Journal of Instruction-Level Parallelism 5 (2003) 1-28 Submitted 10/02; published 4/03

Exploiting Superword-Level Locality in Multimedia Extension
Architectures

Jaewook Shin JAEWOOK@ISI.EDU
Jacqueline Chame JCHAME@ISI.EDU
Mary W. Hall MHALL @ISI.EDU

Information Sciences Institute, University of Southern California,
Suite 1001, 4676 Admiralty Way, Marina del Rey, CA 90292-6695

Abstract

In this paper, we describe an algorithm and implementation of locality optimizations for archi-
tectures with instruction sets such as Intel's SSE and Motorola’s AltiVec that support operations
on superwords, i.e., aggregate objects consisting of several machine words. We treat the large su-
perword register file as a compiler-controlled cache, thus avoiding unnecessary memory accesses
by exploiting reuse in superword registers. This research is distinguished from previous work on
exploiting reuse in scalar registers because it considers not only temporal but also spatial reuse. As
compared to optimizations to exploit reuse in cache, the compiler must also manage replacement,
and thus, explicitly name registers in the generated code. We describe an implementation of our
approach integrated with a compiler that exploits superword-level parallelism (SLP). We present a
set of results derived automatically on 4 multimedia kernels and 2 scientific benchmarks. Our re-
sults show speedups ranging from 1.3 to 3.1X on the 6 programs as compared to using SLP alone,
and we eliminate the majority of memory accesses.

1. Introduction

In response to the increasing importance of multimedia applications in embedded and general-
purpose computing environments, many microprocessors now incorporate an expanded instruction
set and architectural extensions specifically targeting multimedia requirements. The core compo-
nent of such architectural extensions is a functional unit that can operate on aggregate objects,
performing bit-level operations, or SIMD parallel operations on variable-sized fields in the object
(e.g.,8, 16, 32 or 64-bit fields). If the aggregate objects are larger than the size of a machine word,
then they are calleduperwordq1]. Examples include Motorola’s AltiVec and Intel's SSE, a de-
scendant of MMX. If the same size as the machine word, then individual fields are referred to as
subwordg2]. A related class of architectures employ processing-in-memory (PIM) technology to
exploit the high memory bandwidth when processing logic is combined on chip with large amounts
of DRAM; several PIM-based architectures rely on superword parallelism to make more effective
use of available memory bandwidth [3, 4, 5, 6].

While multimedia extension and related architectures have been available for some time, con-
venient methodologies for developing application code that targets these extensions are in their in-
fancy. There is recent compiler research for such architectures to automatically expleritvord-
level parallelism performing computations or memory accesses in parallel in a single instruction
issue [1, 7, 8, 9, 10].

In this paper, we recognize an additional optimization opportunity not addressed by this previous
work. An important feature of all such architectures is a register file of superwemiseach 128

(©?2003 Journal of Instruction-Level Parallelism. All rights reserved.

SHIN, CHAME, & HALL

bits wide in an AltiVec), usually in addition to the scalar register file. A set of 32 such superword
registers represents a not insignificant amount of storage close to the processor. Accessing data
from superword registers, versus a cache or main memory, has two advantages. The most obvious
advantage is lower latency of accesses; even a hit in the L1 cache has at least a 1-cycle latency.
Accesses to other caches in the hierarchy or to main memory carry much higher latencies. Another
advantage is the elimination of memory access instructions, thus reducing the number of instructions
to be issued.

In this paper, we treat the superword register file as a small compiler-controlled cache. We
develop an algorithm and a set of optimizations to exploit reuse of data in superword registers
to eliminate unnecessary memory accesses, which wewgpdirword-level locality We evaluate
the effectiveness of these superword-level locality (SLL) optimizations through an implementation
integrated with the algorithm for exploiting superword-level parallelism (SLP) presented in [1].

Our approach is distinguished from previous work on increasing reuse in cache [11, 12, 13, 14,
15, 16, 17, 18], in that the compiler must also manage replacement, and thus, explicitly name the
registers in the code. As compared to previous work on exploiting reuse in scalar registers [18,
19, 20], the compiler considers not just temporal reuse, but also spatial reuse, for both individual
statements and groups of references. Further, it also considers superword parallelism in making
its optimization decisions. Exploiting spatial and group reuse in superword registers requires more
complex analysis as compared to exploiting temporal reuse in scalar registers, to determine which
accesses map into the same superword.

In conjunction with exploiting SLP, the algorithm performs what we salberword replace-
ment to replace accesses to contiguous array data with superword temporaries and exploit reuse by
replacing accesses to the same superword with the same temporary. Following this code transfor-
mation, a separate compilation pass will be able to allocate superword registers corresponding to
the superword temporaries. To enhance the effectiveness of superword replacement, it is combined
with a loop transformation callednroll-and-jam whereby outer loops in a loop nest are unrolled,
and the resulting duplicate inner loop bodies are fused together. Unroll-and-jam reduces the dis-
tance between reuse of the same superword, when reuse is carried by an outer loop, and brings
opportunities for superword replacement into the innermost loop body of the transformed loop nest.
The optimization algorithm derives appropriate unroll factors for each loop in the nest that attempt
to maximize reuse while not exceeding the number of available registers.

The contributions of this paper are as follows:

¢ An algorithm for exposing opportunities for compiler-controlled caching of data in superword
register files using unroll-and-jam. The two main components of this algorithm are a model of
the number of memory accesses and registers required associated with a set of unroll factors,
and a strategy for navigating the search space of possible unroll factors.

e Adescription of a set of code transformations, which in aggregate we call superword replace-
ment, for exploiting superword register reuse.

e Experimental results, derived automatically, comparing performance of six benchmarks/multimedia
kernels optimized for parallelism only, SLP, and optimized for both parallelism and superword-
level locality. Our results show speedups ranging from 1.3 to 3.1X as compared to using SLP
alone, and we eliminate the majority of memory accesses.

EXPLOITING SUPERWORDLEVEL LOCALITY IN MULTIMEDIA EXTENSION ARCHITECTURES

This paper extends an earlier description of this work in several ways [21]. We have extended
the algorithm and register requirements analysis to exploit group-temporal reuse across iterations
of the transformed loop nest. We have also greatly expanded the description of code generation.
In the experimental results description, we have improved the results and provided a more detailed
breakdown of the contributions of the different techniques.

The remainder of the paper is organized into 8 sections. Section 2 motivates the problem and
introduces terminology used in the remainder of the paper. Section 3 presents an overview of
the superword-level locality algorithm. Section 4 describes how the algorithm computes the total
number of registers required for exploiting reuse and the resulting number of memory accesses.
Section 5 describes aspects of how the search space is navigated. Section 6 presents optimizations
to actually achieve this reuse of data in superword registers. Section 7 presents experimental results
derived automatically by an implementation in the Stanford SUIF compiler. Section 8 discusses
related work and Section 9 presents conclusions and future work.

2. Background and Motivation

In many cases superword-level parallelism and superword-level locality are complementary op-
timization goals, since achieving SLP requires each operand to be a set of words packed into a
superword, which happens, with no extra cost, when an array reference with spatial reuse is loaded
from memory into a superword register. Therefore, in many cases the loop that carries the most
superword-level parallelism also carries the most spatial reuse, and benefits from SLL optimiza-
tions. In this paper, we achieve SLL and SLP somewhat independently, by integrating a set of SLL
optimizations into an existing SLP compiler [1]. The remainder of this section motivates the SLL
optimizations.

Achieving locality in superword registers differs from locality optimization for scalar registers.

To exploit temporal reuse of data in scalar registers, compilerscaar replacemento replace

array references by accesses to temporary scalar variables, so that a separate backend register allo-
cator will exploit reuse in registers [19]. In additiaimroll-and-jamis used to shorten the distances
between reuse of the same array location by unrolling outer loops that carry reuse and fusing the
resulting inner loops together [19].

In contrast, a compiler can optimize for superword-level locality in superword registers through
a combination of unroll-and-jam arsliperword replacementThese techniques not only exploit
temporal reuse of data, but also spatial reuse of nearby elements in the same superword. In fact, even
partial reuse of superwords can be exploited by merging the contents of two registers containing
superwords that are consecutive in memory (see Section 6.4). Thus, as is common in multimedia
applications [22], streaming computations with little or no temporal reuse can still benefit from
spatial locality at the superword-register level, in addition to the cache level.

While cache optimizations are beyond the scope of this paper, we observe that the SLL optimiza-
tions presented here can be applied to code that has been optimized for caches using well-known
optimizations such as unimodular transformations, loop tiling and data prefetching. When combin-
ing loop tiling for caches, superword-level parallelism and superword-level locality optimizations,
the tile sizes should be large enough for superword-level parallelism, and for unroll-and-jam and
superword replacement to be profitable.

These points are illustrated by way of a code example, with the original code shown in Fig-
ure 1(a). This example shows three optimization paths. Figure 1(d) optimizes the code to achieve

SHIN, CHAME, & HALL

for (i=0; i<n; i++) for (i=0; i<n; i++)
for (j=0; j<n; j++) for (j=0; j<n; j+=sws)
a[i][j] = a[i-1][j] * b[i] + b[i+1]; a[illj:;j+sws-1] = a[i-1][j:j+sws-1] * b[i] + b[i+1];
(a) Original loop nest. (d) After superword-level parallelism(j loop).
for (i=0; i<n; i+=2) for (i=0; i<n; i+=2)
for (j=0; j<n; j++) { for (j=0; j<n; j+= sws){
a[i][i] = a[i-1][j] * b[i] + b[i+1]; a[i][j:j+sws-1] = a[i-1][j:j+sws-1] * bi] + b[i+1];
afi+1][j] = a[i][j] * b[i+1] + b[i+2]; afi+1][j:;j+sws-1] = a[i][j:j+sws-1] * b[i+1] + b[i+2];

(b) Unroll-and-jam on the example in (a)(i loop).(e) Unroll-and-jam on the example in (d)(i loop).

tmpl = b[0]; tmp1[0:sws-1] = b[0:sws-1];
for (i=0; i<n; i+=2) { stmpl = tmp1[0];
tmp2 = b[i+1]; stmp2 = tmp1[1];
tmp3 = b[i+2]; field = 2;
for (j=0; j<n; j++) { for (i=0; i<n; i+=2) {
tmp4 = a[i-1][j] * tmpl + tmp2; /[*field’ denotes an index into 'tmp1’ for stmp3
afi+1][j] = tmp4 * tmp2 + tmp3; if(field == 0)
a[i][j] = tmp4; tmp1[0:sws-1] = b[i+2:i+sws+1];
stmp3 = tmp1[field];
tmpl = tmp3; for (j=0; j<n; j+= sws){
} tmp2[0:sws-1] = a[i-1][j:j+sws-1] * stmpl + stmp2;
afi+1][j:;j+sws-1] = tmp2[0:sws-1] * stmp2 + stmp3;
(c) After scalar replacement on the code in (c). a[i][j:;j+sws-1] = tmp2[0:sws-1];

stmpl = stmp3;

stmp2 = tmp1[field+1];

field = (field+2)%sws;
}

(f) After superword replacement on code in (e)

Figure 1: Example code.

superword-level parallelism. Herews, an abbreviation for superword size, is the number of data
elements that fit within a superword. For example, &#ndb are 32-bit float variables, on a machine
with 128-bit superwordssws = 4. In Figures 1(b) and (c), we show how the original program
can instead be optimized to exploit reuse in scalar registers, using unroll-and-jam and scalar re-
placement, respectively. In Figures 1(e) and (f), we combine these ideas, using unroll-and-jam and
superword replacement, respectively, to transform the code in (d) for both superword-level paral-
lelism and superword-level locality.

Table 1 shows how the three different optimization paths affect the number of array accesses to
memory in the final code. The original code hégeads and writes to arrayand2n? reads to array
b. Exploiting superword-level parallelism in logp as in Figure 1(d) reduces the number of reads
and writes to array: by a factor ofsws since each load or store operatessars contiguous data
items; for array, there is no change since the array is indexedragher thary. If instead the code
was optimized for scalar register reuse, as in Figure 1(c), we can reduce the number of array reads
of a down by a factor of 2, and reads by a factor ofn, with the number of writes remaining the

EXPLOITING SUPERWORDLEVEL LOCALITY IN MULTIMEDIA EXTENSION ARCHITECTURES

Original | Scalar register reuse only SLP only SLP and SLL
Figure 1(a) Figure 1(c) Figure 1(d) Figure 1(f)
Reads 3n? n?/2+n 2n? +n?/sws | (n?/2 +n)/sws
Writes n? n? n?/sws n?/sws

Table 1: Number of array accesses under different optimization paths.

same. By combining superword-level parallelism and superword-level locality as in Figure 1(f), we
see that the number of reads and writes is further reduced by a factatsofigure 1(f) illustrates
some of the challenges in exploiting reuse in superwords. Analysis must identify not just temporal,
but also spatial reuse, and for both individual statements and groups of references. The compiler
also must generate the appropriate code to exploit this reuse; for example, we select scalar fields of
b from the superword, since we are not parallelizing itheop.

The remainder of this paper describes how the compiler automatically generates code such as is
shown in Figure 1(f), and the performance improvements that can be obtained with this approach.

3. Overview of Superword-Level Locality Algorithm

The superword-level locality algorithm has three main steps, as summarized below. Each step will
be described in more detail in the three subsequent sections.

Step 1: ldentifying Reuse. The first step of the algorithm is to identify both array references
and loops carrying reuse. The array references carrying reuse are the ones for which superword
replacement may be applicable. The loops carrying reuse are the ones to which the algorithm will
consider applying unroll-and-jam.

Reuse between two distinct array references in-adimensional loop nest is determined from
data dependences, in the form d#pendence vectord = (di,ds,...,d,)[23]. A dependence
vector captures the vector distance, in terms of the loop iteration space, such that the two references
may map to the same memory location. Each vector eleayemiay be either a constant integer,
+ (a positive direction where the distance is not fixed)a negative direction), of (the direction
and distance are unknown). We refer to a dependence vector asi&eaoagraphically positivef
the first non-zeral; is + or a positive integer.

For the purposes of reuse, the relevant dependences carrying reuse are a subset, and are charac-
terized as follows:

1. We consider only true dependences (writes followed by reads), input dependences (reads
followed by reads), and output dependences (writes followed writes). Although output de-
pendences do not capture reuse of the same data value, they suggest an opportunity for elimi-
nating unnecessary writes back to memory. Anti-dependences (writes followed by reads) are
not considered.

2. We consider only lexicographically positive dependences.

3. A dependence vector must bensistenti.e., the dependence distance in the iteration space
must be constant, or it must be invariant with respect to one of the loops in the nest.

SHIN, CHAME, & HALL

tmp[0:3] = A[i:i+3];
vec2[0:3] = Afi+4:i+7];
for (i=0; i<N; i+=4){

for (i=0; i<N; i+=4){ vecl[0:3] = tmp[0:3];
vecl[0:3] = A[i:i+3]; tmp[0:3] = vec2[0:3];
vec2[0:3] = A[i+8:i+11]; vec2[0:3] = A[i+8:i+11];

} }

(a) Original (b) After exploiting reuse

Figure 2: Reuse Across lterations

Applying unroll-and-jam to a loop with a consistent dependence varying with respect to loop
1 can create loop-independent dependences in the innermost loop of the unrolled loop body. In the
example in Figure 1(a), there is a true dependence between refergfifiglsand A[i — 1][;j] with
distance vectoK1,0). After unroll-and-jam, a loop-independent dependence is created between
Ali][4] in the first statement and[i][j] in the second statement of the loop body, creating a reuse
opportunity.

In addition to reuse between copies of a reference created by unrolling, there can be reuse across
loop iterations. References with consistent dependences carried by a loop have group reuse which
can be exploited by using extra registers to hold the data across iterations. As in previous work [19],
our algorithm exploits reuse across iterations of the innermost loop only, because exploiting reuse
carried by an outer loop could potentially require too many registers to hold the data between uses.
Figure 2 shows how reuse can be exploited across iterations of the innermost loop by using one
register to keep the data that is reused on every two iterations.

For loop-invariant references, unroll-and-jam generates loop-independent dependences between
the copies of the reference in the unrolled loop body, since the same location is being referenced by
each copy.

Step 2: Determining unroll factors for candidate loops. The algorithm next determines the
unroll factors for each candidate loop that carries reuse, as previously described, and for which
unroll-and-jam is legal. The optimization goal is as follows.

Optimization Goal:Find unroll factors(X, X, ...X,,) for loops1 to n in ann-deep

loop nest such that the number of memory accesses is minimized, subject to the con-
straint that the number of superword registers required does not exceed what is avail-
able.

The algorithm determines the unroll factd¥;, X, ...X,,) by searching for the combination
of unroll factors that satisfies the above optimization goal. To guide the search, the algorithm
calculates the total number of registers required for exploiting reuse, which is the sum of the number
of superwords accessed by the references in the loop body after unroll-and-jam is applied, plus the
number of registers needed for holding data across iterations of the innermost loop. Section 4
describes how the algorithm computes the total number of registers required for exploiting reuse
and the resulting number of memory accesses. Section 5 describes aspects of how the search space
is navigated.

EXPLOITING SUPERWORDLEVEL LOCALITY IN MULTIMEDIA EXTENSION ARCHITECTURES

Step 3: Code Transformations - Unroll-and-Jam, Superword Replacement, and Related Opti-
mizations. Once the unroll factors are decided, unroll-and-jam is applied to the loop nest. Array
references are replaced with accesses to superword temporaries. As part of code generation, our
compiler performs related optimizations to reduce the number of additional memory accesses and
register requirements introduced by the SLP passes. These code transformations are the topic of
Section 6.

4. Computing Registers Required and Memory Accesses

This section presents the computation of the number of registers required for exploiting data reuse
in superword registers and the resulting number of memory accesses, which are the parameters used
to guide the search for the combination of unroll amounts to be applied to the loop nest. The next
subsection describes how the algorithm computesstherword footprint which represents the
number of superwords accessed by the unrolled iterations of the loop nest as a function of the unroll
factors. Subsection 4.2 presents the computation of the extra registers needed for reusing data across
loop iterations. The total number of registers and the corresponding number of memory accesses
are computed in subsection 4.3.

4.1 Computing the Superword Footprint

This section presents the computation of the superword footprint of the refeférinesloop nest,
Fr,(V), after unroll-and-jam is applied to the nest with unroll factoks , Xo, ..., X,,).

The algorithm for computing the superword footprint for a loop nest first partitions the refer-
ences in the loop into groups ohiformly generated referench8], that is, references to the same
array such that, for each array dimension, the array subscripts differ only by a constanfTtieem,
for each group of references, it computes the number of superwords accessed in the unrolled loop
body. Finally, the total number of superwords is computed as the sum of those of each group of
uniformly generated references.

We first discuss how to compute the superword footprint of a single reference as a function of
the unroll factors of each unrolled loop. Then we discuss how to compute the superword footprint
of a group of uniformly generated references. The superword footprint of a group may be smaller
than the sum of the individual fooptrints, since the same superword may be accessed by two or more
copies of the original references when the loops are unrolled.

Our method determines the number of superword registers required to hold the data accessed by
the loop references in the unrolled loops. However, extra registers may be needed to, for example,
align a superword operand which is already kept in superword registers. That is, the computation
may require more registers than those needed for storing the data. Therefore, we reserve some
scratch registers for manipulating data and compute the number of registers needed just for storing
the data accessed in the unrolled loops.

To simplify the presentation, we assume a loop nest of deptitnere all array references have
array subscripts that are affine functions of a single index variable (SIV subscriMs)lso assume
that eaclp-dimensional array referenced by the loop is defined gsg|[s,—1] ... [s1], wheresy, is

1. We assume that two or more references that access the same array, but are not uniformly generated, access distinct
data in memory, which results in a conservative estimate of the number of superwords accessed by the group and of
the number of registers required.

2. Our current implementation can handle affine SIV subscripts and certain affine MIV subscripts.

SHIN, CHAME, & HALL

d footprint of size =% n

superword footprint of size == ¥

| P p SWS) ‘ Sy gs,

I 1 I 1

h1
super wor d offset = a*Mls;
=1

PR
Superwords W%%%W%%%%W%%M ™t
in menory g Os,
i
Superwords
me nmemoy s} b
—| a2+b
| a3d+h hi J
P ad+b (ah*1+b)*gs,
X . h1
. . (@2+0)'Tls;
X | af(X-1)+b .
XX t+h -
superword footprint: %% (a"*x‘“)'b)*gs’
(@) h =1anday < sws (b)h #£1

Figure 3: Superword footprint of a single reference.

the size of dimensiof, 1 < h < p. Dimensionl is the lowest dimension of the arraye., the
dimension in which consecutive elements are in consecutive memory locations. A reference
array A is then of the formA[a,, * [, + bp){ap—1 * lp—1 + bp—1] ... [a1 * {1 + b1]. Thus, a reference
with SIV subscripts has each array dimenstoassociated with just a single loop index variable in
the nest, and the loop index variable associated withrepresented dg. We also assume that the
arrays are aligned to a superword in memory and that the loops are normalized.

4.1.1 SUPERWORDFOOTPRINT OF ASINGLE REFERENCE

For each reference with array subscripts;, [, + b, whereh is the array dimension arlg is the
loop index variable appearing in subscriptthe number of superwords accessed by all copies of
whenl;, is unrolled byX;, is given by thesuperword footprinof v in I, or Fj, (v).

When dimensiorh is the lowest array dimensioik (= 1), the superword footprint is given by
Equation (1). Equation (1a) corresponds to the footprint of a loop-invariant reference. Equation (1b)
corresponds to the footprint of a reference with self-spatial reuse within a superword, as illustrated
in Figure 3(a), and (1c) holds when the reference has no spatial reuse.

1 (a) if ap =0
F,(v) = [%W (b) ifap < sws (1)
X, (c) ifap > sws

Whenh is one of the higher dimensionk,< h < p, and loopl, is unrolled, the offset between
the footprints of each copy af is a;, * H?:‘ll s;, wheres; is the size of the'” array dimension,
as shown in Figure 3(b). Assuming that the size of the lowest array dimensipis (arger than
sws, which is usually the case in practice for realistic array dimensions, each copynothe
unrolled loop body corresponds to a separate footprint, as shown in Figure 3(b). Therefore the size
of the footprint ofwv in [}, is the sum of theX;, disjoint footprints, and is recursively defined by
Equation (2), wheré, (v) is computed as in Equation (1).

Flh (U) = th * Eh—l(v)
h
= (I xw) * By (v) 2
=2

8

EXPLOITING SUPERWORDLEVEL LOCALITY IN MULTIMEDIA EXTENSION ARCHITECTURES

X, + (ba —b1)/an

Eh (Ul’ 7)2) = [(ah * th + by — bl)/sws-l

Fy, (1) + Fy, (v2)

super wor d
superword footprint: %

(@) ifap, > swsand(bs —b1) < ap * X;, and
(bg — bl) mOdah =0
(b) if ap, < swsand(by —b1) < ap, * X,
(c) otherwise
3)

Super wor ds bod Load - - [P R Lo
in menory =T L =

)

a*2+b,

arxX, +b,

x

a*l+b,
a*2+b,

arX, + b,

(a) a, zsws and (b,-b) < a,*X,
and (b,-b;) nod a,=0
super wor d

Super wor ds
in menory

x
a*l+b,
a*2+b,

a*;(‘: i b,

(c) a, 2sws and (b, b)) za, X

o
;I :i;:z:u

Superwords WﬁfW 55 W .
in menory “)

a*2 + b,

a*;(; . 4 b,

>

a1l +b,
a*2 + b,

a*X, + b,

(b) a, <sws and (b;b,) < ar*X

superwor d

Super wor ds
in menory

! a*l+b,; j
*!_l I a*2 + b,
: arX, + b,

=

a*l+b,
a*2 +b,

a*X, + b,

(d) a, <sws and (b,b, 2a,*X,

Figure 4: Superword footprint of a group of references.

For a single reference, the number of superword registers required to keep the superword foot-
print given by Equation (1) and the number of scalar registers that would be required if the same
unroll factors were used differ only whemn < sws, that is, when spatial reuse can be exploited in
superword registers. For a group of uniformly generated references the analysis must also consider

group reuse, as discussed next.

4.1.2 SYPERWORDFOOTPRINT OF AGROUP OFREFERENCES

The number of superwords accessed by a group of uniformly generated reféreacés, , vo, ..., v, }

when looply, is unrolled byX;, is the superword footprint of the group;, (V). The superword
footprint of a group consists of the union of the footprints of the individual references, as some of
the reference footprints may overlap, depending on the distance between the constant terms in the

array subscripts.

The footprints of two uniformly generated references may overlap in dimersamly if they
overlap in all dimensions higher than For example, the footprints of referencd{i|[; + 2]
and[2i + 1][j] do not overlap in the highest (row) dimension, since the first reference accesses the
even-numbered rows of the array and the second accesses the odd-numbered rows. Therefore the
footprints cannot overlap in the lowest (column) dimension. On the other hand, the footprints of
A[2i][5 + 2] and A[2i + 4][j] overlap in the row dimension for iterations, io, 1 < i1,is < X,
such thai; = 2is 4 4. For the iterations of in which the footprints overlap in the row dimension,

SHIN, CHAME, & HALL

the footprints may overlap in the column dimension if there exist iteratjons, 1 < ji, jo < X,
such thatj; + 2 = js.

The superword footprinf, (V') of a groupV/, following unroll-and-jam, is computed as fol-
lows. First, the array dimensions with array subscripts that are a function of any of the unrolled
loops are identified. Then, for each such dimengipfrom highest to lowest dimension, the foot-
print is computed assuming that the footprints of the references in the group overlap in the higher
dimensions. For each dimensién> 1, the algorithm partitions references into subsets such that
each subset corresponds to a disjoint footprint in dimenkidrhen, for each subset, the algorithm
recursively computes the footprint in dimensiba- 1, as we now describe.

Dimensionh is the lowest dimensionk = 1). We first compute the group footprint of two array
references, and then we extend it forreferences. The footprint of grodp = {v1,v2}, where
references; andv, have lowest dimension subscripig=l;, + b1 anday, x1;, + bs such thab, < by,
when loopiy, is unrolled by.X;, is given by Equation (3) in Figure 4. Equations (3a) and (3b) apply
when the two footprints overlap, that is, wh@n — b1) < a;, * X, , as shown in Figures 4(a) and
(b). When the footprints do not overlap, the group footprint is the sum of the individual footprints,
as in Equation (3c), with examples in Figures 4(c) and (d).

In Figure 4(a), the references have no self-spatial reuse, that is,sws, and each individual
footprint is a set ofX;, superwords. The footprints overlap(if, — by) is evenly divided by, and
there exists an integer valige1 < k < X, , such thak = 1+ (b — b1)/ay. This case corresponds
to Equation (3a), which computes the group footprint precisely when the two references have
group-temporal reuse. In Figure 4(b), both references have self-spatial reuse within a superword,
thatis,a;, < sws. The corresponding footprint size is given by Equation (3b). In Figure 4{¢)as
no self-spatial reuse and each copyugfin the unrolled loop body accesses a distinct superword,
and the same is true fep. In Figure 4(d) both), andwv, have self-spatial reuse.

The footprint of a group/ = {v1,ve, ..., v, }, With array subscripts; « 1 + b; such that
1 <i<mandb < b < .. < by, iscomputed by first partitioning” into subgroups with
disjoint footprints in the lowest dimension, as follows. A subgrédtp= {v;, ..., Vi,ini1s - Vimas |
is defined by lowest dimension subscriptsx [; + bj, Wherevj, inin < j < imaz,

(bj—1 < bj) A

(bj —bj—1 < a1*X;)A

(bi,;, =01 Vb, —bi . 1> apx X)) A

Bimas = bm V iput1 = bipo = a1 % Xyy) (4)

Then the group footprint” is computed as the sum of the disjoint footprints of détsas in

(5).
B (V) = 3B, (V) ©)

The footprint of each subgroug is computed by extending Equation (3)yto> 2 references.
For example, when the referencedirhave self-spatial reuse, as in Equation (3hQ) £ sws), each
subgroupV; has a footprint consisting of contiguous superwords, shaceb;_; < a; * X;, for all
j such thati,,;, < j < imaz. The footprint ofV; consists of the union of the individual footprints,

10

EXPLOITING SUPERWORD-LEVEL LOCALITY IN MULTIMEDIA EXTENSION ARCHITECTURES

with size given by Equation (6).

Eh (‘/'5) - F‘lh({vimin7 "'7Uimam})
_ ’7(11 * Xll + bimaz B bzmzn—‘

(6)
SWws

For example, isws = 4 and X = 4, groupV = {A[i], A[i + 2], A[¢ + 5], A[i + 12], A[i + 14]}
can be partitioned into two subgroups = { A[i], A[i+2], A[i+5]} andVa = {A[i+12], A[i+14]}
with disjoint superword footprints. Since the references have self-spatial reuse, each individual
footprint and the footprint of each subgroup is a set of contiguous superwords. The total number of
superwords accessed by the referencds ia the sum of the disjoint footprints of seis and V5,
asin (7).

(7)

1*4+5—-0 1x4+14 —12
B (V) = ﬂ1<v1>+Fh<V2>=[M[]=5

4 4

Dimension/ is not the lowest dimension k # 1). Whenh is one of the higher dimensions, the
superword footprint of = {v, v, ..., v, } iInloop1y is again the union of the individual footprints.

From Section 4.1.1, the footprint of each referemgcén the unrolled loop body consists of a
set of X;, disjoint footprints (each footprint corresponding to a copyptreated by unrolling),
and the offset between each pair of consecutive footprinis is]'[?:‘f si, Wheres; is the size of
dimension;.

Therefore the footprints of different references in the group may overlap, depending on the
values ofay, b; and the unroll factorX;,. The footprints of two uniformly generated references
v; andwvy overlap in dimensiort if there exists an integer valug 1 < k£ < X;, that satisfies
Condition (8):

ah*k+b1:ah+b2. (8)

that is, if (by — b1)%apn, = 0 and(by — b1)/ap, + 1 < X, . Furthermore, if there exists satisfying

the above condition, the footprints of the last, — £ + 1 copies ofv; in the unrolled loop body
overlap with those of the firsX;, — k + 1 copies ofv,. The footprint of{v;, v, } is then given by
Equation (9).

Fy(v,09) = (k=1)x Fy,_, (01) + (Xp,, =k +1) % By (v1,02) + (k= 1) % Fj,,_ (02)(9)

To compute the size of the entire footprint Wfin [, our algorithm partitiond” into subsets
Vi = {Wipins o Vimae } SUCh that, for any, iy, < j < imaa, the pair{v;_;, v;} satisfies Condi-
tion (8). The footprint ofl/; is the union of the footprints of its reference set and is computed by
extending Equation (9) to more than two references.

4.2 Registers for Reuse Across lterations

In addition to superword registers for exploiting reuse in the body of the transformed loop nest, extra
superword registers may be required for exploiting reuse across iterations of the innermost loop for
references with group-temporal reuse carried by the innermosti@dphe transformed loop nest.

To compute the number of registers needed to exploit group-temporal reuse across iterations
of loop n, the algorithm examines groups of references that have consistent dependences carried

11

SHIN, CHAME, & HALL

by n.2 Assume that unroll-and-jam has been applied to outer loops in a nest. After subsequently
unrolling the innermost loop, extra registers are required if the reuse distance between references
prior to unrolling looprn is larger than the unroll amourite., if d,, > X,,, as in Figure 2, where
d, = 8 andX,, = 4.

LetC = {v1,v9,...v,,,} be a set of references that is a subset of a uniformly generated set, and,
prior to unrolling the innermost loop resulting from unroll-and-jamXy, each paifv;, v; 1) in C
has a consistent dependeniée= (0,0, ..., d-,), d’, > 0. Also, assume that the array subscript of the
lowest dimension of each referencgin C' is of the forma; * n + b;, and that; < by < ... < by,.
Unrolling loopn generatesX,, copies of each original referenegin the body of the transformed
loop nest.

Whend;, is a multiple of the unroll factoX,,, each pair of copies of referenc@s, v;, 1) will

reuse data afte% iterations. Whent, is not a multiple ofX,,, some copies of a reference will

reuse data afte[r)d(—ﬂ — 1 iterations ofn, while others will have a reuse distance@iﬂ requiring
one more register per copy. Thus, each pair of copies of refereges; 1) requires at most

[i—ﬂ — 1 additional superword registers to keep the data across iterations of the innermost loop.
The number of registers required to exploit reuse across iterationshgfall pairs of copies
is the number of registers required for each pair times the number of registers required to keep the
superword footprint of referenag in the transformed loop nest:
di
Ra(vi,vit1) = ({X—"W — 1) x Fr(v;) (10)
n
Equation (10) may overestimate the number of registers if the footprint compaFieft; {) over-
estimates registers, or for certain copies of referencé’s i not a multiple ofX,.
The total number of registers required for exploiting reuse across iterations fonveigh lead-
ing referencey; is given by:

Ra(C) =) ((Ld(—;ﬂ —1) x FL(U1)> (11)

1<i<m

4.3 Putting It All Together

Subsections 4.1 and 4.2 describe the computation of the number of registers required to exploit
reuse in the body of the innermost loop (superword footprint) and across iterations of the inner-
most loop, assuming that unroll-and-jam has been applied the loop nest. This section presents the
computation of the total number of registers required and the total number of memory accesses in
the innermost loop of the transformed loop nest, which are the metrics used to prune and guide the
search for unroll factors described in Section 3.

The total number of registers required to exploit reuse is the sum of the superword footprint of
the references in the innermost loop of the transformed loop nest and the number of registers needed
for exploiting reuse across iterations of the same innermost loop.

The superword footprint of the referencds, ('), is computed as in subsection 4.1. The total
number of extra registers required for exploiting reuse across iterations of the innermost loop is

3. Note that such references, if their lowest dimension varies mittnay also have group-spatial reuse across loop
iterations. However, our algorithm focuses on exploiting group-temporal reuse across iterations, since most of the
group-spatial reuse is achieved within the body of the unrolled loop.

12

EXPLOITING SUPERWORDLEVEL LOCALITY IN MULTIMEDIA EXTENSION ARCHITECTURES

computed as in subsection 4.2, for each(sef loop-variant references with consistent dependences
carried by the innermost loop.
The total number of superword registers required is then:

R(V) = FL(V)+> Ra(C) (12)
C

The total number of memory accesses in the innermost loop of the transformed loop nest is the
sum of the memory accesses of each gréugf references that are variant with the innermost loop
n and have consistent dependences carried. yor each groug’, the number of memory accesses
is given by the superword footprint of the leading reference of the grgup,

M(C) = Fr(v}) (13)

The total number of memory accesses is then:

M(V) = Y Fr(vf) (14)

5. Search Algorithm

As previously stated, the goal of the search algorithm is to identify the unroll factors for the loops in
the loop nest such that the number of memory accesses is minimized, without exceeding available
registers. Thus, we must considerandimensional search space, where each dimension has the
number of elements corresponding to the iteration count of the loop. A full global search of this
search space is prohibitively expensive, especially for deep loop nests or large loop bounds. Thus,
we use a humber of strategies for pruning the search space.

First, we eliminate from the search loops that do not carry reuse or for which unroll-and-jam is
not safe. Further, we rely on the observation that the number of registers required monotonically
increases with the unroll factor of a loop, assuming that all other unroll factors are fixed. Thus,
we need not search beyond the unroll factors that exceed available registers. This latter point sig-
nificantly prunes the search space in that the number of registers is usually fairly ergalB2
superword registers on the AltiVec), so that the search is concentrated on fairly small unroll factors.
These pruning strategies are used in our current implementation, and at least for the programs in
this study, are quite effective at making the search practical.

Further pruning is possible by making the additional observation that for each unrolled loop
I, the amount of reuse of an array reference with reuse carriédrityeases with the unroll fac-
tor X;. Therefore reuse, like the register requirement calculation, is a monotonic, non-decreasing
function of the unroll factor for each loop, given that the unroll factor of all other loops is fixed.
Thus, within each dimension, holding all other unroll factors constant, binary search can be used
rather than searching all points. We can also increase unroll factors by amounts corresponding to
the superword size without much loss of precision, rather than considering each possible unroll fac-
tor, since the register requirements increase stepwise as a function of superword size. Additional
pruning techniques that take into account the hardware’s capability to take advantage of the results
of optimization have been used in prior work [19, 24].

13

SHIN, CHAME, & HALL

Our implementation navigates the search space from innermost loop to outermost loop, for the
applicable loops in the nest, varying the unroll factor of one loop while keeping the unroll factors of
all other loops fixed. Within a dimension of the search space, the lowest number of memory accesses
will be derived at the largest unroll factor that meets the register constraint. However, lower unroll
factors may also have the same estimate of memory accesses (because reuse is monotonically non-
decreasing), so we identify the lowest unroll factor with the equivalent estimate of memory accesses.
Then, the implementation considers the next applicable outer loop and the applicable inner loops
nested inside it, and in a particular dimension, each time it reaches the largest unroll factor that
meets the register constraint, it compares the estimated number of memory accesses to the lowest
estimate so far to determine if a better solution has been found. The final result of the algorithm is
the unroll factors corresponding to the best solution.

As a subtle point, when unroll-and-jam is applied from outermost to innermost loop, unrolling
the inner loop does not affect data access patterns or reuse distance. For this reason, inner loop
unrolling is not performed in earlier work [19]. In our context, however, because of the relationship
between superword-level parallelism and superword replacement, inner loop unrolling exposes op-
portunities for superword loads and stores and thus can impact the analysis of register requirements.
Nevertheless, when reuse is exploited across iterations of the innermost loop body as described in
Section 4.2, it is not necessary to unroll the innermost loop beyond the superword size to achieve
the goal of considering register requirements in conjunction with superword-level parallelism. Note,
however, that smaller unroll factors for the innermost loop may be selected, if an unroll-and-jam of
an outer loop carries more parallelism and reuse.

Although this search should theoretically find the optimal solution, according to our optimiza-
tion criteria, in fact the solution is not guaranteed to result in the fewest number of memory accesses,
for a number of reasons. First, in a few cases as noted, the register requirement analysis defined in
the previous section must conservatively approximate. Second, it is difficult to estimate the register
requirements used to hold temporaries, so we conservatively approximate this as well. Third, there is
a tradeoff between using extra registers to hold values across iterations, as discussed in Section 4.2,
versus using them to actually exploit reuse within the transformed innermost loop body. In fact, in
general the algorithm does not take into consideration the amount of reuse resulting from perform-
ing superword replacement on specific references; replacing some references has more impact on
decreasing memory accesses than others.

This section and the previous one have described how the compiler analyzes the code to identify
reuse, register requirements and the unroll factors leading towards the lowest number of memory
accesses. In the next section, we describe how these analyses are used in transforming the code to
achieve the desired result.

6. Code Generation

In the previous section, we showed how consideration of superwords instead of scalar variables
greatly increases the complexity of determining the number of registers and memory accesses asso-
ciated with exploiting reuse under different unroll amounts. In this section, we further discuss the
increased complexity of code generation when performing superword replacement instead of scalar
replacement. The chief source of code generation complexity is the need for superword objects to
be properlyaligned as in the following examples.

14

EXPLOITING SUPERWORDLEVEL LOCALITY IN MULTIMEDIA EXTENSION ARCHITECTURES

When performing memory operations, the architecture may actually require that an access be
aligned at superword boundaries. For example, the AltiVec ignores the last four bits of an address
when performing a superword load or store. In such an architecture, when an access is not aligned
at a superword boundary, the compiler or programmer must read/write two adjacent superwords. A
series of additional instructionsacksthe two superwords for reads @npacksa superword into its
corresponding two superwords for writes. Even on architectures that support memory accesses not
aligned at superword boundaries, such as Intel's SSE, there is a performance penalty on unaligned
accesses because the hardware must perform this realignment.

To perform an arithmetic or logical operation on two superword registers, the fields of the two
operands must also be aligned. For example, to add the third and fourth fields of one superword
register to the first and second fields of another, one of the registers must be shifted by two fields.
Consider also the following example:

fori = 1, n
cli] = af2i] + bJi]

The access ta has a stride of 2, while the accesstdas a unit stride. Thus, the compiler or
programmer must first pack the even elementa wito a superword register before adding them to
the elements db. A third example occurs when exploiting partial reuse of a superword where data
in a register must be aligned to accommodate the next operation.

In the SLP compiler, the default solution to alignment involves packing data through memory.
The SLP compiler allocates superword variables by declaring them using a spextiad type
designation, which is interpreted by the backend compiler to align the beginning of the variable to a
superword boundary in memory. The start of each dimension of an array of such objects should also
be aligned, by padding if necessary. Under these assumptions, the SLP compiler can detect when
operations are unaligned. Unaligned data is packed into an aligned superword in memory before
being loaded into a superword register, and is unpacked before storing back to memory.

In summary, alignment is a key consideration in code generation, and the overhead of perform-
ing alignment operations can be quite high. Further, alignment operations may require a number
of additional superword registers, and in some cases, may result in additional accesses to memory
not accounted for by the model in the previous section. In this section, we show how to achieve the
number of registers derived by our model through a set of code transformations, presented in the
order in which they are performed by our compiler. In addition to superword replacement, described
in Section 6.2, we also describe how index set splitting is used to align accesses to the beginning of
an iteration in Section 6.1, and how our compiler eliminates additional memory accesses resulting
from packing through memory for alignment in Section 6.3. We illustrate how these transformations
collaborate with each other by way of an example in Figure 5, which is a simphifledilter.

6.1 Index Set Splitting

A simple way to reduce the need for alignment operations, when applicable, is to perform index
set splitting on loops. For example, in Figure 5(b), the initial accessutfil] refers to the

4. For architectures that support copying between scalar and superword register files, such as Intel's SSE and DIVA,
this packing can be performed more efficiently through register copies.

15

SHIN, CHAME, & HALL

1) for(i=1;i<64;it++) 1) for(i=1;i<4;i++){

2) out[i] = 0.0; 2) out[i] = 0.0;

3) 3) }

4) for (i=256; i< 320; i++) 4) for(i=4;i<64;i++}

5) for (j=0; j < 256; j++) 5) outfi] = 0.0;

6) out[i-256] = out[i-256] + in[i-j] * coelj]; 6) }
7) for (i = 256; i< 320; i++Y

(a) Original 8) for (j=0;] < 256; j++)

9) out[i - 256] = out[i - 256] +in[i - j] * coe[j];
10) }
11) }

(b) After index set splitting
1) for(i=1;i<4;i++){
2) out[i] = 0.0;
3 }
4) for(i=4;i<64;i+=4)
5) outfi + 0] = 0.0;
6) outfi + 1] = 0.0;
7) outfi + 2] = 0.0;
8) outfi + 3] = 0.0;
9 1}
10) for (i = 256; i< 320; i += 8)
11) for (j=0;j< 256;) +=8)

12) outfi + 0-256] = out[i + 0-256] +in[i + 0 - (j + 0)] * coe[j + O];
13) outfi + 0-256] = out[i+ 0-256] +in[i + 0 - (j + 1)] * coe[j + 1];
14) :

15) out[i + 7 - 256] = out[i + 7 - 256] +in[i + 7 - (j + 7)] * coel[j + 7];
16) }

17) }

(c) After unroll-and-jam

Figure 5: Code Generation Example

second field of a superword, assumiagt[0] is aligned at a superword boundary. Through
index set splitting, the portion of the loop from line 4-6 will always perform aligned accesses. This
transformation is always safe, and is profitable whenever it increases the number of aligned memory
accesses.

We assume index set splitting is performed prior to the SLP compiler. The loop is transformed so
that accesses corresponding to a particular reference in the main loop body are aligned to superword
boundaries. If there are multiple references and different choices for index set splitting are needed
to align specific references, we select a representative reference that, if aligned through index set
splitting, will also maximize alignment for other references. The reference selected must have unit
stride within the innermost loop.

Let be the loop index variable for the innermost loop, @ahdndub are the lower and upper
bounds fori. To derive the loop bounds for the copies of the innermost loop resulting from index
set splitting, we begin with the starting addresédr, of the reference wheih= [b, whereaddr =
base + offset Here,base refers to the beginning of the lowest dimension of the selected array, and

16

EXPLOITING SUPERWORD-LEVEL LOCALITY IN MULTIMEDIA EXTENSION ARCHITECTURES

1) flatl =*((float *)&vecO + 3);
2) flat2 = *((float *)&vecl + 0); :
3) flat3 = *((float *)&vecl + 1); 1) flatl = *((float *)&vecO + 3);

4) flatd = *((float *)&vecl + 2); 2) flat2 = *((float *)&vecl + 0);
5) *((float *)&vec2 + 0) = flat1, 3) flat3 = *((float *)&vecl + 1);
6) *((float *)&vec2 + 1) = flat2; 4) flat4 = *((float *)&vecl + 2);
7) *((float *)&vec2 + 2) = flat3; 5) *((float *)&vec2 + 0) = flat1;
8) *((float *)&vec2 + 3) = flat4; 6) *((float *)&vec2 + 1) = flat2;
9) vec4 =vecadd(vec3, vec2); 7) *((float *)&vec2 + 2) = flat3;

10) vecst(vecd, i* 4 +0, (float *)&out[-63]); 8) *((float *)&vec2 + 3) = flat4;
11) vec5 =vedd(i * 4, (float *)&out[-63]); 9) vec4 =vecadd(vec3, vec2);

12) flat5 = *((float *)&vec6 + 2); 10) flat5 = *((float *)&vec6 + 2);
13) flat6 = *((float *)&vec7 + 2); 11) flaté =*((float *)&vec7 + 2);
14) *((float *)&vec8 + 0) = flat5; 12) *((float *)&vec8 + 0) = flat5;
15) *((float *)&vec8 + 1) = flat6; 13) *((float *)&vec8 + 1) = flat6;
(d) After SLP compilation (e) After superword replacement

1) templ = replicate(vecO, 3);

2) temp2 =replicate(vecl, 0);

3) temp3 =replicate(vecl, 1);

4) temp4 = replicate(vecl, 2);

5) vec2 = shiftandload(templ, temp1l, 4);
6) vec2 = shiftandload(vec2, temp2, 4);
7) vec2 = shiftandload(vec2, temp3, 4);
8) vec2 = shiftandload(vec2, temp4, 4);
9) vec4 =vecadd(vec3, vec2);

10) templ = replicate(vec6, 2);

12) temp2 = replicate(vec?, 2);

11) vec8 = shiftandload(templ, templ, 4);
13) vec8 = shiftandload(vec8, temp2, 12);

(f) After packing in registers

Figure 5: Code Generation Example(Continued)

offset is the offset within that dimension. (Recall that the beginning of each dimension is aligned at
superword boundaries.)

The lower bounddplit) of the main loop body is computed by the following equation.

(15)

split = lb if offsetmodsws= 0
PRE= 1o+ sws— (offsetmodsws if offsetmodsws# 0

If Ibis constantsplit can be computed at compile time. Otherwise, it is computed at run time. In
the example in Figure ®ffsetfor out[1] is 1, so if sws= 4, thensplit = 4.

17

SHIN, CHAME, & HALL

6.2 Superword Replacement

Superword replacement removes redundant loads and stores of superword variables, using super-
word temporaries instead. We assume that this code transformation will be followed by register
allocation that places these variables in registers. For example, in Figure 5(d) and (e), the store
and load at statements 10 and 11 can both be eliminated;eadd can be used in place okc5

in subsequent statements. Superword replacement is also affected by alignment, in that we detect
redundant loads and stores by identifying distinct memory operations that refer to the same aligned
superword, even if the addresses are not identical.

The compiler recognizes opportunities for superword replacement by determining that addresses
and offsets for different memory accesses fit within the same superword, and verifies that there are
no intervening kills to the memory locations. The currentimplementationuzdes numbering25]
to detect such opportunities. Value numbering is a well-known compiler technique for detecting
redundant computation, but it is sensitive to operand and operator ordering. To increase the success
of value numbering, we first preprocess the code so that memory access operations are rewritten into
a canonical form, constant folding has been applied to simplify addresses, and alignment is taken
into account. As earlier stated, all memory accesses are aligned at superword boundaries, so if an
unaligned address appears in a memory access, the resulting access will be aligned to the preceding
superword boundary. The preprocessing performs this alignment in software so that redundant
accesses will be identified by value numbering.

The current implementation of superword replacement is more restrictive than what was pre-
sented in Section 3. Value numbering operates on a basic block at a time so we cannot exploit reuse
across iterations of the unrolled loop body. This is because we are performing this transformation
after the SLP compiler has flattened the loop structure to gotos and labels. The dependence infor-
mation used to perform the register requirement analysis cannot easily be reconstructed from such
low-level code. In an implementation where SLP and SLL are more tightly integrated, it should be
possible to perform superword replacement as a byproduct of the analysis in Section 3.

6.3 Packing in Superword Registers

As previously described, packing in memory is performed to align superword objects. Memory
packing moves data elements from a set of locations in mensoyr¢e$ to a superword location
(destination so that the destination superword contains contiguous data, aligned to a superword
boundary or to another operand. For example, in Figure 5(e), superword variablesandvecl

are the sources and superword varial@e2 is the destination for memory packing in lines 1-8.

Our implementation performs a transformation we cedlister packingto optimize memory
packing operations. A series of memory loads and stores for scalar variables are replaced by su-
perword operations on registers, as shown in Figure 5 (f). We identify a destination as a superword
data type that is the target of a series of scalar store instructions into its fields, suet2as
the example. The corresponding sources are identified by finding preceding loads of these scalar
variables. If the inputs to these loads are fields of superword data types, then these superwords are
the sources. In the exampligatl is stored into a field ofrec2 , and there is a preceding load
of flatl that copies a field of sourogecO . Once we find such a pattern, we verify the safety of
this tranformation by guaranteeing that there are no intervening modifications or uses of either the
scalar variables or destination superwords between loading the scalar variables and completion of
storing into the destination. We also verify that the destination statements ultimately produce con-

18

EXPLOITING SUPERWORDLEVEL LOCALITY IN MULTIMEDIA EXTENSION ARCHITECTURES

a p tenpl
|a[0]|a[1]|a[2]|a[3]| | | \| \| | |a[0]|a[0]|a[0]|a[0]|
a[VO] a[0] |a[0] |a[O] a[0]

tenpl p

(a) tenpl = replicate(a, 0) (b) p = shift_and_load(p, tenpl, 4)

Figure 6: Operations used for packing in registers

tiguous data in the superword. We defgsmurceanddestination indicess the fields in the source
and destination superword variables, respectively. For example, the source inde0ofs 3 in
line 1 of the example.

Once the compiler identifies sources and destinations, it transforms the code to replace memory
accesses with operations on superword registers. The register packing transformation takes advan-
tage of two instructions that are common in multimedia extension architeciRiegdicatereplicates
one element of a source register to all elements of a temporary output register (Figur&hifa)).
and-loadtakes two input registers. The first input register is a temporary, and is shifted left by
the number of bytes specified by the third argument. The same number of fields is taken from the
second input register, which is a temporary derived from a source superword, to fill the output tem-
porary register (Figure 6(b)). Simply stated, we are shifting each source element into the destination
superword, in order, so that the final result is a destination superword that corresponds to contiguous
aligned data.

The steps of the register packing transformation are as follows.

1. We sort the destination statements in increasing order of their destination indices. We then
sort the source statements to correspond to the ordering of the destination statements, so that,
for example, the scalar variable associated with the first source statement is the same as the
scalar variable associated with the first destination statement.

2. For each source statement, in sorted order, we generate a replicate statement whose two in-
puts are the source superword and the source index, and the output is a superword tempo-
rary. For example, as in Figure 5(f), we have replaced line 1 of Figure 5(e)twiip1l =
replicate(vec0, 3).

3. We replace each destination statement, in sorted order, \stiifta _and_load operation.
The first input is the destination superword. The second input is the temporary generated
by thereplicate of the corresponding source statement. The third argument, the shift
amount, usually involves shifting by a single superword field. For the last destination field,
the shift amount is the difference, in bytes, betweenstlisand the last destination field. For
completely filled destination superwords, it will also be just a single field. For example, in
lines 1-8 of Figure 5(e), the destination superword is completely filled, so the shift amount is
always a single 4-byte field. In lines 10-13, however, only the first two fields are filled, so the
shift amount of the last destination statement is a total of 12 bytes

19

SHIN, CHAME, & HALL

R1 R2

Load |o|1|2|s|als|el7| |8|o|w|ulm]isus]

Shiftout12345678%n

Shiftout‘z ‘3 ‘4 ‘5 ‘6 ‘7 ‘8 ‘9

Shiftin

Shiftout‘3‘4‘5‘6‘7‘8‘ 9‘10

Figure 7: Shifting

4. Source statements are deleted if the scalar variables are not live beyond the corresponding
destination statements.

6.4 An Example: Shifting for Partial Reuse

Spatial reuse within a superword happens when distinct loop iterations access different data in the
same superwordPartial spatial reuseof superwords occurs when distinct loop iterations access
data in consecutive superwords in memory, partially reusing the data in one or both superwords,
as shown by the example in Figure 5 (a), and illustrated graphically in Figure 7. In this example,
as before assuming thatvs = 4, array referenceén[i — j] has partial spatial reuse in loap For

a fixed value ofi andj, the data accessed in iterati¢n j) consists of the last three words of the
superword accessed in iteratign- 1, j), plus the first word of the next superword in memory. This
type of reuse can be exploited by shifting the first word out of the superword, and shifting in the
next word, as in Figure 7. As partially shown in Figure 5(c) and (f), only four superwords need to be
loaded for the data accessed in the 64 copiespf— j] in the loop body, after shifting is applied.
Before shifting,in[i — j] had to be loaded from memory (and possibly aligned) for each of the four
copies ofin[i — j] in the loop body.

This shifting opportunity arises frequently in both signal and image processing applications,
where one object is compared to a subcomponent of another object, such as the example in Fig-
ure 5(a). We detect these opportunities through the analysis described in Section 3. The optimization
shown in Figure 7 falls out from the combination of unroll-and-jam, alignment operations generated
by the SLP compiler, superword replacement and register packing.

7. Experimental Results

This section presents an experiment that demonstrates the dramatic performance improvements that
can be derived from compiler-controlled caching in superword registers. We describe an implemen-
tation that incorporates superword register locality optimizations into an existing compiler exploit-
ing superword-level parallelism [1]. We present a set of results on four multimedia kernels and two
scientific applications, derived automatically from our implementation.

20

EXPLOITING SUPERWORDLEVEL LOCALITY IN MULTIMEDIA EXTENSION ARCHITECTURES

7.1 Implementation and Methodology

Figure 8 illustrates the system we have developed for this experiment, which uses the Stanford
SUIF compiler as its underlying infrastructure [26]. The input to the system is a C program,
which is then optimized by passes in SUIF, including our Superword Locality analysis described
in Section 3, followed by the Superword-Level Parallelism (SLP) optimization passes by Larsen
and Amarasinghe[1], and finally, an optimization pass that performs superword replacement as de-
scribed in Section 6.2 to steer the compiler to obtain the reuse in superword registers that the SLL
algorithm determined was possible.

This ordering of passes was selected primarily for implementation convenience, since we were
building on the existing SLP compiler implementation. The SLP passes operate on the code at a
low level, where it is difficult to reconstruct the loop structure and array access expressions. Thus,
register requirement analysis and unroll-and-jam were applied prior to SLP, rather than afterward,
as was suggested by the examples in Section 2. Superword replacement must follow SLP, which is
the reason the components of our algorithm are performed on either side of SLP. Note that both the
SLP passes and SLL employ loop unrolling, but for different reasons. The SLP compiler operates
on basic blocks and unrolls the innermost loop of a loop nest to convert loop-level parallelism into
basic-block parallelism. The SLL algorithm performs unroll-and-jam to expose locality in basic
blocks. However, the loop that carries the most spatial locality at the superword level is often the
loop that carries the most superword-level parallelism. Therefore, it is a reasonable choice to use
the SLL algorithm to expose both parallelism and locality in the loop body while suppressing the
unrolling originally performed by the SLP compiler.

SUI F extended with » Al ti Vec Ext ended GCC
- SLL "vector"
- SLP C program Power PC 4
- Superword I execut abl e
repl acenent !
T Power PC 4
C program

Figure 8: Implementation.

The output from the SUIF portion of the system is an optimized C program, augmented with spe-
cial superword data types and operations. Currently, the resulting code is passed to a Gnu C backend,
modified to support superword data types and operations for the PowerPC AltiVec instruction-set
architecture extensions. Each superword operation corresponds, in most cases, to a single instruc-
tion in the AltiVec ISA. The role of the GCC backend includes replacing the vector operations with
the corresponding AltiVec superword instruction, and allocating the vector data types to the super-
word registers. The resulting code is executed on a 533 MHz Macintosh PowerPC G4, which has a
superword register file consisting of 32 128-bit registers.

7.2 Performance Measurements

We have applied the previously-described implementation to four of the five multimedia kernels and
the two scientific programs from the Specfp95 benchmark suite for which execution time speedups
were reported in Larsen and Amarasinghe, summarized in Table 2 [1]. As a first step, we verified

21

SHIN, CHAME, & HALL

Name Description Data Width Input Size
VMM Vector-matrix multiply 32-bit float 512 elements
FIR Finite impulse response filter 32-bit float 256 filter, 1M signal
YUV RGB to YUV conversion | 16-bit integer 32K elements
MMM Matrix-matrix multiply 32-bit float 512 elements
swim Shallow water model 32-bit float | Specfp95 reference inpyt
tomcatv Mesh generation 32-bit float | Specfp95 reference input

Table 2: Benchmark programs.

that we could reproduce their previously reported results. For purposes of comparison, we initially
followed the same methodology established in Larsen and Amarasinghe [1]: (1) we used the same
programs; (2) all versions of the code were compiled on the AltiVec without optimization; and, (3)
baseline measurements were derived by compiling the unparallelized code for the PowerPC G4. We
are using an updated implementation of SLP from what was published, as well as a faster target
machine and new releases of GCC and the Linux operating system, so there are some differences in
results, but they are very minor.

Larsen and Amarasinghe were unable to use optimization on the AltiVec-extended GCC back-
end at the time of their study, but in the intervening time, this Motorola-supplied backend has be-
come more robust. For the results presented in this section, we modify the methodology to perform
“-03” optimizations. To understand the overall benefits of exploiting compiler-controlled caching
in superword registers, we have compared the results of the full system with those obtained when
SLP is used alone. For this reason, we report results where SLP is applied to the original codes and
compare these results to the full system.

We show three sets of results. First, in Table 3, we show the number of vector, scalar and total
memory accesses for the baseline and the full system. Our approach eliminates from 38% to 69%
of the vector loads and stores in the four kernels, and over 85% in SWIM and TOMCATV. We also
eliminate over 90% of the scalar loads and stores in the four kernels, and over 35% in SWIM and
TOMCATYV using register packing, as described in Section 6.3. When combined, more than 50%
of memory accesses are eliminated.

Figure 9 shows how these reductions in instructions translates into speedups over SLP. To isolate
the benefits of individual components of our system, we measure the performance of the code at
several stages of the optimization process. The first bar, normalized to 1, shows the results of
SLP alone. The second bar, called Unrolled+SLP, shows the results of running the first portion
of the SLL algorithm, described in Section 3, which performs unroll-and-jam on the loop nest to
expose opportunities for superword reuse, and following up with SLP. This bar isolates the impact
of unrolling, since it is not until after SLP that this reuse is actually exploited. Also, because it is
reordering the iteration space to bring reuse closer together, this version will also obtain locality
benefits in the data cache. Thus, this bar provides the cache locality benefits of unroll-and-jam,
which can be compared against the additional improvements from superword register locality. The
third bar, Superword Replacement, provides speedup using superword replacement, as described in
Section 6.2. The final bar, entitled Register Packing, shows the additional improvement due to this
technique, described in Section 6.3.

22

EXPLOITING SUPERWORDLEVEL LOCALITY IN MULTIMEDIA EXTENSION ARCHITECTURES

Name | Mem. Acc | SLP only(baseline) SLP+SLL+RegPack Removed(%)
Scalar 301,989,888 0 100.00

VMM Vector 100,663,297 50,462,723 49.87
Total 402,653,185 50,462,723 87.47

Scalar 1,113,940,672 82,031,104 92.64

FIR Vector 196,558,849 120,631,297 38.63

Total 1,310,499,521 202,662,401 84.54

Scalar 9,400 0 100.00

YUV Vector 52,428,801 23,756,801 54.69
Total 52,438,201 23,756,801 54.70

Scalar 135,267,328 525,312 99.61

MMM Vector 167,772,161 50,397,187 69.96
Total 303,039,489 50,922,499 83.20

Scalar 17,150,342,657 8,920,336,007 47.99

swim Vector 8,495,723,139 1,200,754,698 85.87
Total 25,646,065,796 10,121,090,705 60.54

Scalar 599,038,032 384,070,586 35.89

tomcatv Vector 284,631,621 9,915,592 96.51
Total 883,669,653 393,986,178 55.41

Table 3: The number of dynamic memory accesses.

Overall, we see that in combination, applications achieve speedups between 1.3 and 3.1 over
SLP alone, with an average of 2.2X. Consideration of TOMCATYV and SWIM shows that both pro-
grams have little temporal reuse, although there is a small amount of spatial reuse that is exploited
with our approach, particularly in TOMCATV. We are obtaining a locality benefit due to unroll-and-
jam. We also observe additional SLP due to index set splitting, motivated by the need to create a
steady-state loop where the data is aligned to a superword boundary. The four other programs show
a significant improvement from superword replacement. For VMM, MMM and FIR, there are also
huge gains due to register packing.

In Figure 10, we further explore the relationship between superword replacement and register
packing. The first bar, which is normalized to 1, shows the Unrolled+SLP version (the second bar
in the previous figure). The second bar is the Unrolled+SLP+SWR result from the previous figure,
but this time it is normalized to Unrolled+SLP. To show the isolated benefit of register packing
without superword replacement, we applied register packing to the Unroll+SLP version, obtaining
the results shown in the third bar (Unroll+SLP+RP) of Figure 10. The final bar is the result of
applying all of the optimizations. As might be expected from the previous figure, register packing,
either in isolation or in conjunction with superword replacement, does not impact the results for
YUV, swim or tomcatv. We see that for VMM and MMM, register packing yields about the same
improvement when applied prior to superword replacement than afterward. Especially interesting
are the results for FIR, because the speedup is much larger when superword replacement and register
packing are applied together than when they are applied separately. On further investigation, we
found that the Unroll+SLP+RP version suffered from register spilling. Superword replacement
removes the majority of the superword variables used in the Unroll+SLP+RP version, which in turn
reduces register pressure. This result is consistent with the goal of the algorithm in Section 3. We
selected unroll factors based on the assumption that superword replacement would be performed.

23

SHIN, CHAME, & HALL

3.0
3.0

2.0

VR

0.0 0.0
VMM FIR Yuv MMM swim tomcatv VMM FIR Yuv MMM swim tomcatv
Benchmarks Benchmarks

Speedup
Speedup

Figure 9: Speedups over SLP alone. Figure 10: Impact of register packing.

Without superword replacement, there is register pressure after unrolling, and this is magnified by
register packing because it introduces additional superword variables.

In summary, the SLL techniques presented in this paper dramatically reduce the number of
memory accesses and yield significant performance improvements across these 6 programs. Thus,
this paper has demonstrated the value of exploiting locality in superword registers in architectures
that support superword-level parallelism such as the AltiVec.

8. Related Research

For well over a decade, a significant body of research has been devoted to code transformations
to improve cache locality, most of it targeting loop nests with regular data access patterns [27, 28,
29, 30]. Loop optimizations for improving data locality, such as tiling, interchanging and skewing,
focus on reducing cache capacity misses. Of particular relevance to this paper are approaches to
tiling for cache to exploit temporal and spatial reuse; the bulk of this work examines how to select
tile sizes that eliminate both capacity misses and conflict misses, tuned to the problem and cache
sizes [31, 11, 12, 13, 14, 15, 16, 17, 18, 32]. The key difference between our work and that of tiling
for caches is that interference is not an issue in registers. Therefore, models that consider conflict
misses are not appropriate. Further, our code generation strategy must explicitly manage reuse in
registers.

There has been much less attention paid to tiling and other code transformations to exploit reuse
in registers, where conflict misses do not occur, but registers must be explicitly named and managed.
A few approaches examine mapping array variables to scalar registers [18, 33, 20]. Most closely
related to ours is the work by Carr and Kennedy, which uses scalar replacement and unroll-and-
jam to exploit scalar register reuse [19]. Like our approach, in deriving the unroll factors, they
use a model to count the number of registers required for a potential unrolling to avoid register
pressure, and they replace array accesses, which would result in memory accesses, with accesses to
temporaries that will be put in registers by the backend compiler. Their search for an unroll factor
is constrained by register pressure and another metric dadliechcethat matches memory access
time to floating point computation time. Our approach is distinguished from all these others in that

24

EXPLOITING SUPERWORDLEVEL LOCALITY IN MULTIMEDIA EXTENSION ARCHITECTURES

the model for register requirements must take spatial locality into account, we replace array accesses
with superwords rather than scalars, and we also consider the optimizations in light of superword
parallelism.

There are several recent compilation systems developed for superword-level parallelism [1, 7,
8, 9, 10]. Most, including also commercial compilers [34, 35], are based on vectorization technol-
ogy [7, 9]. In contrast, Larsen and Amarasinghe devised a superword-level parallelization system
for multimedia extensions [1]. They point out that there are many differences between the multi-
media extension architectures and vector architectures, such as short vectors, ease of mixing with
scalar instructions, and need for alignment of memory accesses [36]. They argue that their algo-
rithm for finding superword-level parallelism from a basic block instead of a loop nest is much more
effective than using vectorization-based techniques. None of the above approaches exploit reuse in
the superword register file.

9. Conclusion

This paper presents an algorithm for compiler-controlled caching in superword register files. The
algorithm is applicable to multimedia extensions such as Intel's SSE, PowerPC’s AltiVec, and also
to Processor-in-memory (PIM) architectures with support for superword operations.

We implemented our approach in an existing compiler targeting superword-level parallelism.
We presented experimental results, derived automatically, comparing the performance of six bench-
marks/multimedia kernels optimized for parallelism only, using SLP, and optimized for both paral-
lelism and locality. Our results show speedups ranging from 1.3 to 3.1X, and an average of 2.2X,
on the 6 programs as compared to using SLP alone, and most memory accesses are removed.

The approach taken here that separates optimizations for SLL and SLP is convenient for imple-
mentation purposes, since we are building upon the work of others. Further, as there are now a few
other compilers that exploit superword-level parallelism [7, 8, 9, 10], the same can be used to extend
these existing systems to incorporate compiler-controlled caching in superword registers. Ideally,
however, an optimizer that integrates the superword parallelism and locality techniques could be
even more effective. For example, in a combined algorithm, selection of which loops to parallelize
could also take superword-level locality into account. A combined algorithm is the subject of future
work.

10. Acknowledgments

The authors wish to thank Samuel Larsen and Saman Amarasinghe for providing their SLP imple-
mentation. We wish to especially thank Samuel Larsen for his tremendous support. We also wish
to thank all the students in our research group for providing the underlying infrastructure for this
work, including Yoon-Ju Lee, Byoungro So and Rommel Dongre.

References

[1] S. Larsen and S. Amarasinghe, “Exploiting superword level parallelism with multimedia in-
struction sets,” irConference on Programming Language Design and Implementdkian-
couver, BC Canada), pp. 145-156, June 2000.

[2] R. Lee, “Subword parallelism with max2lEEE Micro, vol. 16, pp. 51-59, Aug. 1996.

25

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

SHIN, CHAME, & HALL

N. Bowman, N. Cardwell, C. Kozyrakis, C. Romer, and H. Wang, “Evaluation of existing
architectures in IRAM systems.” In First Workshop on Mixing Logic and DRAM: Chips that
Compute and Remember, June 1997.

M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss, J. Granacki, A. Srivas-
tava, W. Athas, J. Brockman, V. Freeh, J. Park, and J. Shin, “Mapping irregular applications to
DIVA, a PIM-based data-intensive architecture,”ACM International Conference on Super-
computing Nov. 1999.

J. Brockman, P. Kogge, V. Freeh, S. Kuntz, and T. Sterling, “Microservers: A new memory
semantics for massively parallel computing,”A€M International Conference on Supercom-
puting (ICS’99) June 1999.

D. Elliott, M. Snelgrove, and M. Stumm, “Computational RAM: a memory-SIMD hybrid and
its application to DSP,” iNEEE 1992 Custom Integrated Circuit Conferengg. 30.6.1 —
30.6.4, 1992.

N. Sreraman and R. Govindarajan, “A vectorizing compiler for multimedia extensiorisf-
national Journal of Parallel Programming000.

G. Cheong and M. S. Lam, “An optimizer for multimedia instruction sets,The Second
SUIF Compiler Workshagp(Stanford University, USA), Aug. 1997.

D. J. DeVries, “A vectorizing suif compiler: Implementation and performance,” Master’s the-
sis, University of Toronto, 1997.

K. Asanovic and J. Beck, “TO engineering data.” UC Berkeley CS technical report UCB/CSD-
97-930.

S. Coleman and K. S. McKinley, “Tile size selection using cache organization and data layout,”
in The SIGPLAN '95 Conference on Programming Language Design and Implemen{aton
Jolla, CA), June 1995.

K. Esseghir, “Improving data locality for caches,” Master’s thesis, Dept. of Computer Science,
Rice University, September 1993.

C. Fricker, O. Temam, and W. Jalby, “Influence of cross-interferences on blocked loops: A
case study with matrix-vector multiplyTOPLASvol. 17, pp. 561-575, July 1995.

S. Ghosh, M. Martonosi, and S. Malik, “Cache miss equations: An analytical representation of
cache misses,” iRroceedings of the 1997 ACM International Conference on Supercomputing
(Vienna, Austria), July 1997.

S. Ghosh, M. Martonosi, and S. Malik, “Precise miss analysis for program transformations
with caches of arbitrary associativity,” roceedings of the 8th International Conference on
Architectural Support for Programming Languages and Operating Syst@as Jose, Cali-
fornia), pp. 228-239, October 1998.

M. S. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance and optimization of
blocked algorithms,ACM SIGPLAN Noticessol. 26, no. 4, pp. 63-74, 1991.

26

EXPLOITING SUPERWORDLEVEL LOCALITY IN MULTIMEDIA EXTENSION ARCHITECTURES

[17] O. Temam, E. Granston, and W. Jalby, “To copy or not to copy: A compile-time technique for
assessing when data copying should be used to eliminate cache confli&SMrinterna-
tional Conference on Supercomputirffortland, OR), Nov. 1993.

[18] M. E. Wolf, Improving Locality and Parallelism in Nested Lood2hD thesis, Dept. of Com-
puter Science, Stanford University, 1992.

[19] S. Carr and K. Kennedy, “Improving the ratio of memory operations to floating-point op-
erations in loops,’ACM Transactions on Programming Languages and Systeohs15(3),
pp. 400-462, July 1994,

[20] A. F. M. Jimenez, J.M. Llaberia and E. Morancho, “Index set splitting to exploit data locality
at the register level,” Tech. Rep. UPC-DAC-1996-49, Universitat politecnica de Catalunya,
1996.

[21] J. Shin, J. Chame, and M. W. Hall, “Compiler-controlled caching in superword register files
for multimedia extension,” ifProceedings of the International Conference on Parallel Archi-
tecture and Compilation Techniqud€harlottesville, Virginia), September 2002.

[22] P. Ranganathan, S. Adve, and N. Jouppi, “Performance of image and video processing with
general-purpose processors and media ISA extensionstamational Symposium on Com-
puter ArchitectureMay 1999.

[23] R. Allen and K. KennedyOptimizing Compilers for Modern Architecturesvlorgan Kauf-
mann, 2002.

[24] B. So, M. W. Hall, and P. C. Diniz, “A compiler approach to fast hardware design space
exploration in fpga-based systems,”Pnoceedings of the ACM SIGPLAN 2002 Conference
on Programming Language Design and Implementat{Berlin, Germany), June 2002.

[25] S. S. Muchnick Advanced Compiler Design and Implementati@40 Pine St. Sixth Floor,
San Francisco, CA 94104-3205, USA: Morgan Kaufmann, 1997.

[26] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S. Liao, E. Bugnion, and M. Lam, “Maxi-
mizing multiprocessor performance with the SUIF compillEEZE Computervol. 29, pp. 84—
89, Dec. 1996.

[27] J. Ferrante, V. Sarkar, and W. Thrash, “On estimating and enhancing cache effectiveness,” in
Proceedings of the Fourth International Workshop on Languages and Compilers for Parallel
Computing (Santa Clara, California), pp. 328-343, August 1991.

[28] S. Carr, K. S. McKinley, and C.-W. Tseng, “Compiler optimizations for improving data local-
ity,” in Proceedings of the Sixth International Conference on Architectural Support for Pro-
gramming Languages and Operating Syste(Bsan Jose, California), pp. 252-262, October
1994.

[29] M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,” iRroceedings of the
SIGPLAN '91 Conference on Programming Language Design and Implement@ibronto),
pp. 30-44, June 1991.

27

SHIN, CHAME, & HALL

[30] M. J. Wolfe, “More iteration space tiling,” ifProceedings of Supercomputing ;8@Reno,
Nevada), pp. 655-664, November 1989.

[31] J. Chame and S. Moon, “A tile selection algorithm for data locality and cache interference,” in
International Conference on Supercomputipg. 492—-499, 1999.

[32] G.Riveraand C. Tseng, “A comparison of compiler tiling algorithmsthia 8th International
Conference on Compiler Construction (CC’'99), Amsterdam, The Netherlafats1999.

[33] S. Carr and K. Kennedy, “Scalar replacement in the presence of conditional control flow,”
Software—Practice and Experienaml. 24, no. 1, pp. 51-77, 1994.

[34] Veridian, VAST/AltiVec Featureslune 2001. http://www.psrv.com/altivéeat.html.

[35] Metrowerks, CodeWarrior version 7.0 data sheet 2001.
http://www.metrowerks.com/pdf/mac7.pdf.

[36] S. Larsen, E. Witchel, and S. Amarasinghe, “Increasing and detecting memory address con-
gruence,” inProceedings of the International Conference on Parallel Architecture and Com-
pilation Techniques(Charlottesville, Virginia), September 2002.

28

