FFTs along the first and
second dimensions of the array, respectively, thereby taking advantage of the parallel structure of the algorithm. Pre-
vious work on loop transformations either do not optimize this loop nest or report no performance improvement [14].

Dependence constraints and imperfect loop nests make loop transformations infeasible, but do not prevent copying-
or remapping-based array restructuring. Both the latter optimizations prove effective for this benchmark. Likesyr2k,
the relative performance of copying-based restructuring versus remapping-based restructuring is input-size dependent.
The array sizes areO(N2), but each element is touchedO(N2logN) times. Thus, copying outbperforms remapping
for large data sets where the high, one-time setup cost (O(N2)) is amortized by the lower cost per access over many
accesses. Conversely, remapping is preferable for small data sets. Our cost model correctly predicts this tradeoff for
most cases, and obtains a speedup very close to the best possible.

Ex1 Figure 15 shows theex1 loop nest. ArrayU has good spatial locality. ArrayV , however, not only accesses a
new cache line but also a new page in every iteration of the innermostk loop for large values ofN . In this kernel,
only three of the six possible loop permutations are legal. Loop permutation by itself hurts performance, but it enables
beneficial data transformations. Figure 10 shows that, on average,lc performs worse than the original code. However,
lc outbperforms the base version for the four large data sets.

The main cause for poor performance for large data set sizes is high TLB miss rates. For example, whenN = 500,
the TLB hit rate is 87.2% and TLB misses account for42% of overall execution time. In contrast, forN = 200, the
TLB hit rate is 99.9%, and TLB misses represent only 2% of overall execution time. We consider five optimization
choices for this kernel –ac, ar, lx, lr , lc – and perform eight experiments with different values ofN (ranging from
N = 200 toN = 500). Copying-based array restructuring delivers the best speedup in each case. Remapping suffers

Ex1 # of # of # of # of L1 L2 Miss TLB Mean
Lines Nests Loops Arrays Hit Hit Rate Hit Speedup

base 51 3 7 2 2-D 90.5 8.0 1.5 93.5 1.00
ac 58 4 9 3 2-D 91.3 7.1 1.6 99.7 1.53
ar 75 3 7 2 2-D, 1 1-D 98.0 0.5 1.5 99.9 0.74
lx 51 3 7 2 2-D 82.8 13.8 3.4 94.6 0.66
lc 62 5 11 3 2-D 78.1 16.8 5.1 99.9 0.76
lr 71 3 7 2 2-D, 1 1-D 85.4 11.0 3.6 99.9 0.43

Table 10.Performance characteristics ofex1optimizations(meanbestspeedup = 1.53)
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Ir kernel # of # of # of # of L1 L2 Miss TLB Mean
Lines Nests Loops Arrays Hit Hit Rate Hit Speedup

base 111 2 4 2 1-D, 2 2-D 96.4 3.1 0.5 99.9 1.00
ac 120 4 8 2 1-D, 4 2-D 97.6 2.0 0.4 99.9 1.07
ar 154 2 4 3 1-D, 2 2-D 98.9 0.5 0.6 99.9 1.26
lx 111 2 4 2 1-D, 2 2-D 94.7 4.8 0.5 99.9 0.96
lc 117 3 6 2 1-D, 3 2-D 97.6 2.0 0.4 99.9 1.07
lr 135 2 4 3 1-D, 2 2-D 99.0 0.5 0.6 99.9 1.26

Table 11.Performance characteristics ofir kerneloptimizations(meanbestspeedup = 1.26)

double w[N],B[N][N];
for (l=1; l<=loop; l++)

for (i=1; i<N; i++)
{

for (k=0; k<i; k++)
w[i] += B[k][i] * w[(i-k)-1];

sum=sum+w[i];
}

Figure 16. Kernel6kernel

from high latencies while gathering cache lines, and does not perform well. The cost model successfully predicts the
best optimization in all cases.

Ir kernel The optimization choices forir kernel(see Figure 2) areac, ar, lx, lr andlc. As expected, a combination
of loop transformation and data restructuring results in the best performance forir kernel. lc outbperformsac, andlr
outbperformsar in all cases. Betweenlr and lc, the former performs better, but the cost model predicts otherwise.
The main reason for this misprediction is the high incidence of conflict misses inlc compared tolr . The penalty for
this incorrect prediction is high and causes the cost model’s recommendations to reach only 85% ofb.

Kernel6 Kernel6 is a general linear recurrence equation solver. It comes from the Lawrence Livermore National
Laboratories benchmark suite of loop kernels (also known as the Livermore Fortran Kernels [36]).

The loop’s recurrence relation makes permutation illegal (see Figure 16). We use remapping-based and copying-
based array restructuring instead. Choosingar over ac depends on the amount of reuse in the loop nest. Over22
experiments with various loop and data set sizes, our cost model accurately predicts the best optimization in21 cases.
Even in the single misprediction case the performance is very close to the best choice. When we use the cost model
to select the optimizations to perform, we achieve an overall speedup of 1.99, whereas the best overall mean speedup
is 2.00. In contrast, applying remapping (ar) or copying (ac) exclusively results in an average speedup of only 1.92 or
1.24, respectively.
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