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Abstract

Register file access time represents one of the critical delays of current
microprocessors, and it is expected to become more critical as future processors increase
the instruction window size and the issue width. This paper present a novel dynamic
register renaming scheme that delays the allocation of physical registers until a late stage
in the pipeline. We show that it can provide important savings in number of physical
registers so it can significantly shorter the register file access time. Delaying the allocation
of physical registers requires some artifact to keep track of dependences. This is achieved
by introducing the concept of virtual-physical registers, which are tags that do not require
any storage location. The proposed renaming scheme shortens the average number of cycles
that each physical register is allocated, and allows for an early execution of instructions
since they can obtain a physical register for its destination earlier than with the
conventional scheme. Early execution is especially beneficial for branches and memory
operations, since the former can be resolved earlier and the latter can prefetch their data in
advance.

1. Introduction

Dynamically-scheduled superscalar processors exploit instruction-level parallelism (ILP) by
overlapping the execution of instructions in an instruction window. In spite of being able to
execute instructions out-of-order, the amount of ILP that current superscalar processors can
exploit is significantly restricted by data dependences, especially for non-numeric codes.
The number of instructions that can be executed in parallel is highly dependent on the
instruction window size and thus, wide issue processors require a large instruction window
(Wall, 1993). However, a large instruction window has some implications in other critical
parts of the microarchitecture, such as the complexity of the issue logic (Palacharla, Jouppi
& Smith, 1997) and the size of the physical register file (Farkas, Jouppi & Chow, 1996). In
this work we are concerned with the latter problem.

The access time of a register file is significantly affected by its size, as well as its number
of ports (Farkas, Jouppi & Chow, 1996). Since the current trend of increasing the issue width
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and the instruction window size has direct consequences on the number of ports and registers
respectively, it is very likely that the register file access time will become one of the longest
delays of forthcoming microprocessors. In this case, it will determine the clock cycle and
thus, it will have a severe impact on the processor performance, unless it is pipelined.

However, pipelining a register file is not trivial and besides, it has significant effects on
the processor. In particular, a multi-stage register file increases the branch misprediction
penalty and requires extra levels of bypass logic (Tullsen et al., 1996). Both issues, are
critical for the performance of superscalar processors.

On the other hand, current superscalar processors require many more registers than those
strictly necessary to store the values of a program. This is due to the fact that registers are
allocated too early and released too late. Every instruction allocates a physical register for its
destination operand much before its result is available (at decode), and this register is
released much after its last consumer commits (when the following instruction with the same
logical destination register commits). In this paper, we focus on the waste due to the former
factor. Figure 1 shows the average number of physical registers used by a superscalar
processor (written+non-written), and the number of registers that are actually wasted
because of the early allocation (non-written). We assume here a processor with 160 physical
registers in each file. For other details about the evaluation framework refer to Section 5.1
On average, the early allocation of registers increases the register requirements by 45% for
integer and by 40% for FP; for some programs such #&ds responsible for an 53% average
increase and in some particular cycles of the execution this figure can be as much as 500%.
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Figure 1. Register usage (written + non-written) and register waste (non-written) due to early allocation.

This work presents a novel register renaming scheme that allows the processor to delay
the allocation of physical registers until the values that they store are available (at the end of
the execution stage). We (Gonzalez, Gonzélez & Valero, 1998; Gonzalez et al., 1997)
proposed this scheme and referred to it as virtual-physical registers, and later we extended
the scheme with a novel register allocation approach (Monreal et al., 1999).

We show in this paper that virtual-physical registers provide a significant saving in
physical registers. For instance, we show that for 5 SpecFP95 benchmarks, a virtual-physical
register organization with 77 FP registers achieves about the same performance as a
conventional register organization with 101 registers, in terms of instructions committed per
cycle (IPC). Note that if the processor cycle is determined by the register file access time, the
reduction in number of registers will imply an increase in instruction throughput.

The rest of this paper is organized as follows. Section 2 reviews the conventional register
renaming scheme. The virtual-physical renaming scheme is presented in Section 3. Two
different variations of the scheme are analyzed in Section 4, which differ in the approach
taken when there are not free physical registers. Section 5 analyzes the performance of the
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virtual-physical renaming scheme. Finally, Section 6 outlines some related work and Section
7 summarizes the main conclusions of this work.

2. Register Renaming

Register renaming was first implemented for the floating-point unit of the IBM 360/91
(Tomasulo, 1967). Register renaming is a key issue for the performance of out-of-order
execution processors and therefore, it is extensively used. In this paper we focus on
dynamically scheduled processors that implement precise exceptions (Smith & Pleszkun,
1998). In such processors, instructions are committed in-order. After being decoded,
instructions are kept in the instruction reorder buffer until they commit. The size of the
reorder buffer determines the maximum number of in-flight instructions. These instructions
are usually called the instruction window and the size of the reorder buffer is the size of the
instruction window. In other words, the instruction window is defined as the set of
instructions from the oldest not committed instruction to the youngest decoded instruction.

The objective of register renaming is to remove name dependences through registers
(anti- and output dependences). This is achieved by allocating a free storage location for the
destination register of every new decoded instruction. In particular, the two following
approaches are the most common solutions to provide the rename storage locations:

» The entries of the reorder buffer (Sohi, 1990). In this case, the result of every
instruction is kept in the reorder buffer until it is committed. It is then written in the
register file. The source operands that are available when an instruction is decoded
are read either from the register file or from a reorder buffer entry. Those operands
that are not ready at decode are forwarded from the execution units to the
corresponding instruction queue entries (reservation stations) when they are
produced. When an instruction commits, its result is copied from the reorder buffer
to the register file. There is a slight variation that includes a register buffer used
just for renaming and avoids to store the result in the reorder buffer (e.g. PowerPC
604 (Song, Denman & Chang, 1994)).

* A physical register file. In this case, there is a physical register file that contains
more registers than those defined in the ISA (instruction set architecture), which
are referred to algical registers By means of a map table, each logical register is
mapped to aphysical registerin the decode stage. The destination register is
mapped to a free physical register whereas source registers are translated to the last
mapping assigned to them. When an instruction commits, the physical register
allocated by the previous instruction with the same logical destination register is
freed. In this scheme, the operands are always read from the physical register file,
which simplifies the operand fetch task when compared with the previous model.

Both register renaming schemes are being used in the latest microprocessors. The first
one is used by the Intel Pentium Pro (Gwennap, 1995), the PowerPC 604 (Song, Denman &
Chang, 1994), and the HAL SPARC64 (Gwennap, 1995). The MIPS R10000 (Yeager, 1996),
and the DEC 21264 (Gwennap, 1996) are current implementations of the second approach.
In this paper, we focus on the second scheme. A comparison of both approaches in terms of
cost-effectiveness could be an interesting study but it is beyond the scope of this paper.
However, notice that both approaches have similar renaming storage requirements. In both
cases, a new rename storage location is allocated when an instruction is decoded, and a
location is released when an instruction commits. Therefore, the main advantage of the
virtual-physical register organization, which is the allocation of rename storage locations for
a shorter period of time, also applies when compared with the reorder buffer approach.

In the physical register file organization, to take advantage of a given instruction window
size, a number of physical registers close to the number of logical registers plus the window
size is required since most of the instructions have a destination register. This is so because
when the instruction window is empty (e.g., after a branch misprediction), each logical
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register is mapped to a physical register. Thus, the minimum number of physical registers
that are used is equal to the number of logical registers. In addition, for every instruction
whose destination operand is a register, an additional register is allocated when it enters the
window (decode stage) and a physical register is released when it leaves the window
(commit stage).

3. Virtual-Physical Registers

This section describes the virtual-physical register renaming approach. First, the motivations
for this scheme are presented and then, its implementation is detailed.

3.1 Motivation

The motivation for the proposed register renaming approach comes from the observation that
the conventional register renaming scheme based on a physical register file allocates a new
physical register for every instruction with a destination register. This register is allocated
when the instruction is decoded and it is not released until the next instruction that has the
same logical destination register is committed.

Note that this is a conservative approach that is used for simplicity reasons. In fact, the
value that a register holds is live for a shorter period of time. The lifetime of the value
produced by an instruction extends from the time the execution of the instruction finishes to
the time when all the instructions that use such value have read it and are guaranteed to
commit.

Thus, the conventional register renaming scheme “wastes” a register for each instruction
that is in either of the two following states:

« It has been decoded but its execution has not finished yet (i.e., it is either waiting in

the instruction queue to be issued or being executed in its corresponding functional
unit).

* It has been committed as well as all the instructions that used the produced value

but the next instruction with the same logical destination register has not been
committed yet.

As described by other authors (Moudgill, Pingali & Vassiliadis, 1993; Smith & Sohi,
1995), the second source of register waste can be eliminated by associating a counter with
each physical register that keeps track of the pending read operations. A register is freed
whenever the counter is zero, provided that the corresponding logical register has been
subsequently renamed to another physical register. In order to support precise exceptions, the
register cannot be freed until the last instruction that reads it commits.

The virtual-physical register renaming scheme eliminates the first factor of register usage
waste. Notice that this factor can be very important in the presence of long latency
instructions and parts of codes with small amount of ILP. In such circumstances, some
instructions spend long time in the instruction queue waiting for their operands and they use
(unnecessarily) a physical register for all that period of time. For instance, suppose the
following code (destination operands are on the left):

load f2,0(r6)

fdiv f2,f2,f10

fmul f2,f2,f12
fadd f2,f2,1

These four instructions can be fetched and decoded in the same cycle in a four-way
superscalar processor. At that time, four different physical registers are allocated to logical
registerf2 , each one corresponding to a different instruction. Let us call thierp2, p3 and
p4 respectively. Assume that in the next cycle the load instruction can start its execution but
it produces a cache miss. Assume also that the remaining instructions can be issued as soon
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as they have all their operands and that they can commit as soon as it execution finishes.
Suppose that the cache-miss latency is 20 cycles, the FP division takes 20 cycles, the FP
multiplication takes 10 cycles and the FP addition takes 5 cycles.

In the conventional register renaming schempig,p2 andp3 are used for 42 cycles (i.e. 1
cycle spent in the decode of the load, 20 cycles in the execution ofdlie 20 cycles in the
execution of thefdiv and 1 cycle in the commit of th&iv ), 52 cycles and 57 cycles
respectively. However, if the physical registers were not allocated until the corresponding
instruction finished its execution, they would only be used for 21, 11 and 6 cycles
respectively. That is, theegister pressuravould be reduced by 75% (from 151 to 38 cycles)
if we measure the register pressure as the sum of the number of cycles that a register is
allocated for each produced value. If the physical registers were allocated when the
corresponding instructions were issued, they would be used for 41, 31 and 16 cycles
respectively, which still implies a reduction of 42% in the register pressure.

Load instructions that miss in cache is a common source of long latency operations. Due
to the increasing gap between processor and memory speed, the load miss latency measured
in processor cycles may be even higher in future microprocessors. Other source of long
latency operations are complex floating point arithmetic instructions such as divide or square
root. However, they usually represent a small fraction of executed instructions. In any case,
even for short latency operations, the reduction in register pressure can be significant when
the code includes long chains of dependent instructions, as it is the case of the above code.
Finally, note that the amount of time that instructions spend in the instruction window before
being executed will grow when the size of the instruction window increases, as it is expected
in the future.

Note that the reason why logical registers are mapped to physical registers at decode
stage in the conventional scheme is mainly to keep track of dependences among instructions.
In fact, what is just required to keep track of dependences is a tag that identifies the last
producer for every logical register. These tags are used to determine from where the source
operands are to be read.

3.2 The Virtual-Physical Register Renaming

This organization, which is calledirtual-physical registersis based on adding a new type
of registers, in addition to the conventional logical and physical types. The registers
referenced by the instructions of the ISA are referred tolaggcal registers When an
instruction is decoded, its destination register is mapped to a new tag. Tags are not related to
any physical storage location and therefore we will call théntual-physical registers (VP
registers) Later on, when the instructions finishes its execution, it allocates a physical
register to store its result. Finally, when the instruction commits, the physical register
allocated by the previous instruction with the same logical destination register is freed.

The virtual-physical register renaming scheme can be used for both integer and floating
point registers. Thus, the implementation described below is replicated for both register files.

3.2.1 Register Map Tables

The virtual-physical register organization is implemented by means of two register map
tables (see Figure 2.a). The first one is calledgleeeral map table (GMT)it is indexed by
the logical register number and contains the following three fields:
» VP register: the last virtual-physical register to which the logical register has been
mapped.
* P register: the last physical register to which the logical and the virtual-physical
registers have been mapped, if any.
« V bit: indicates whether the P field contains a valid value, that is, whether a
physical register has already been allocated to this logical register.



The second one is called tipdysical map table (PMT)t has an entry for each virtual-
physical register and it contains the last physical register to which the virtual-physical
register has been mapped. Alternatively, this map table could be implemented by means of a
CAM (content-addressable memory) with a number of entries equal to the number of
physical registers, which is much lower than the number of virtual-physical registers. This
approach is used for instance by the DEC 21264 (Gwennap, 1996) to implement the logical
to physical map table.

In addition, there is a pool of free physical registers, like in the conventional scheme, and
a pool of free virtual-physical registers.

©)

Instruction queue Reorder buffer

PMT

GMT

Lreg. g VPreg] Preg. JV

VPreg. 9§ P Reg

Op codelD |Src1 |Rl|Src2|R2 L reg.lVP reg.l C

Figure 2. Tables required by the virtual-physical register organization. The instruction queue and the
reorder buffer.

The GMT has NLR rows oflog,(NVR)O+ Oog,(NPR)+ 1 bits each, where NLR is the
number of logical registers, NVR is the number of virtual-physical registers and NPR is the
number of physical registers. The PMT has NVR rowslof,(NPR)bits each or NPR rows
of og,(NVR)Obits each if it is implemented through a CAM.

Since virtual-physical registers are not related to any storage location, the number of
such registers has a small impact on the hardware cost, especially if the PMT is implemented
through a CAM. To guarantee that the processor never stalls due to the lack of them, the
NVR must be equal to the number of logical registers (NLR) plus the instruction window
size.

3.2.2 Functional Description

For each new decoded instruction and for each source register operand, the GMT is looked
up. If the V bit is set, the logical register is renamed to the physical register specified in the P
register field; otherwise it is renamed to the virtual-physical register. The destination logical
register, if any, is renamed to a free virtual-physical register. The corresponding entry of the
GMT is updated as follows: the VP register field is modified to reflect the new mapping and
the V field is reset. The previous value of the VP register field is kept in the reorder buffer to
restore a precise state in case of a branch misprediction or an exception. Then, the instruction
is dispatched to the instruction queue, where it waits until it is issued, and the reorder buffer,
where it remains until it is committed.

An entry of the instruction queue has the following fields (see Figure 2.b):

* Op code the operation code.

« D: The virtual-physical destination register.

e Srcl and Src2 the identifiers of the two source operands (to simplify the
explanation we assume that they are always registers). Each identifier corresponds
either to a virtual-physical register or to a physical register.

* R; and R,: these are the ready bits of the source operands. When an operand is
ready, the Src field contains a physical register identifier. Otherwise it contains a
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virtual-physical register identifier.

An entry of the reorder buffer has the following fields (see Figure 2.b):

L register: the destination logical register identifier.

» C: a single bit that indicates whether the instruction has completed its execution.

» VP register: this field identifies the virtual-physical mapping of the last instruction

that had the same logical destination register.

An instruction can be issued when tliefields of both operands are set. This also
guarantees that the Src fields contain physical register identifiers. When an instruction is
issued, it reads its register operands from the physical register file using the Src identifiers of
the corresponding entry in the instruction queue (if the operand is not forwarded from the
output of a functional unit).

Every instruction whose destination is a register allocates a new physical register when
its execution completes. At this time, a new physical register is taken from a free pool of
physical registers (solutions to the lack of free physical registers is considered in the next
section; for the sake of simplicity we assume now that this event never happens). Then, the
PMT is updated to reflect the new virtual-physical to physical mapping. In addition, the
virtual-physical register identifier of the destination operand is broadcast to all the entries in
the instruction queue along with the physical register identifier. If there is a matcltic a
field whose correspondinB bit is not set, this field is updated with the physical register and
the correspondingR bit is set. The virtual-physical register and the associated physical
register are also used to update the GMT. The entry corresponding to the logical destination
register is checked for a match with the VP register identifier, and if so, the physical register
identifier is copied into the P register field and tMdlag is set. In this way, any new decoded
instruction that uses such logical register will find the corresponding physical register in the
GMT. Finally, theC flag of the corresponding entry of the reorder buffer is set.

When an instruction commits, the virtual-physical register allocated by the previous
instruction with the same logical destination register is freed. This register is identified by
the VP field of the reorder buffer. Besides, the physical register allocated by that instruction
is also freed. The identifier of such register is obtained through the PMT, by indexing it with
the VP register that is to be freed.

In case of a exception or a branch misprediction, a precise state can be obtained by
undoing the mappings performed by the instructions that follow the offending one. This can
be done by popping out the entries of the reorder buffer from the newest until the offending
one. For each instruction, the reorder buffer stores the destination logical register and the
previous virtual-physical register that was allocated to it. Using the logical register identifier,
the GMT is accessed and the current virtual-physical mapping is obtain. In addition,\if the
flag of the GMT entry is set, the current physical mapping is also obtained. Both the current
virtual-physical register and the physical register (if already allocated) are returned to their
corresponding free pools. The VP register field of the GMT entry is restored with the VP
field of the reorder buffer (the previous virtual-physical mapping) and the physical mapping
associated to such register, if any. Such physical mapping is obtained from the PMT. If the
restored virtual-physical register is mapped to a physical registelN ftag is set; otherwise
it is reset.

A mechanism based on checkpointing similar to the one used by the R10000 (Yeager,
1996) could be used to recover from branches in just one cycle.

Finally, note that the proposed mechanism does not imply any additional delay to the
critical path when compared with the traditional scheme, except for the commit, which may
be delayed by one cycle due to the requirement to look up the PMT. The GMT look-up is
equivalent to the traditional register mapping task. The allocation of physical registers can be
performed during the last cycle of the execution so that they are available at the beginning of
the write-back stage.



3.3 Alternative Allocation Policy

One potential drawback of the virtual-register organization described above is the re-
execution of instructions that do not have a physical register when they complete, as it is
described in the next section. An alternative solution that we have researched is based on
allocating physical registers when instructions are issued instead of when they complete. In
such scheme, a ready instruction with a destination register will be allowed to be issued only
if it has a physical register available. Obviously, the drawback of this approach is that it
reduces the register pressure when compared with the conventional scheme, but not as much
as the scheme based on allocating registers when the instructions complete. Another hybrid
solution that we have evaluated is based on allocating registers for high latency instructions
(loads) when they complete and for the rest of instructions when they are issued. Although
the number of re-executions decreases with this hybrid solution, they usually produce a
slight decrease in instructions committed per cycle (IPC), except for some cases in FP
benchmarks such asvimfor which it increases IPC by 4% (assuming 64 physical registers

in each file).

4. Avoiding Deadlock

A virtual-physical register organization may be designed with any number of logical,
physical and virtual-physical registers. The number of virtual-physical registers has a small
impact on the hardware cost, as pointed out above. The number of logical registers is a
feature of the ISA and therefore remains fixed for different implementations of the same
ISA. On the other hand, the number of physical registers has a very high impact on the
hardware cost and cycle time as discussed in the Introduction. In consequence, the number of
physical registers will be lower than that of virtual-physical registers.

In this case, it may happen that when a instruction completes there is no a free physical
register. The obvious approach to deal with this situation would be to squash such
instruction. However, in this situation, the oldest instruction in the window would not be able
to commit because, when its execution completes, it would also find that there is not any free
physical register. Under this circumstances, no instruction would be allow to commit and
therefore no physical register would be freed, which would result in a deadlock.

We have proposed to alternative approaches to avoid this deadlock, which are described
in the following sections.

4.1 Reserving Registers for the Oldest Instructions

Our first solution to avoid deadlock consists of a slight modification of the register
management policy. In particular, it suffices to guarantee that a given number of the oldest
instructions that have a destination register will have a physical register for renaming. Let us
refer to this parameter as tmeimber of reserved registers (NRR).general, this parameter
can be different for floating point and integer registers. In this way, the oldest NRR
instructions that have a destination register and those instructions in between without a
destination register are guaranteed to commit. Since every instruction that consumes a
register frees another one when it commits, the next NRR instructions with a destination
register and those instructions in between are also guaranteed to commit. Following the same
reasoning it can be proved that all instructions are guaranteed to commit and therefore no
deadlock occurs. We will refer to this register allocation schenvp-@&8RR

This scheme is implemented by means of two pointers to the reorder buffer, one for
integer and the other for FP instructions. Such pointers identify the oldest NRR integer/FP
instructions that have a guaranteed destination register and they are BRIRg andPRR;,
respectively (see Figure 3 for an example). In addition, there are two counters that indicate
the number of instructions below such pointers that have a destination integer/FP register and
another two counters that indicate the number of such instructions that have already
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load f2,0(rl)

store 0(r2),r3

bne rl,L PRR

fadd T4,14,16 | ——"

add r1,r2,r7 v

fdiv f4,f2,f8 oldest

Figure 3. Example of the use of the PRRNnd PR, for NRR equal to 2.

aIIocate_d a physical register. Such counters will be caRedy, Reg,, Used,; andUsed,
respectively.

Every time an instruction with an integer destination register commits;RRRmoved
up to the next instruction with an integer destination register. If such instruction has not yet
allocated its physical register, Usgds decreased; otherwise it is left unchanged. If the head
of the reorder buffer is reached before finding the next instruction, ther,Regl Usg,; are
decreased. When a new instructions with an integer destination register is decoded,if Reg
is lower than NRR,; then Reg, is increased and PRRis made to point to such instruction.
The same procedure is applied to instructions with an FP destination register and their
corresponding pointer and counters.

When an instruction completes, it allocates a new physical register as previously
described, provided that the are more free physical registers than,pMRRinus Usegys,
or it is an instruction not younger than the one pointed by RRR Otherwise, the
instruction is squashed and sent back to the instruction queue to be re-executed again.

NRR can take any value from 1 to the number of physical registers minus the number of
logical registers. It is difficult to anticipate which is the best value without experimental
evaluation. A low NRR implies that the processor has more registers to allocate on demand
of completing instructions, which favor a more aggressive out-of-order execution. On the
other hand, when the processor runs out of physical registers, the execution can progress
using only NRR registers for renaming (those reserved for the oldest instructions) since
those younger instructions that have completed and thus allocated a new physical register
will not release any register until all previous instructions and themselves have committed.

To be more precise, let us suppose that NRR equal to 1, all the instructions have an
integer destination register, the number of logical registers is 32, the number of physical
registers is 64 and the size of the reorder buffer is 64. Suppose that at a given time the
reorder buffer is full; the oldest instruction, which has a long latency, is executing but has not
completed yet. Suppose also that all the next 32 instructions depend on the oldest one and
thus have not been issued and the remaining 31 instructions (the youngest ones) have all
executed and completed. Since NRRs equal to 1, the youngest 31 instructions are allowed
to allocate a register when they complete since there is only one register reserved for the
oldest instruction. Then, when the oldest instruction completes it allocates the reserved
register. Next, it commits an frees a register that is used by the following instruction. When
this instruction commits, the register that it frees can be used by the next one and so on. In
consequence, the remaining instructions have only one renaming register available, which
forces a sequential execution, until the commit point reaches the youngest 31 instructions.



In conclusion, not allocating registers to some instructions that cannot issue and giving
them to some younger instructions is beneficial because it allows to advance future work.
However, it penalizes the execution of the instructions in between.

Note that having an NRR equal to the number of physical registers minus the number of
logical registers is expected to perform at least as well as the conventional register renaming
scheme. In such scenario the virtual-physical register scheme allocates all available physical
registers always to the oldest instructions, like the conventional scheme. However, the
virtual-physical register scheme has important additional advantages. First, if the processor
runs out of a type (integer or FP) of registers, it is allowed to continue executing instructions
of the other type, whereas in the conventional scheme the processor would stall. Second, the
processor cannot complete the execution of any instruction beyond the oldest NRR
instructions with a destination register, like in the conventional scheme. However, in the
virtual-physical register organization the processor is allowed to continue the fetch and
decode of further instructions. Finally, those instructions without a destination register will
never stall once they have their operands, even if they are beyond the PRR pointer. This may
help for an earlier resolution of branch instructions.

The performance of the processor is very sensitive to the value of NRR. For instance,
Figure 4 shows the IPC foi and applu when NRR is varied from 1 to 32, assuming 64
physical registers in each file. Other details about the evaluation framework can be found in
Section 5.1. Note that the optimal value for NRRIfas 16 whereas foappluis 32.

For the whole benchmark suite, the value of NRR that has the best average performance
is 32, which is its maximum value for 64 physical registers. A virtual-physical scheme with
maximum NRR is conceptually similar to the renaming scheme of the Power3, as discussed
in Section 6, and it is one of the schemes that we use for comparison in this work.

315 li 35 applu
3,11 3
o 3,05 L 251
= [t
34 2
2,95 1,5 -
2,9 . . . . . ) 1 . . . . . .
1 4 8 16 24 32 1 4 8 16 24 32
NRR NRR

Figure 4. Effect of varying NRR for two particular programs.

For the vp-NRR register allocation scheme, the optimal value of NRR for different
programs is quite distinct, and even for a single program, varying the value of NRR across
different sections of the execution may provide significant benefits. Such a scheme for a
dynamic tuning of the NRR parameter is critical and this is what has motivated the next
approach.

4.2 Stealing Registers from Younger Instructions

The previous register allocation scheme is not the only approach that may guarantee a
deadlock avoidance. On the other hand, finding the optimal register allocation policy seems
to be an unsolvable problem even with a perfect knowledge of future register references. We
have then to rely on some heuristics that try to approximate such an optimal scheme. The
approximation we propose is based on the following two rules:
» Registers should be allocated to the instructions that can use them eatrlier. In this
way, the average number of unused registers is minimized.
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« Given any two instructions, if the execution of one of them should be delayed by
the lack of registers, the most appropriate candidate is the youngest instruction,
since delaying the execution of the oldest would delay its commit, which in turn
would also delay the commit of the youngest one.

These two criteria can be met by the following scheme. Every instruction allocates a
physical register in the last cycle of the execution stage (just before write-back) if there are
free registers. This meets the first criterion since registers will be allocated by the
instructions that first finish execution. If an instruction reaches the last cycle of the execution
stage and there is not any free physical register, it is checked whether there is any younger
instruction that has already allocated a register. If this is the case, it is better to stall the
younger instruction rather than the older one, based on the second criterion. As suggested in
[9], this can be achieved by stealing the register allocated by the younger instruction and
assigning it to the older one. If there are more than one younger instruction with a register
already allocated, the youngest one will be chosen. We refer to this register allocation
scheme asn-Demand with Stealing from Yound&sY).
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Figure 5. Example of virtual-physical renaming with DSY allocation.

4.2.1 Implementing the DSY Register Allocation Scheme

Identifying whether there is a younger instruction with an allocated register is done by
inspecting the reorder buffer, searching for any younger entry with the execution-complete
bit set. If several are found, the youngest one is chosen. Let us refer to the instruction that
demands a register ag and to the instruction from which the register is stolem,a3he VP
register identifier allocated biy is obtained from the reorder buffer and the physical register
identifier is obtained from the PMT table. Let us refer to the VP destination regisigr tbfe

VP destination register af and the physical destination registerigfas VP, VP, and B
respectively (see Figure 5.a). Whepsteals the physical register of, the PMT table is
updated to reflect that now VAs mapped to Pand VB is not longer associated to, Psee
Figure 5.b).

The instruction, must be re-executed in the future. A simple approach to achieving this
is to keep instructions in the instruction queue until they commit, with a flag that indicates
whether they have been issued. By markiags not issued, the issue logic will choose it
again for issue in the future (Figure 5.c).
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Sincei, has been executed in the past, the consumers of (/€. instructions with a
source operand renamed to }Mave marked this operand as ready. However, it is not ready
anymore since its associated physical register has been stolen. Turning this operand into not
ready can be done by using the buses that are used to awake instructions, as described below.

In a conventional processor, when an instruction completes exeduttdiroadcasts the
identifier of its physical destination register to all the entries in the instruction queue. Every
entry checks if any of its source operand identifiers correspond to the broadcast one, and
those that match are marked as ready. For virtual-physical registers, each entry in the
instruction queue identifies each source operand by means of both a VP register and a
physical register identifiers. When an instruction completes, both the VP and the physical
identifiers of the destination register are broadcast to the instruction queue. Each entry
compares the VP identifiers of its source operands against the broadcast one, and in case of a
match, the broadcast physical identifier is copied in the corresponding field of the matching
operand, and this operand is marked as ready. On the other hand, when the physical
destination register of an instruction is stolen, its corresponding VP tag i{Vfhe example)
is broadcast to the instruction queue in order to mark as NOT ready any matching source
operand (Figure 5.c).

Note that some of the instructions that have, V& a source operand may have been
issued at the time when this operand becomes not ready. These instructions have read a
correct source operand and thus, their results will be correct. At the time they finish, if there
are free physical registers they will be able to store their result and dependent instructions
will be allowed to be issued. However, instructionwill eventually be executed again and
will allocate a new physical register (let us denote it by) Por its destination. At that
moment, the VB and R identifiers will be broadcast to the instruction queue, and those
instructions that consume MRvill copy the new physical mapping and will be re-issued if
not yet completed (i.e. it has been executed and allocated a physical register for its
destination). The same happens to consumers of these re-issued instructions: they will be
issued no matter if they have already been issued in the past.

4.3 Implicit Benefits of the DSY Scheme

As described above, the DSY scheme may cause multiple executions of some instructions
and all the re-executions of the same instruction will produce the same result. In this section,
we point out that these multiple executions implicitly have a very positive effect on the
control speculation mechanism as well as on the data cache memory.

Among the multiple times that an instruction is executed, all of them except the last one
could be regarded as premature executions, that would not occur at that time if the processor
allocated physical registers from oldest to youngest instructions. Indeed, the physical
register of an instructionis stolen only when there are more instructions older than it in the
instruction window requiring a physical register. A conventional renaming mechanism would
assign all physical registers to the older instructions and instruétisould have not even
been fetched. On the other hand, with virtual-physical registers, this instruction gets a
physical register because it finishes execution earlier than some older instructions. However,
when an older instruction completes its execution and finds no free physical registers, it
steals the register from which forces its later re-execution.

The advanced execution of some instructions have two important benefits:

» An advanced execution of a branch instruction will validate its prediction and in

case of misprediction the recovery actions will start sooner (wrong path squashing
and correct path fetching). In the conventional renaming scheme, such validation
would occur much later, since the instruction would be delayed by the lack of

1. In fact, it is done some cycles before in order to overlap the latency of the issue and read logic with the last
cycles of the execution.
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registers.

« A preliminary execution of a load instruction that misses in cache would fire the
fetching of the data. When the instruction is definitely re-executed this data
element may be already in cache and result in a cache hit. In other words, the early
(preliminary) execution of memory instructions acts as a small-distance data
prefetching scheme, hiding the memory latency of some cache misses.

The effect of the advanced execution of instructions is analyzed in section 5.3.

Finally, note that the latency as well as the resource consumption of re-executed
instructions can be significantly reduced by means of a reuse mechanism (Sodani & Sohi,
1997). Instructions that are to be re-executed could keep their results in a reuse buffer and
later on, when physical registers are available, these results could be directly copied into
them. In this way, re-executed instructions would not increase the contention in the
functional units. In our analysis, such an instruction reuse mechanism is not considered.

5. Performance Evaluation

5.1 Experimental Framework

The virtual-physical register renaming approach has been evaluated by means of a cycle-
based timing simulator of a dynamically-scheduled processor derived from the SimpleScalar
v3.0 tool set (Burger & Austin, 1997). The sim-outorder simulator has been modified to
include physical register files (integer and FP) where the results of all instructions are stored
(instead of temporarily storing them in the RUU and moving them to the architected register
file at commit). This is the approach used by some current microprocessors such as the MIPS
R10000 and the Alpha 21264 (Kessler, 1999). The main parameters of the microarchitecture
we use in our simulations are presented in Table 1. We refer to such microarchitecture as a
conventional processor. Then, the simulator has been extended to include the proposed
virtual-physical renaming, leaving the remaining architectural parameters unchanged.

Table 1. Processor microarchitectural parameters

Parameter Value

Fetch width 8 instructions (up to 2 taken branches)

L1 I-cache 32 KB, 2-way set-associative, 32 byte lines, 1 cycle hit time
Branch predictor 18-bit Gshare with speculative updates

Window size 128 entries

Funtional 8 Simple int (1); 4 int mult (7); 6 simple FP (4); 4 FP mul{
units(latency) (4); 4 FP div (16); 4 load/store

Load/Store queue 64 entries with store-load forwarding

Issue mechanism out-of-order issue. Loads may execute when prior store

addresses are known

Physical registers 48-160 int / 48-160 FP

L1 D-cache 32 KB, 2-way set-associative, 64 byte lines, 1 cycle hit tjme
L2 unified cache 1 MB, 2-way set-assoc., 64 byte lines, 12 cycles hit time
Main memory unbounded size, 50 cycles access time

Commit width 8 instructions
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We used ten benchmarks from the Spec95 suite: five integer progreangpfessgcc,
go, li and perl) and five FP programsn{grid, tomcaty applu, swim and hydro2g. All
programs were simulated to completion, exceptinqcaty for which the initial part that
reads a huge input file was skipped. Table 2 lists the inputs and the number of executed
instructions. The programs were compiled with the Compag/Alpha Fortran and C compilers
with the maximun optimization level (-O5 for Fortran codes and -O4 -migrate for C codes).

Table 2. Benchmarks

Program Input #dyn. inst.(M)
compress 40000 e 2231 170
gcc genrecog.i 145
go 99 146

li 7 queens 243
perl scrabbl.in 47
mgrid test (modifying the two first lines to 5 & 18) 169
tomcatv test 191
applu train (modifying dt=1.5e-03 ; nx=ny=nz=13) 398
swim train 431
hydro2d test (modifying ISTEP=1) 472

5.2 Performance Statistics

Figure 6 shows the average number of instruction committed per cycle (IPC) for each
benchmark as well as the harmonic mean for integer and FP programs, assuming 64 physical
registers in both the integer and FP files.

Three different register renaming schemes are compared: the conventional one (conv),
virtual-physical registers with the NRR deadlock-avoiding approach described in Section 4.1
(vp-nrr), and virtual-physical registers with the DSY approach presented in Section 4.2 (vp-
dsy). We can observe that the benefits of virtual-physical registers for FP codes are much
more significant than for integer programs. This is an expected result since FP programs in
general cause a much higher register pressure. The virtual-physical organization
significantly outperforms the conventional organization, providing an average speed-up of
5% and 24% for integer and FP codes respectively. The difference between the NRR and the
DSY allocation policies is noticeable, DSY provides an average speed-up of 2% and 7% for
integer and FP codes respectively.

For the DSY configuration, the percentage of instructions that have their destination
physical register stolen is 5.26% for integer programs and 11.76% for FP codes, which
results in a 9.79% and a 57.75% of instructions re-executed respectively. This is due to the
different behavior of these applications. FP programs exhibit more ILP and a low branch
miss rate, and thus the instruction window is usually filled up. Thus the VP scheme can
assign physical registers to instructions far away from the oldest instructions in the window,
increasing the ILP extracted and thus the performance, at the expense of a higher number of
re-executions. On the other hand, integer applications experience a much higher branch miss
ratio, which implies that the instruction window cannot be completely filled up, and then, the
VP scheme cannot yield so much performance benefits by exploiting ILP.
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Figure 6. Performance of the virtual-physical renaming versus the conv. scheme for a 64 physical
registers. Two different deadlock-avoiding approaches are shown for virtual-physical renaming: the
NRR and the DSY.

Analyzing the effect of a varying number of registers on the processor performance may
be more interesting than just looking at a particular register file size. In general a processor
designer would be interested in finding the best trade-off between number of registers and
performance.

Figure 7 illustrates how the processor performance varies as a function of the number of
physical registers for both the conventional and the virtual-physical organization. For the
latter, the vp-NRR deadlock-avoiding scheme as well as the DSY one are shown. Virtual-
physical registers with DSY is always better than virtual-physical registers with NRR, which
in turn is better than the conventional renaming scheme. Note also that the difference among
the three schemes is more significant for FP codes and increases as the number of physical
registers decreases. We can observe that virtual-physical registers can provide significant
savings in number of registers. A candidate design point for the number of registers to be
implemented in a processor would be the lowest number of registers that provides a
performance close to that of an unbounded size register file (i.e. as many registers as reorder
buffer entries plus number of logical registers). For instance, if we could afford about 10%
IPC degradation with respect to the maximum IPC, we would choose 61 integer and 101 FP
registers for the conventional scheme, whereas for virtual-physical registers 45 and 77 would
suffice respectively. This implies a saving of 26% and 24% respectively, which directly
translates in savings in the register file access time and area, since both are significantly
affected by the number of registers (Farkas, Jouppi & Chow, 1996).
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Figure 7. Performance as a function of number of physical registers for the conventional register
organization and the virtual-physical scheme with the two deadlock-avoiding approaches.
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5.3 Quantifying the Advanced Execution of Instructions

As described above, the advanced execution of instructions have important benefits. In this
section, we present statistics about this effect for the DSY deadlock-avoiding approach.

We consider that one instruction is advanced when it is executed in a situation where the
conventional renaming scheme would not be able to execute it. In particular, we say that an
instruction is executed in advance when at the time it is issued, the processor has a number of
older instructions in the window such that in the conventional scheme they would consume
all physical registers. In this scenario, the conventional scheme would not be able to execute
this instruction.

Assuming a register file with 64 physical registers, we evaluate the percentage of
advanced instructions and the number of cycles that they are avanced as follows:

« If an instruction finds more than 32 instructions older than it in the window that
require a physical register, we considered that this instruction is advanced and we
record this cycle (thadvanced-cycle

« In the first cycle that this advanced instruction has less than 32 older instructions in
the window that require a physical register (this will always occur before the
advanced instruction commits), we considered that this is the earliest cycle that this
instruction could be executed in the conventional renaming scheme and thus, we
record this cycle (theonventional-cycle

* When an advanced instruction commits, the number of cycles that this instruction
is advanced is computed as the difference betweerttingentional-cycleand the
advanced-cycle

Figure 8.a shows the percentage of loads that miss in cache and the percentage that miss
and are advanced. We can observe a reasonable degree of load-misses that are advanced
(20% on average for integer benchmarks and 86% for FP benchmarks). There are some
remarkable cases suchtmsncaty which also obtains the best speed-up (it advances the 99%
of loads that miss in cache). Figure 8.b also depicts the percentage of conditional branches
that are mispredicted and the percentage that are mispredicted and advanced. We can see that
in average 6% of mispredicted conditional branches are advanced for integer benchmarks
and 74% for FP benchmarksTomcatv is again the most benefited by instruction
advancement since 97% of the mispredicted conditional branches are advanced.
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Figure 8. a) Percentage of loads that miss in cache and are advanced and b) percentage of conditional
branches that are mispredicted and advanced.
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Another interesting statistic is the average number of cycles that an instruction is
advanced. We have measured that load instructions are advanced in 9.4 cycles for integer
benchmarks and 26.9 cycles for FP benchmarks (these average figures include only advanced
instructions). For conditional branches these numbers are 4.8 and 28 respectively. For divide,
multiply and simple instructions these numbers are 2.6, 3 and 6.1 for integer benchmarks and
13.3, 13.9 and 17.1 for FP benchmarks, respectively.

We can conclude that the virtual-physical register renaming causes that some instructions
can enter the instruction window and be executed earlier than what the conventional scheme
can achieve. This benefit is much more important for FP programs than for integer ones, as it
is confirmed by the statistics above: FP programs have a larger percentage of advanced
instructions and on average they are advanced by more cycles than for integer programs. This
is explained by the fact that integer programs have many mispredicted branches, and this
limits the number of instructions that can be in-flight at any given time. Virtual-physical
registers allow the processor to have more in-flight instructions than the conventional
scheme for a given number of physical registers. However, branch mispredictions prevent the
processor from taking advantage of this feature in some cases.

6. Related Work

An alternative approach to delaying the allocation of physical registers was proposed by
Wallace and Bagherzadeh (1996). Their motivation was to have a multiple-banked
organization with just one write port per bank. Delaying the allocation of physical registers
until result write time allowed the processor to avoid conflicts in the banks. Their scheme
had the same type of deadlock hazard as virtual-physical registers have. Their solution was
based on shifting the processor to a special mode when the oldest instruction was unable to
issue or complete. In this special mode, only the oldest instruction was allowed to execute
and its result was stored in the register that this instruction would release at commit. Note
that this is very similar to our former approach with one reserved register (NRR=1). In fact,
this scheme does not reserve any register, but uses one that is sure to be released right away.

The Power3 implements what they call virtual renaming (Bose & Moreno, 1999; Song,
1997). Like the PowerPC 620 (Levitan, Thomas & Tu, 1995), this processor has two register
files: one for committed values, which is referred to as architected register file, and another
for non-committed values that is called rename buffers. In this processor, there are 16
rename buffers for integer and 24 for FP data. However, an operand is identified by one bit
more than those required by a rename buffer identifier. This additional bit is called the
virtual bit. This allows up to two in-flight instructions to use the same rename buffer for its
result. The older assignment is considered to be the ‘real’ one whereas the younger is called
the ‘virtual’ one. They are distinguished by the value of the virtual bit. Only instructions
with real operands (source and destinations) are allowed to be issued. When an instruction
commits, its destination rename buffer is switched from real to virtual, and that of the
younger instruction that uses the same physical buffer is switched from virtual to real. The
processor allows up to 32 instructions in-flight (due to the size of the reorder buffer) but,
unlike our proposal, only the 16/24 oldest instructions with an integer/FP destination register
respectively are allowed to be issued. In fact, these scheme is conceptually very similar to
our original proposal when the number of reserved registers is set to the number of rename
buffers.

To summarize, Wallace and Bagherzadeh and the Power3 schemes represent two extreme
points in the design space. The former allocates physical registers almost on demand, with
the exception of the oldest instruction, whereas the latter assigns all physical buffers to the
oldest instructions that have a destination operand. The former can execute instruction far
beyond the actual commit point much earlier than the latter. However, when the oldest
instructions run out of registers, the former scheme has very low performance since
instructions are executed sequentially. Our proposal, virtual-physical registers with DSY
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allocation, can be as aggressive as the latter, but when it realizes that old instructions are
progressing slowly due to the lack of registers, it steals some registers from the younger
instructions and give them to the older ones.

An orthogonal approach to reducing the register pressure was proposed by Jourdan et al.
(1998). Their scheme takes advantage of instruction repetition. The idea is to identify
instructions that produce the same result and allocate the same physical register for all of
them.

7. Conclusions

In this paper we have presented a novel register renaming scheme that allows for the late
allocation of physical registers. In particular, physical registers are allocated at the end of the
execution stage, rather than at decode time as conventional processors do. The direct
advantage of this scheme is a significant reduction in the register pressure. For instance, we
have evaluated that it can provide a 26% and 24% reduction in the number of integer and FP
registers, and achieve the same IPC rate as a conventional scheme. This reduction in number
of registers translates into a shorter access time to the register file, which is likely to be a
critical issue of forthcoming microprocessors, and thus, it may significantly increase
performance.

Two different deadlock-avoiding approaches have been proposed. A comparison among
them shows that the on-demand allocation with stealing from the younger (DSY) is the most
effective since it provides maximum look-ahead when ILP is limited but this look-ahead
never penalizes older instructions.

The proposed scheme has also important indirect advantages. In particular, it allows
branches to be resolved earlier and load/store instructions to prefetch their data. In addition,
the re-execution of instructions caused by the stealing feature can be done very effectively by
means of a reuse mechanism.
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