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Abstract

Clustering is an approach that many microprocessors are adopting in recent times in order to mitigate
the increasing penalties of wire delays. In this work we propose a novel clustered VLIW architecture which
has all its resources partitioned among clusters, including the cache memory. A modulo scheduling scheme
for this architecture is also proposed. This algorithm takes into account both register and memory inter-clus-
ter communications so that the final schedule results in a cluster assignment that favors cluster locality in
cache references and register accesses. It has been evaluated for both 2- and 4-cluster configurations and for
differing number and latencies of inter-cluster buses. The proposed algorithm produces schedules with very
low communication requirements and outperforms previous cluster-oriented schedulers.

1. Introduction

Technology projections point to wire delays as being one of the main hurdles for improving instruction
throughput of future microprocessors (SIA, 1997). As wire delays grow relative to gate delays and feature
sizes shrink, the percentage of on-chip transistors that can be reached in a single cycle will decrease, and
microprocessors will becomeommunication boundather thancapacity boundAgarwal et al., 2000;

Matzke, 1997).

Techniques to solve this problem at all levels, from applications to technology, will be crucial for per-
formance. Clustering is an effective microarchitectural approach to mitigate the negative effect of wire
delays. The main idea is to have a hierarchical organization of the interconnection wires such that units that
communicate frequently are interconnected through short and fast wires. On the other hand, units that
rarely communicate can use longer and slower wires. In other words, the microarchitecture exploits what
we may callcommunication localitySeveral commercial microprocessors have adopted this approach,
such as the Alpha 21264 (Gwennap, 1996), which is a superscalar processor, but this trend is even more
common for VLIW processors used in the embedded/DSP domain. Examples of the latter are Texas Instru-
ment's TMS320C6000 (Texas Instruments, 1998), Equator's MAP1000 (Glaskowsky, 1998) and Analog’s
TigerSharc (Fridman and Greefield, 2000).

Clustering can be applied to different parts of the microarchitecture. Cluster microarchitectures pro-
posed so far, both in the commercial and research arena, distribute the functional units and register files,
but the data cache is considered a centralized resource. This centralized organization challenges the scal-
ability of these architectures. Besides, some studies point out that the access time (in number of cycles) to
the memory structures is likely to increase with future technologies, even when their capacity is kept con-
stant (Agarwal et al., 2000). This suggests that short latency memory structures should be even smaller
than they are today. Because of these two reasons, we believe that a distributed cache memory architecture
is key for increasing the performance of future microarchitectures.

In this work we propose a clustered VLIW microarchitecture with a distributed cache memory. This
architecture has all the resources distributed: instruction fetch, execute and memory units. It resembles
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Figure 1.  Microarchitectures of a MultiVLIWProcessor

very much a multiprocessor, with the exception that all the clusters progress in a lockstep mode, and inter-
cluster register communications are controlled by the compiler by means of certain fields in the ISA.
Because of this resemblance we refer to this architecturenalislLIWprocessor.

The effectiveness of this microarchitecture strongly depends on the ability of the compiler to generate
code that balances the workload of the different clusters and result in few inter-cluster communications. In
this work we propose a modulo scheduling techniqueniaitiVLIWprocessorsThe proposed scheduler
includes some heuristics for minimizing inter-cluster register communication, based on the information
provided by the data dependence graph. In addition, it implements a powerful memory locality analysis
based onCache Miss EquationGhosh, Martonosi and Malik, 1997), which guides the scheduling of
memory instructions with the objective of minimizing inter-cluster memory communications.

Some previous work related to scheduling of instructions for clustered VLIW architectures can be
found in the literature for non-cyclic (Ellis, 1986; Capitanio, Dutt and Nicolau, 1992; Jang et al., 1998;
Ozer, Banerjia and Conte, 1998) and cyclic code (Nystrom and Eichenberger, 1998; Fernandes, Llosa and
Topham, 1999; Sanchez and Gonzalez, 2000), but to the best of our knowledge this is the first study that
deals with a clustered VLIW architecture that has a distributed data cache.

The rest of this paper is organized as follows. Section 2 describes the architecturemofitivg I\W-
processorand some basic background on modulo scheduling. An example that motivates the proposed
algorithm is shown in Section 3. In Section 4, the proposed algorithm is described and Section 5 shows
performance results obtained for different configurations. Finally, the main conclusions of the work are
drawn in Section 6.

2. MultiVLIWProcessors

In this section we first describe the microarchitecturenoitiVLIWprocessorand then we review some
basic concepts of modulo scheduling for the proposed architecture.

2.1. Microarchitecture

Our base architecture (see Figure 1) is composed of several clusters, each one executing a fixed part of
each VLIW instruction. All clusters work in lockstep mode, i.e., any stall in one cluster also stalls the other
clusters. Every cycle, all clusters fetch their corresponding parts of a new VLIW instruction from their
local instruction caches. Each cluster consists of several functional units, a register file and a local data
cache memory in addition to the local instruction cache. Functional units can be of three different types:
integer arithmetic, floating-point arithmetic or memory access. For the sake of simplicity, we consider that
all clusters are homogeneous (i.e., with the same number and type of functional units), but the proposed
technigues can be generalized for heterogeneous clusters.

Register values generated by one cluster and needed by another one are communicated through a set of
buses that are shared by all clusters (catkggister buses A value that is put in a register bus can come
from either the local register file or the output of a functional unit through a bypass. On the other hand, a



value that is read from the bus can be stored in a register file, feed a functional unit or both. Thus, instruc-
tion register operands can be read from either the local register file or any bus, and instruction results can
be written into the register file and to any register bus. All register communication operations are explicitly
encoded in the appropriate fields of the VLIW instruction, which are set at compile time. Thus, no addi-
tional hardware is needed to manage and arbitrate register buses.

Regarding memory accesses, a load/store issued by a cluster first tries its local L1 data cache. If the
data is found, the access is satisfied with minimum latency. Otherwise, the hardware tries the cache of the
other clusters or, finally, the access is solved by the main memory. Both local memories and main memory
are interconnected through one or several buses (that are naimdry busgsAs the cache is physically
partitioned among the clusters, coherence among the local caches and the main memory has to be kept. For
this reason, a snoopy MSI protocol (Culler and Singh, 1999) has been implemented. This protocol is com-
pletely transparent to the ISA, and further, both the coherence and the bus arbitration are managed by the
hardware. When a memory access misses in its local cache, the miss request is queued in a local MSHR
(Miss information/Status Handling Registestructure, since the L1 data cache is non-blocking (Kroft,
1981). Then, the access has to compete for a free memory bus in order to access a remote cache or the main
memory.

All dependences between memory operations and their uses are dynamically checked (scoreboarded).
The compiler may schedule for an optimistic latency for memory instructions (e.g., a hit in the local
cache). If the dependence is not met (e.g., due to a cache miss), all clusters are stalled until the hazard is
resolved.

2.2. Background on Modulo Scheduling

Software pipelining is a very effective technique to statically schedule loops. The most popular scheme to
perform software pipelining is called modulo scheduling (Rau and Glaeser, 1981; Lam, 1993; Rau, 1994).
The two main parameters that statically characterize a modulo scheduled loop anéidtien interval

(I1) and thestage coun{SC). The former reflects the number of cycles that a kernel iteration takes (assum-
ing no stalls), whereas the latter shows how many iterations are overlapped, and determines the length of
the prolog and epilog.

For a clustered VLIW architecture, both Il and SC can be affected by inter-cluster register communica-
tions. If the communication buses become saturated, a higher Il is required. Moreover, communication
operations may increase the length of the schedule, and therefore the SC may be increased. Thus, the IPC
of a clustered VLIW architecture will be lower than that of an equivalent unified VLIW architecture with
the same resources in general. On the other hand, a clustered architecture may reduce the critical delays
such as the register file access time and the bypass latency (Palacharla, Jouppi and Smith, 1997), and allow
for faster clock rates.

For this paper, which focuses on modulo schedulingnfaittiVLIWprocessorsthe number of cycles
needed to execute a particular modulo scheduled loop can be modeled through the following expression
(Sanchez and Gonzalez, 1997):

NCYCLEyz = NCYCLEGympyte + NCYCLEgy

WherenCYCLEq,myue represents a fixed number of cycles that depends on the particular static scheduling
produced by the compiler. During these cycles the processor is doing useful (or at least scheduled) work.
NCYCLEg,,; represents the number of cycles where the processor is stalled and depends on several factors as
we detail below. The value ofCYCLE¢,, Can be computed before executing the loop if the number of
times the loop is executedT(MES) and the number of iterations of each executi®meR) are known, as
shown by the next expression:

NCYCLE compute = NTIMES * (NITER + SC -1) * 1l

The value ofNCYCLEg,, cannot be computed statically. It represents the number of stall cycles due to
incomplete information managed by the compiler. For instance, some memory instruction latencies may be
unknown since the compiler does not know whether they will hit in the first level cache. If the value loaded
by a memory instruction feeds another operation (i.e., the latter depends on the former) but the latter was
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scheduled using an underestimation of the memory latency, it will stall until the memory access is finished.
In the assumed microarchitecture, the final latency of a memory instruction depends on three factors:
» Latency of memory accesses, which depends on the memory level that satisfies the access: local
cache, remote cache or main memory.
* Number of entries in the MSHR of the lockup-free caches. If there is no available entry for a new
miss request, the instruction stalls until there is a free entry.
» Cycles waiting for a free bus and bus latency.
Thus, considering all of these factors, the total latency of a particular memory access can be repre-
sented by this formula:

LATpemaccess =LATLcache * MISS ¢ * (NCyyaitingentry * NCwaitingBus + LAT MemoryBus * MaX ( LATRcache » MISSre * LAT\ainmemory ) )

WhereLAT, cache and LATpeache FEpresents latency of local and remote caches respectively.M&sth
and MISsg: represent binary values that are 1 if the access misses in local cache and all remote caches
respectively, or O otherwiseC,yigenry represents the number of cycles that a miss access is waiting for an
available entry in the MSHRNCyiings,s IS the number of cycles that the access is waiting for a free bus.
Note that a bus can be also busy for coherence operations and this is taken into account by our simulator.
The max functions denotes whether the access is solved by a remote caches or the main memory. Finally,
although we have consideréxied parameters in the above expression, note that for some references this
number could be smaller if an earlier miss has already started loading the relevant cache line. This fact has
also been accounted for our simulator.

3. Motivating Example for the Proposed Scheduler

The objective of this study is twofold: first, demonstrate that when the data cache is partitioned among the
different clusters, the selection of the cluster where each memory instruction is scheduled is very important
and can dramatically affect the final performance of a program (the same holds for register values, but this
has already been shown by previous papers). Second, we propose a modulo scheduler that takes into
account both register and memory inter-cluster communications.

In this section, we illustrate through an example how the cluster selection can affect the total number
of cycles in which a code section is executed. Consider that we want to perform modulo scheduling of a
loop whose code and dependence graph are shown in Figure 2. Assume the processor consists of 2 clusters,
each one with its local register file and data cache (direct-mapped), and 2 functional units: one for arith-
metic operations (with 2-cycle latency) and one for memory operations. There is one inter-cluster register
bus with a 2-cycle latency. The latencies for memory accesses are: 2 cycles for a local cache, 2 cycles for a
bus transaction and 10 cycles for an access to main memory.



For this loop, thaninimum initiation intervalmll) for an equivalent unified architecture with the same
resources is 3 cycles. The partition and scheduling that minimizes the number of register communications
between clusters and, thus, that achieves the same Il as the equivalent unified architecture is shown in Fig-
ure 2(a). In this figure, the left part represents the partition of the operations between the clusters whereas
the right part shows the modulo reservation table obtained after modulo scheduling. Each operation is
scheduled in a particular slot and the number in brackets represents the stage at which this operation is
scheduled. The usage of the register bus is also shown in this table. Whenever a bus transaction takes place,
the corresponding bus time slot is reserved and it is indicatecCly the reservation table.

Then, theNCYCLEq,mpe Of the resulting loop can be computed as:

NCYCLE Gompute(a = NTIMES * (N + 4 -1) * 3) = NTIMES * (N + 3) * 3

However, suppose that both arra/andc are located in memory at a distance that is a multiple of the
local cache memory size. This means that we will have ping-pong interferences betweerdLD2, and
between.p3 andLD4. Thus, the spatial locality exhibited by the four instructions cannot be exploited and
the four accesses always miss. The result is that the instruction(s) that consume the memory values suffer
many stalls. In the example, the VLIW instruction that contains the multiplications cannot continue its exe-
cution until the misses are satisfied. Assuming that we have sufficient memory buses, the number of cycles
that the instruction stalls is the latency of a bus transaction plus an access to main memory, since the
latency to the local cache was taken into account by the scheduler. Then, the number of stall cycles is:

NCYCLEgyj) = NTIMES * N * (2+10) = NTIMES * N * 12

An alternative scheduling is shown in Figure 2(b). Based on the locality properties previously
observed, in this second alternative cluster assignment is selected in order to take advantage of the locality
exhibited by memory instructions. For this reasom, andLD3 are scheduled in the same cluster in order
to profit from its group reuse, and the same appliesferandLb4 which are scheduled in the other clus-
ter. In this way, ping-pong interferences are removed and we can take advantage of the spatial reuse. How-
ever, as we can see in the example, for this case two communications between register values are needed
per iteration, and then the Il has to be increased from 3 to 4. NAYASE oy, IS COMputed as:

NCYCLEompueh) = NTIMES * (N + 3 - 1) * 4) = NTIMES * (N + 2) * 4

However, the miss rate eb3 andLb4 is 25% (assuming eight data elements per cache block),znd
andLD2 always hit (excepting the first iteration). Thus, the number of stall cycles is:

NCYCLEs5) = NTIMES * N * (2%(2+10)* 0.25) = NTIMES * N * 6
Then, putting all together, we have that the total number of cycles in both strategies as:
NCYCLE oqg(ay = NTIMES * (15 * N+ 9)
NCYCLE oigi(p) = NTIMES * (10 * N + 8)

Therefore, we can conclude that the second strategy, which takes into account both register and mem-
ory communications, achieves a schedule that is 1.5 times faster than the original one, which is optimized
only for register communications.

4. Register and Memory Communication-Aware Modulo Scheduler

In this section we present a modulo scheduler that tries to minimize both register and memory inter-
cluster communications and at the same time balance the workload. We first review a previously proposed
scheduler, which is very effective at minimizing register communications, and which we will use as a base-
line for comparisons. Then, we present the data locality analysis framework that is used by the scheduler.
Finally, the memory communication-aware modulo scheduler is described.



4.1. Baseline Algorithm

We use as the baseline algorithm the one proposed in our previous work (Sanchez and Gonzélez, 2000),
which was shown to be very effective at minimizing register communications and maximizing the work-
load balance. In that work, the target architecture was similar to the one proposed in Section 2.1, but in that
case all clusters accessed a shared L1 cache. Below, we briefly review the algorithm proposed there. For
more details, the interested reader is referred to the original paper (Sanchez and Gonzalez, 2000).

The algorithm employs a unified assign-and-schedule approach, that is, cluster selection and schedul-
ing of operations is done in a single step. The heuristic for selecting a cluster is the number of edges that
exit from the dependence subgraph corresponding to all the nodes already scheduled in a particular cluster.
This value represents a measure of the number of register communications. An attempt is made to schedule
an operation (i.e., a node in the dependence graph) in all the clusters in which there is an available slot. The
one chosen is the one in which the best profit from output edges is achieved (that is, the difference between
output edges before and after including this operation in the partial schedule). All the operations are sched-
uled using the same algorithm and following a particular order that is crucial for performance. If an
instruction cannot be scheduled (because no issue slot is available, or there are not enough registers, or the
register buses are saturated), the Il is increased and the whole process is re-started (except the ordering).
An important feature is that the algorithm does not include backtracking, that is, each node is scheduled
only once. Not including backtracking has a direct impact in the reduction of the scheduling time.

4.2. Overview of the Cache Miss Equations

Cache Miss Equation®ME) (Gosh, Martonosi and Malik, 1997) is an analytical framework to model the
cache behavior that is very accurate for codes that make use of scalar variables aﬁdmﬁymferences,
which is very common in numeric applications. CME describes the precise relationship among the itera-
tion space, array sizes, base addresses and cache parameters for a loop nest.

A direct solution of the CME is an NP problem, which makes it infeasible for many practical cases.
The problem can basically be stated as counting integer points inside an exponential number of polyhedra.
However, Bermudet al. (Bermudo et al., 2000) proposed some techniques to speed-up the counting pro-
cess by exploiting some intrinsic properties of the particular type of polyhedra generated by the CME. Fur-
ther, Veraet al. (Vera et al., 2000) proposed a sampling scheme in order to estimate the solution by means
of confidence intervals. These two techniques together drastically reduce the computing time to just about
a few seconds per loop for most programs, and then the time required to compute and solve the equations is
comparable to the time required by other typical optimizations of the compiler. In this paper, we use this
implementation of the CME to estimate the amount of reuse that is exploited by any subset of memory
instructions. CME will allow the scheduler to estimate the amount of memory communications among
clusters or between clusters and main memory. The scheduler uses this information to guide its scheduling
decisions. For instance, given a memory instruction, it is beneficial to schedule it in a cluster where there
already are other instructions from which it reuses data (group reuse). On the other hand, it is detrimental
to schedule the instruction in a cluster where there already are other instructions that cause many cache
conflicts with the current one. CME allow the schedule to quantify the amount of reuse and conflicts
among any group of instructions of the same loop nest. CME are used in this work to produce the follow-
ing statistics:

» The number of misses incurred by a set of memory references for a particular cache configuration

(capacity, block size and associativity)
» The miss ratio of a particular memory instruction in this set.

4.3. Scheduler for a Distributed Cache

The proposed algorithm is call&®RIMCA (which stands foRegister and Memory Communication-Aware
modulo scheduling. It is an evolution of the algorithm reviewed in Section 4.1 and its main steps are

1.An array reference is affine if the expressions that indicate the referenced element in each dimension are linear functions of
the loop induction variables.
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depicted in Figure 3 (new features are shown in gray boxes). All nodes in the data dependence graph are
first sorted according to the criteria used by the original paper (Sanchez and Gonzélez, 2000). This order-
ing was first proposed for the Swing Modulo Scheduling (Llosa at al., 1996) and minimizes the number of
nodes that have both predecessors and successors in the set of nodes that precede it in the order. Then, clus-
ter selection and scheduling is performed in a single step following that order. However, there is now a dis-
tinction between two types of nodes: (a) memory operations, and (b) non-memory operations. For
operations of the latter group, the algorithm does not change. However, when a memory operation is
scheduled, a different strategy is used. Instead of choosing the cluster where the gain from output register
edges is maximized, the cluster selection depends on the profit from cache misses. In other words, each
time a memory operation is scheduled, all clusters are tried, and for each one, the number of cache misses
contributed by memory operations scheduled in that cluster, before and after introducing the current opera-
tion, is computed through the CME. Then, the cluster(s) where this gain is maximized is chosen. If more
than one cluster is optimal with respect to cache misses, the scheduler selects one of them using the same
strategy as for non-memory operations. Although the solver of the CME have to be repeatedly invoked, the
method is very fast due to the optimizations mentioned in Section 4.2., and the time required by the sched-
uler is a small percentage of the total compilation time.

This algorithm tries to minimize the number of cache misses, and thus it attempts to minimize the
inter-cluster memory communications. However, the latency of these communications can be hidden by
scheduling some load instructions using the cache-miss latency (binding prefetching, as proposed in
(Sanchez and Gonzalez, 1997)). When a load is scheduled using the cache-miss latency, the operation that
consumes the data read by the load will not be stalled because it is scheduled assuming the worst-case
latency. However, scheduling instructions using a larger latency can have a negative effect on both register
pressure and length of the schedule. On one hand, the lifetime of the load destination register is increased.
On the other hand, the Il can be increased if this instruction belongs to a recurrence and this increased
latency makes the recurrence the most restrictive constraint on the Il. Besides, the length of the schedule
for a single iteration may increase, which may cause an increase in the SC, which in turn affects the dura-
tions of the prologue and epilogue. Therefore, as shown in (Sanchez and Gonzalez, 1997), it may be much
more effective to schedule with a miss latency only those loads that are likely to miss. This should be done
as long as the latency does not increase the Il with respect to the schedule produced when loads are sched-
uled with a hit latency. Thus, the proposed scheme includes another step: once the target cluster of an
instruction is determined, it is scheduled using the cache-miss latency if the miss ratio of this instruction in
this particular cluster (considering the partial schedule produced so far) is greater than a certain threshold,
and provided that this latency does not increase the Il if the operation is in a recurrence. The assumed miss
latency is the time to access main memory, thatA&ygme + LATyemorysus + LATvainvemory (NOtE that we do not
consider the memory bus contention since it is not known at this moment, although it could be estimated).

Note that with this scheme some memory instructions are scheduled with the miss latency even if their
miss ratio is lower than 100%. This may happen for instance for instructions with spatial locality. In this
case, loop unrolling could be used to generate multiple instances of the same instruction such that one of



them always miss and the other always hit (Mowry, Lam and Gupta, 1992). However, we have not consid-
ered this optimization in this paper.

5. Performance Results

This section analyzes the performance of the proposed scheduler. The main performance metric that we
use is the number of cycles executing instructions of modulo scheduled loops. Note that this metric does
not include the effect of clustering on the cycle time, thus, differences observed for different schedulers
and the same architecture directly translate into differences in execution time. However, the number of
cycles for different architectures should be divided by cycle time to measure differences in execution time.
Since we are concerned with differences among alternative schedulers, we prefer not to include the effect
of cycle time in our metric, to isolate the effect of the schedulers. A study of the impact of clustering on
cycle time can be found elsewhere (Palacharla, Jouppi and Smith, 1997) as well as on energy consumption
(Zyuban, 2000), which is another important factor that can be reduced through clustering.

5.1. Configurations and Benchmarks

The scheduling algorithm has been evaluated for three different configurationsréitéLIWprocessor
architecture. These configurations are shown in Table 1.The first configuration is \dalfextl and it is
composed of a single cluster with four functional units of each type (integer, floating point and memory)
and a unique register file of 64 general-purpose registers.

Table 1. MultiVLIWProcessor configurations and operation latencies

Resources Unified 2-cluster 4-cluster Latencies INT FP

INT / cluster 4 2 1 MEM 2 2

FP / cluster 4 2 1 ARITH 1 3
MEM / cluster 4 2 1 MUL/ABS 2 6
REGS / cluster 64 32 16 DIV/ISQR/TRG 6 18

This configuration represents our baseline. Both2k&usterand 4-clusterconfigurations have the
register file partitioned (into two and four partitions respectively). The former has 2 functional units of
each type and 32 register per cluster and the latter includes 1 functional unit of each type and a register file
of 16 registers per cluster. The three configurations are 12-way issue.

For all configurations, the total L1 cache size is 8KB, divided into equal-sizes among the different
clusters. This cache capacity is realistic for embedded/DSP processors. For instance, the TI
TMS320C6711 has an L1 data cache of 4Kbytes (Texas Instruments, 1998). In our architecture, each local
cache is direct-mapped, non-blocking with 10 entries in the MSHR. An access to a local cache is satisfied
in 2 cycles, whereas an access to main memory takes 10 cycles. For the clustered configurations we will
present results for different number and latency of both register and memory buses.

The modulo scheduling algorithm has been implemented in the ICTINEO compiler (Ayguade et al.,
1996). ICTINEO is a source to source translator that produces a code in which each sentence has a seman-
tics very similar to that of current machine instructions, but the high level information needed for the reuse
analysis is retained. Optimizations usually applied by current compilers (such as common subexpression
elimination, deadcode removal, invariants, etc.) are implemented and are applied to the resulting code. In
this way, the resulting code is very similar to the code generated by a production compiler.

Some SPECfp95 benchmarks have been evaluadetcaty swim su2cor hydro2d magrid, apply,
turb3d andapsi Note that modulo scheduling is an effective technique for both numeric and multimedia
applications, but it is not so effective for applications such as SPECint95 due to the small number of itera-
tions for each loop execution and the abundance of conditionals.

The performance figures shown in this section refer to the modulo scheduling of innermost loops with
a number of iterations greater than four and with no system call. Our measurement shows that code inside
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such innermost loops represents about 90% of all the executed instructions, so that the statistics for inner-
most loops are quite representative of the whole program. Only instructions that belong to modulo sched-
uled loops are taken into account by the simulator. Thus, the programs were run until the first 200 million
memory instructions in these loops using the ref input data set.

5.2. An Unbounded Number of Buses

Before considering realistic configurations, we have evaluated an architecture with an unbounded number
of buses to test the performance of the proposed algorithm under extreme situations where bus bandwidth
in not a problem. The remaining parameters of the architecture are those listed in Section 5.1 and the
latency of the buses is parametrized. Figure 4 shows the normalized number of cycles averaged for all
benchmarks, for 2 and 4 clusters and the different latencies considered. The first set of four bars represents
the results for the unified configuration. The rest represent the results for the clustered configuration for
different latencies of register buses (LRBatency of Register Buseand memory buses (LMBLatency
of Memory BusésFor the different sets, we have evaluated two different schedulers:
» The baseline scheduler outlined in Section 4.1, which is very effective at minimizing register com-
munications.
» The proposed algorithm, that takes into account both register and memory communications, which
is labeled aRMCA
Each set of four bars represents the results obtained for different values of the cache miss threshold
(from 1.00 to 0.00) that determines whether a load is attempted to be scheduled with a miss latency:

if (MissLatency > Threshold)
ScheduleWithMissLatency
else
ScheduleWithHitLatency
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Figure 5.  Two particular cases when the number of buses is unbounded

Note that threshold 1.00 represents the traditional scheme, that is, using always the cache-hit latency
for memory operations (since no miss latency can be greater than 1.00). On the other hand, threshold 0.00
is most similar to the one proposed in (Sanchez and Gonzalez, 1997), where all operations that do not
cause an increment in the Il (due to recurrences) are scheduled using the cache-miss latency. The only dif-
ference is the locality analysis employed, which is more powerful in this paper. Each bar is split into two
parts: the compute time (QICYCLE¢ynyue) IS the black/grey part, whereas the stall timeNOYCLEg,) is the
white one.

From these graphs we can see that for all configurations (number of clusters, latencies and thresholds)
the scheme that takes into account memory communica®@MOA outperforms the one that ignores this
feature Baseling. As expected, for smaller values of the threshold the compute time increases slightly
(since it may increase both the Il due to register requirements, and the SC due to an increase in the length
of the schedule) but the stall time decreases. Note that with a threshold of 0.00 the stall time is almost zero
for all configurations and the number of cycles for theltiVLIWprocessoare comparable to those of the
unified configuration. We can also observe that for small thresholds (0.25 or 0.00Bas#tineand
RMCA strategies achieve similar performance, since the latency of cache misses is hidden by scheduling
loads with the cache-miss latency. Nevertheless, note that for an unbounded number of buses the time wait-
ing for a free busNCyuiingsus) iS zero, and hence, if the latency is hidden, the number of misses has no effect.
However, as we will see in next section, when the number of memory buses is limited, the difference
between both schemes will be notable, since the schedules producedRyi@¥scheme require much
less communications.

Figure 5 shows the results for two representative progréwydr¢2dandapplu) which are representa-
tive of two different types of behavior. We can see in these graphs thayévo2ddifferences between the
baselineandRMCAare noticeable for botB-clusterand4-clusterconfigurations, mainly when the thresh-
old considered is 1.00 or 0.75, since cache misses are a key factor. On the otheagmndas little
improvement for2-cluster(note however that in both heuristics results are neauttigedconfiguration).
However, in thed-clusterconfiguration the differences are remarkable. Note in this program that for some
configurations (for instancéMB=2 andLRM=2) the smaller the threshold is, the worse the performance
is for RMCA The reason for this behavior is the increment in compute time due to the scheduling of some
instructions using the cache-miss latency. As shown in (Sanchez and Gonzalez, 1997), this heuristic con-
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Figure 6. Results obtained when the number of buses is limited (averaged for all benchmarks)

tributes to more pressure on registers. The insertion of spill code when no registers are available would
help to alleviate this problem.

5.3. Evaluation of Realistic Configurations

We have shown the potential benefits that can be achieved when memory communication are taken into
account by the scheduler. In this section we study the results when a realistic inter-cluster communication
network is considered.

We have evaluated configurations with a fixed humber and latency of register buses (2 buses with 1-
cycle latency) and for a different number and latency of memory buses. In Figure 6 we can see the results
for both 2 and 4 clusters. Each set of four bars has the same meaning as in the previous section. The first set
represents the results for the unified configuration. The rest are the averaged results for the different strate-
gies Baselineand RMCA for 1 and 2 buses (NMB Number of Memory Busgand 1 and 4 cycles of
latency (LMB - Latency of Memory BusgsWe can observe in these graphs that, as in the unbounded
study, theRMCAstrategy outperforms thBaselinefor all configurations. However now, for small values
of the threshold, the difference between both strategies is more significant, mainly for 4 clusters. For the
most effective threshold (0.00), tiRMCAscheme outperforms the baseline scheduler by about 5% for 2
clusters and 20% for 4 clusters. We have observed that the reason for this difference is the time spent wait-
ing for an available bus in order to initiate a communication. When the number of memory buses is
unbounded this value is zero, because there is always an available bus. However, when the number of buses
is limited, reducing the number of misses is also important since the lower the number local cache misses,
the lower the number of accesses competing for a free bus time slot.

In Figure 7 we can see the results for two representative programs, for both 2 and 4 clusters. In the case
of su2cor results for the different configurations are very similar when the two different heuriBtis®{
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Figure 7.  Two representative cases when the number of buses is limited

line againstRMCA) are compared. Only small improvements can be observed for some particular configu-
rations. The reason of this behavior is that for this particular program the bus contention is very small.
However, for programs such apsi the improvement of the proposed heuristic is noticeable, especially
for 4 clusters, or when the threshold considered is 0.75 or 1.0.

6. Conclusions

In this work we have proposed a novel microarchitecture cattettiVLIWprocessqrwhich has a fully-
distributed clustered VLIW organization. The main novelty of this architecture with respect to previous
proposals for clustered VLIW processors is the distributed data cache, which introduces new challenges to
the instruction scheduler.

In this paper we have also presented a modulo scheduler designed for this particular architecture. This
scheduler, by means of a powerful locality analysis based oG#the Miss Equationand an analysis of
the register data dependence graph, generates codes with very low inter-cluster communication require-
ments. We have also shown that the proposed scheduler outperforms previous schemes that just focused on
register communications.
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