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Abstract
Loads that miss in L1 or L2 caches, and are waiting for their data at the head of the ROB, cause

significant slow down in the form of commit stalls. We identify that most of these commit stalls are
caused by a small set of loads, referred to asLIMCOS(Loads Incurring Majority of COmmit Stalls).
We propose simple history-based classifiers that track commit stalls suffered by loads to help us
identify this small set of loads. In this paper we study two prefetching enhancements enabled by
classifiers.

In the first enhancement, the classifiers are used to train theprefetcher to focus on the misses
suffered by LIMCOS. This, referred to as focused prefetching, results in a 9.8% gain in IPC over
naive GHB based delta correlation prefetcher along with a 20.3% reduction in memory traffic for a
set of 17 memory-intensive SPEC2000 benchmarks. Another important impact of focused prefetch-
ing is a 61% improvement in the accuracy of prefetches. We demonstrate that the proposed classifi-
cation criterion performs better than other existing criteria like criticality and delinquent loads Also
we show that the criterion of focusing on commit stalls is robust enough across cache levels and can
be applied to any prefetcher without any modifications to theprefetcher. We also demonstrate the
positive impact thatFocused Prefetchinghas in a multi-core scenario. In the case of global history
based prefetchers, we demonstrate not only the applicability of focused prefetching, but also the
second enhancement based on classifiers – filtering of prefetches once they are generated.

1. Introduction

In-order commit is employed in superscalar processors to ensure that thearchitected state of the
processor is updated by instructions in program order even though instructions may be issued and
executed out-of-order. The downside of in-order commit is experienced when long latency instruc-
tions and loads that miss in the cache reach the head of the ROB and wait for their completion or
arrival of data. This stalls the commit of all future instructions including thosewhich have already
completed execution. Such commit stalls have a negative impact on performance. On the other hand,
it is not easy to implement out-of-order commit processors as it requires expensive checkpointing
mechanisms to ensure correctness [1]. Further, expensive memory checkpointing mechanisms are
required to support out-of-order commit of stores.

Figure 1 shows that in the SPEC2000 benchmark suite1, close to 60% of commit stalls are
caused by loads2. These load stalls are experienced in spite of having a hierarchy of caches (in this
case L1 and L2). Prefetching is widely used to augment the performance of caches by bringing in
data into the caches before an actual demand request will be made.

1. fma3dis not considered as it did not run in our framework.
2. The machine configuration and simulation parameters are summarizedin Section 5, and no prefetcher was used for

this study.
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Figure 1: Fraction of commit stall cycles that can be attributed to loads.

A wide variety of prefetchers have been studied for data caches [2, 3,4, 5, 6, 7, 8, 9, 10]. All
these prefetchers are normally trained on the miss/access stream and identify useful patterns/trends
among the accesses. The impact of any prefetcher on performance is based on the usefulness and the
timely arrival of prefetched data. However, prefetchers can have a negative impact on performance
due to increased memory traffic and pollution caused by the prefetched datain cache [11].

An analysis of the commit stalls caused by various load instructions shows thata small number
of loads account for a large fraction of the commit stalls. These loads are referred to as LIMCOS
(Loads Incurring Majority of COmmit Stalls). We demonstrate that simple classifiers based on
history can be designed to easily identify this small set of loads. The classifiers are off the critical
path and work by tracking the stalls experienced by individual loads.

In this paper, we proposeFocused Prefetching, a mechanism that uses the classifiers to filter the
training stream seen by a prefetcher, i.e., only the misses suffered by loads identified by the classifier
act as the training stream for the prefetcher. The intuition behindFocused Prefetchingis that using
the limited hardware resources of prefetchers to store more information about LIMCOS can help
us learn their behaviour better. By focusing on misses suffered by LIMCOS, focused prefetching
eliminates misses that have a significant impact on performance. The other interesting aspect is that
our method is agnostic to the prefetcher used. As our method does not change the internal working
of a prefetcher, it can be applied to any of the current prefetching mechanisms.

Experimental evaluation shows thatFocused Prefetchingimproves performance (IPC) by 9.8%
on an average for a set of 17 memory-intensive SPEC2000 benchmarksover naive prefetching using
Global History Buffer (GHB) and delta correlation prefetcher [8]. Alsothis gain in performance is
achieved along with a 20% reduction in memory traffic and a 61% improvement in the accuracy
of prefetches. In a quad-core scenario,Focused Prefetchingimproved the performance of naive
prefetching by 6.0% for multi-programmed workloads. The interesting feature of our method is the
applicability ofFocused Prefetchingto global history based delta correlation prefetchers [8]. These
prefetchers are dependent on seeing the entire training stream to predict future accesses. Contrary
to expectations, even for this class of prefetchers, filtering the training stream helps in improving
the performance in terms of IPC by 4.6% on an average. Also in the context of global history based
prefetchers, a more suitable alternative will be to filter the prefetches oncethey are generated. In this
way, no useful training information is lost. Thus, for global history prefetchers, we demonstrate the
application of our LIMCOS classifiers tofilter the prefetches once they are generated. The filtering
based on commit stalls improved the performance of the naive prefetcher by4.9%. Finally, we
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Figure 2: IPC for Baseline (No Prefetch) and PerfectL2.

demonstrate that the classification criterion of load commit stalls is better than existing criteria like
either criticality [12] or load-specific criteria like delinquent loads [13]. Compared to the approaches
mentioned above, ourFocused Prefetchingscheme results in an IPC improvement of 4.6% and 4.2%
respectively.

In Section 2, we present the motivation behind our work. Simple classifiers toidentify LIMCOS
loads are discussed in Section 3. An application of the classifiers,Focused Prefetchingis discussed
in Section 4. Detailed simulation results and comparison with other schemes are presented in Sec-
tion 5. A summary of related work can be found in Section 6. Concluding remarks are presented in
Section 7.

2. Motivation

2.1. Memory Intensive Benchmarks

Figure 2 shows the absolute IPC for baseline and a machine with a perfect L2 cache. The machine
parameters can be obtained from Section 5 and no prefetcher is used forthe purpose of this study.
The configuration with perfect L2 can be thought of as an 100% accurate and timely prefetch to
mask all L2 misses. The potential gains in performance are an indicator of thememory intensive
nature of the benchmarks. In 8 benchmarks,apsi, crafty, eon, gzip, mesa, perl, sixtrack, vortex,
the performance improvement with a perfect L2 is very small. The remaining benchmarks show
at the least 20% improvement in IPC with perfect L2. These are classified as memory-intensive
benchmarks. Similar criterion has been used in earlier works [8] to identify memory-intensive
benchmarks. Henceforth, we will discuss results in detail for the set of 17 memory-intensive bench-
marks identified here. Fig 2 also shows the geometric mean of IPC for all benchmarks and the 17
memory-intensive benchmarks.

2.2. Commit Stalls and Individual Loads

Figure 1 shows that loads account for most of the commit stalls. We analyze itfurther by studying
the contribution of individual loads. The fraction of commit stalls accounted by various number
of static loads (from 1 to 64, in powers of two) is shown in Figure 3 for the 17memory-intensive
benchmarks.
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Figure 3: Individual Loads and their contribution to commit stalls: Fraction ofCommit Stall ac-
counted for by various number of static loads.

It can be observed that in all the benchmarks, only a small set of static loads account for most
of the commit stalls. For instance, 10 static loads can account for anywherebetween 50% (twolf)
to 95% (galgel,lucas,mcf,wupwise) of the total stalls caused by loads. The only exception to this
among the memory-intensive benchmarks isappluwhich requires 11 static loads to cover 50% of
load commit stalls. 16 static loads as can be observed from Figure 3 accountfor at the least 70% of
commit stalls except inappluandparser.

As the LIMCOS loads encounter commit stalls mainly due to cache misses, we carried out a
limit study to identify the potential benefits that could be achieved if these loads were to hit in
the L2 cache. For the purpose of the limit study, we used a profile run to identify the static loads
that account for 50% of load commit stalls(LIMCOS-50). We implemented an idealized scheme,
referred to asInstant Replacement, similar to [13], in which the static loads identified in the previous
step, suffer no L2 cache misses. In other words, any data requested by the selected set of static loads
is brought instantaneously into the L2 cache if it is not present in the cache. This can be thought of
as an 100% accurate and timely prefetch focused on the small set of static loads.

Figure 4 shows the gain in IPC over baseline (no prefetch) forInstant Replacement. Applying
Instant Replacementfor the static loads in LIMCOS-50 results in a 63% gain in IPC over baseline
for the memory-intensive benchmarks (the corresponding number is 44% for the entire set of 25
benchmarks studied). AsInstant Replacementmimics 100% accurate prefetching for LIMCOS-50,
the results indicate that there is a scope for significant performance gain by focusing on the LIMCOS
loads.

2.3. Commit Stalls and Delinquent Loads

Previous research [13] has shown that a small set of loads account for a major fraction of the cache
misses. This small set of loads is referred to asDelinquent Loads. A load experiences commit
stalls only when it misses the L1 cache and is waiting for data to arrive from lower levels of cache
or memory. Naive expectations might lead one to believe that the loads that account for most of
the misses, the Delinquent loads, will account for most of these commit stalls. But this need not
necessarily be the case, and a comparison between the loads accounting for commit stalls and the
delinquent loads, shows only a partial overlap. This can be observed from Figure 5, which shows
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Figure 4: Gain in Performance for Instant Replacement over Baseline.

Figure 5: Relation to Delinquent Loads: Overlap between Loads accounting for 50% of stalls and
50% of misses.

the number of static loads that account for 50% of misses, the number of staticloads that account
for 50% of load commit stalls and the overlap between them. When more than one delinquent
load miss happens in parallel, the oldest miss is held responsible for the commit stalls and the later
delinquent loads might not get counted as part of LIMCOS. The lack of aperfect match between the
delinquent loads and the LIMCOS loads can be attributed to the effects of Memory Level Parallelism
(MLP) [14]. Focused PrefetchingusingClassifiers, will identify all these overlapping loads one
after the other (from the oldest to the youngest) and will eliminate the stalls suffered by them.
Initially Focused Prefetchingwill target the oldest among the overlapping loads and will try to
remove stalls experienced by it. On addressing the stalls seen by the oldest load, the second oldest
among the overlapping loads will now contribute to many commit stalls and hence willbe classified
as LIMCOS. Hence the claim above that overlapping loads will be addressed one after the other.

3. Classifiers

In this section, we discuss the rationale behind the design of our classifiers. Subsequently, we
propose two types of classifiers and evaluate their effectiveness in identifying LIMCOS.
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Figure 6: Classifier Organization.

3.1. Rationale Behind Classifiers

Figure 1 indicates that loads account for most of the commit stalls, while Figure3 further shows
that only a few static loads account for most of the commit stalls. Taking the two facts together, we
conclude that a few loads should suffer commit stalls frequently. We make use of this fact to design
simple history based classifiers that can identify loads causing a significantfraction of commit
stalls. We propose two types of classifiers, aCounting classifierwhich uses counters to keep track
of the absolute number of stalls experienced by each load and aConfidence based Classifier, which
approximates the counts using confidence counters.

3.2. Counting Classifier

The Counting Classifier works by keeping track of the stalls experienced by the individual loads.
Any load that has accounted for more than a certain fraction of total stalls seen so far is classified as
one stalling frequently. Figure 6(a) illustrates the key structures and the organization of the counting
classifier. There are two main operations associated with any classifier viz.,Update, where the
classifier needs to be updated when a load incurs commit stalls andClassification, where for a given
load, the classifier needs to decide whether or not it belongs to LIMCOS.

As can be seen from Figure 6(a), the classifier is an array of counters, called Per PC Stall
Table(PPST), which is tagged and indexed based on load PC. AnUpdateis performed when a load
that has stalled at the head of the ROB for a few cycles commits. AnUpdateoperation requires
the knowledge of the load PC and the number of cycles of stall incurred by it.Indexing based on
load PC is common to bothUpdateandClassificationoperations. The operations that are specific
to Updateare shown in the shaded region of Figure 6(a).Updatesare carried out only if the number
of stall cycles encountered is greater thanMin Stalls, a design parameter of the classifier specified
in terms of number of processor cycles. This helps to reduce the number ofentries required in
the classifier and to avoid updates from loads that do not experience frequent stalls. In case of the
stall cycles incurred by the load being aboveMin Stalls, it is added to the PPST entry of the load
(identified by the PC) and is also added to the global counter which indicates the total commit stalls
caused by loads. In case the load in question is not being tracked by the classifier, a new entry
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is allocated in the PPST to track the stalls experienced by the load. LRU replacement is used to
identify the candidate for replacement in the classifier.

TheClassificationprocedure should indicate as to whether a load belongs to LIMCOS or not.
The dotted lines in Figure 6(a) show the steps involved inClassification. TheCounting Classifier, as
mentioned above, is indexed using the PC of the load. If the load in question is not being tracked by
the classifier currently, it is classified as non-LIMCOS. Otherwise, the load is classified as LIMCOS
if the stall cycles in the corresponding PPST entry accounts for more than aThresholdfraction of
the total stalls caused by the loads. Thus the counting classifier has two parameters, namelyMin
StallsandThreshold.

The design with a single global counter tracking the commit stalls caused by all the loads can
affect the efficiency of the classifier as new entries in the PPST will neverget classified as LIMCOS
due to the high value of the global counter. To overcome this, we clear the global counter and all
the PPST entries periodically. This period is set as 1 million cycles for all the simulations carried
out in this study. Also we wait until a reasonable amount of history is gathered before we make any
attempts at classifying a load. This value is fixed as 10,000 load stall cycles. The efficiency of this
design, in terms of impact on performance, is discussed in detail in Section 5.3.1..

3.3. Confidence Based Classifier

TheConfidence Based Classifieris an approximation of the mechanism behind theCounting Clas-
sifier. The organization of theConfidence based Classifieris illustrated in Figure 6(b). The key
difference is the use of saturating counters in PPST instead of counting theactual number of stalls
experienced by each load. We used 5 bit saturating counters in each PPST entry. AnUpdate, in-
dicated by the shaded region of Figure 6(b), involves incrementing the confidence counter for a
given load if the stall cycles caused by it is greater thanMin Stalls. The PPST is indexed using
the load PC and the replacement of existing entries, if required is carried out using LRU policy,
as in the counting classifier.Classification, indicated by dotted lines, classifies a load as LIMCOS
if the counter value is more than half of the maximum value. In the following sections, we will
see that our proposed scheme,Focused Prefetching, attempts to eliminate commit stalls suffered by
the LIMCOS loads. If the attempt is successful, LIMCOS loads will start seeing fewer and fewer
commit stalls. Yet they should still be classified as LIMCOS. Hence we do not reduce the counter
value if the load is classified as Non-LIMCOS. The classification mechanism based on observing
the confidence value also eliminates the need for the global counter which is present inCounting
Classifier.

While the basic principle behind the working of both the classifiers is the same, there are a
few differences between the classifier designs. In the presence of focused prefetching, which is
discussed in Section 4, the stalls suffered by a load identified as belonging toLIMCOS by the
classifiers will be eliminated to a greater extent. Thus the dynamic instances of this static load
might not incur commit stalls. Yet they still need to be identified as LIMCOS. The confidence based
classifier will classify these loads as LIMCOS (as there is no decrement ofconfidence) and will
enable focused prefetching. The counting classifier, on the other handmight not classify future
instances of this load as frequently stalling as (i) the commit stalls are removed due to focused
prefetching and (ii) other loads might add to the overall stalls caused by loads and theThreshold
might not be met over a period of time. For small saturation values, the confidence based classifier
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Figure 7: Accuracy of Counting Classifier: 32 Entries, Min Stalls 16 cycles, Threshold 1/32.

can learn faster and will be able to make classification decisions earlier compared to the counting
classifier. The key characteristics common to the design of both the classifiers are

• The tracking of commit stalls is an operation already supported in the processors. The classi-
fiers need to be updated only when loads suffer commit stalls.

• The update of the classifier can be kept entirely off the critical path

• As the classification decisions are based on PC of the load instruction, they can be initiated
much earlier in the pipeline, once the PC is known.

3.4. Evaluating the Classifiers

In this section, the classifiers are evaluated on the basis of their ability to accurately identify LIM-
COS and non-LIMCOS loads. The machine configuration used for these experiments are presented
in Table 1. No prefetcher is used during these studies. The ability of the classifiers to identify cor-
rectly the loads accounting for 50% of the load commit stalls, LIMCOS-503 is studied. The criteria
used to judge the performance of the classifiers are: (i).Overall Accuracy: The fraction of dynamic
loads that are identified correctly as either belonging to LIMCOS-50 or not.(ii).LIMCOS Accuracy:
The fraction of LIMCOS loads that are classified accurately. (iii).False Positive Rate: The fraction
of non-LIMCOS loads that are wrongly identified as belonging to LIMCOS.

Figure 7 shows theOverall Accuracy, LIMCOS accuracyandFalse Positive Ratefor theCount-
ing Classifierdesign used in the rest of this study. The overall accuracy is 94.4% on anaverage for
the set of 17 memory-intensive benchmarks. Further the LIMCOS accuracy is also high, (84% on
an average), and the false positive rate, on an average, remains at a low 5%. In our experiments,
theMin Stallsis kept at 16 cycles forCounting Classifierand 32 cycles forConfidence Based Clas-
sifier to enable theCounting Classifierto learn quickly as the counters in the PPST are cleared
periodically after every million cycles.

Figure 8 shows theOverall Accuracy, LIMCOS accuracyandFalse Positive Ratefor theCon-
fidence Based Classifierdesign used in the rest of this study. While the Overall Accuracy (84%) is

3. The trends observed were similar for LIMCOS-80, where loads accounting for 80% of the load commit stalls are
treated as part of LIMCOS.

8



PERFORMANCEORIENTED PREFETCHINGENHANCEMENTS USING COMMIT STALLS

Figure 8: Accuracy of Confidence Classifier: 32 Entries, 8 Way Associative, Min Stall 32 cycles.
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Figure 9: Focused Prefetching and other prefetch mechanisms.

slightly lower compared to theCounting Classifier, the quick learning allows the confidence based
classifier to achieve high LIMCOS Accuracy of 90%. The flip side of the quick learning and the not
reducing the confidence values can be seen by the relatively higher false positive rate of 17%. The
interesting aspect to note is the reasonably high overall accuracy achieved by the classifiers in-spite
of using only 32 entries.

4. Focused Prefetching

Focused prefetchingis an application of the classifiers mentioned in Section 3.1.. Focused prefetch-
ing is a filtering mechanism that helps any prefetcher to focus more on misses that are likely to have
a significant impact on performance.

Any existing prefetcher, as shown in Figure 9(a), is made up of three components – the main
prefetching algorithm, the input to it which is normally a stream of misses and the output which
is a stream of prefetch addresses. The prefetching algorithm identifies trends in the input stream
and generates the prefetch stream which contains the addresses that are likely to be accessed in the
future.

In Focused Prefetching, the thrust is in filtering the training stream seen by the prefetcher. As
shown in Figure 9(b), given any prefetch algorithm, we use a classifier tofilter the training stream so
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that the core of the prefetcher sees only the misses caused by LIMCOS loads. One of the two clas-
sifiers proposed in Section 3 could be used to implementFocused Prefetching. The rationale behind
this filtering is that, by definition of LIMCOS loads, eliminating the misses sufferedby the loads
identified by the classifier will lead to lesser commit stalls and improved performance. Also seeing
only a part of the training stream, will allow the prefetcher to use its hardwareresources efficiently
and improve the accuracy of the prefetches. The improved accuracy and generating prefetches in
response only to a subset of the misses translates into lesser number of wasted prefetches being
generated. This also alleviates the pressure on the memory and reduces thememory traffic caused
by naive prefetching.Focused Prefetchingis oblivious to the underlying prefetch mechanism and
hence has a wide applicability.

An important aspect to consider inFocused Prefetchingis the timing of the Classificationre-
quests to the classifier. The outcome of theClassificationstep decides whether or not the miss will
form a part of the input stream to the prefetcher. If the prefetcher is associated with a cache level
where the load PC information is available, theClassificationrequest could be made once a miss
is suffered. At caches closer to memory, where load PC information is generally not available [8],
theClassificationrequest has to be made earlier in the pipeline and the result has to be propagated
along with the load request. As the classifiers are indexed based on load PC, the classification re-
quest could be made once the PC is known. In our simulations, the classification request is made
earlier in the pipeline, once the instruction is identified as a load.

A recent research in eliminating the harmful effects of prefetching and deriving the maximum
benefit out of it isFeedback Directed Prefetching (FDP)[11]. FDP, as shown in Figure 9(c), fil-
ters the prefetches once they are generated based on the prefetch accuracy, timeliness and pollution
caused by the prefetcher. FDP achieves this by controlling the prefetch degree. Further, FDP is a re-
active mechanism and is oblivious to the importance of the misses eliminated by the prefetcher. FDP
is orthogonal to Focused Prefetching and can complement our scheme to improve its performance.

5. Results

5.1. Simulation Details

The simulation framework used in this study is built on top of thesim-alphasimulator [15]. The
machine model and other relevant parameters are presented in Table 1. Each level of cache has 32
MSHRS [16] out of which 16 are reserved for prefetches. Regular accesses are given priority over
prefetches. We used the early single simulation point [17] for all our simulations. The interval size
considered is 100 million instructions.

Most of the detailed evaluation is carried out for prefetching at the L2 cache. For this purpose,
we consider a per-PC Delta correlation prefetcher built on top of Global History Buffer (GHB) [8].
The prefetcher is made up of two structures, aGlobal History Buffer, which holds the most recent
misses in FIFO order and anIndex Tablewhich chains the misses that share the same characteristics
together. In this study, we use theIndex Tableto chain together misses that were caused by the same
load instruction. The per-PC delta correlation prefetching mechanism usesdelta pairs to decide the
prefetch addresses. When a miss occurs, the two most recent deltas (differences between the 3 most
recent misses) are computed. The miss history is searched backwards for a match with the delta
pair computed above. Once a match is found, for a prefetch degree of 8 assumed in this study, the
next 8 deltas in the per-PC miss stream following the delta pair are used to generate the prefetch
addresses. The prefetching mechanism of Delta correlation is used as it isshown to be one of
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Fetch/Issue/Commit Width 8
ROB/LQ/SQ 128/32/32 Entries
Int ALU/Mult 6/2
FP ALU/Mult 6/2
Branch Predictor 21264’s Predictor, 32 Entry RAS
Memory Hierarchy L1 DCache - 32KB, 4 Way , 32 Byte linesize, 1 cycle

Unified L2 - 1MB, 8 Way, 64 Byte linesize, 12 cycles
All the caches have 32 MSHRs

Memory Latency Minimum 225 cycles
Prefetcher At L2 - 512 Entry 16 Index GHB Per PC Delta Corre-

lation
512 Entry 256 Index was also evaluated for Baseline

Prefetch Degree 8
Counting Classifier 32 Entries, Lower Limit 16 and Threshold 1/32
Confidence Classifier 32 Entries, 8 Way Associative, Lower Limit 32

Table 1: Machine Configuration.

the best performing prefetch algorithm[8]. Though we evaluated focused prefetching with a GHB
containing 16 Index table entries (capability to chain together miss stream of 16loads), as we focus
only on a small set of PCs, for fairness, we compared it with a naive prefetcher that uses a GHB with
256 index table entries. The classifier configurations opted for here arethe ones that are evaluated
in Section 3.

Figure 10: Performance gains of GHB with PC-Delta Correlation and Focused Prefetching over a
Baseline with no prefetcher.

5.2. Performance and Traffic Gains with Focused Prefetching

In this section, we study the performance ofFocused Prefetchingwhen applied to a GHB based
per-PC delta correlation prefetcher which tracks L2 misses and brings theprefetched data into L2.
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Figure 10 shows the improvement in IPC obtained by focused prefetching and naive prefetching
over no prefetching. In this figure, B-16 and B-256 stand for baselineprefetching with 16 and 256
Index Tableentries in the GHB respectively. Results are shown forFocused Prefetchingusing both
the classifiers discussed in Section 3.Focused Prefetchinguses anIndex Tablewith 16 entries.
It can be observed that in most of the benchmarks,Focused Prefetchingresults in performance
improvement over no prefetching and naive prefetching (baseline prefetching). On an average4,
Focused Prefetchingwith Confidence Based Classifierresults in an IPC gain of 37.2% over no
prefetching and 9.8% over naive prefetching (B-256). Between the confidence based and counter
based classifiers, the confidence based classifier results in a higher IPC gain. This can be attributed
to the relatively higherLIMCOS Accuracyof the confidence based classifier as shown in Section 3.
Also the gain in IPC over B-16, 8.6% usingConfidence Based Classifierand 7.3% usingCounting
Classifierindicates that intelligent filtering carried out byFocused Prefetchingis better than any
naive filtering achieved by having lesser number ofIndex Tableentries.

Benchmarkstwolf andvpr gain very little improvement in performance with any prefetching.
In lucas, mcf, mgrid, swimandwupwisethe effect ofFocused Prefetchingover naive prefetching is
significant. On the other hand, in benchmarks likeapplu, equakeandfacerec, Focused Prefetching
suffers minor performance degradation compared to naive prefetching. Especially infacerec, where
focused prefetching is relatively unhelpful, focusing on the PCs identified by the classifiers results
in a decrease in the number of prefetches by 83% and the number of useful prefetches5 is brought
down by 75%. This results in a drop in the performance compared to naive prefetching.

Figure 11 shows the reduction in the number of prefetches generated byFocused Prefetching
compared to B-256. On an average, for the confidence based classifier, the number of prefetches
generated goes down by 50% while the number of useful prefetches goes down by 26.3% (not shown
in figure). In spite of this reduction in the number of prefetches, focusingon the loads in LIMCOS
leads to a 9.8% gain in performance over naive prefetching. This confirmsthe benefits of focusing
on the LIMCOS loads. Using the counting classifier results in a performancegain of 8.3% over
naive prefetching despite the fact that the number of prefetches generated went down by 52.4%.

The other intended benefit of focused prefetching is the improved ability to learn trends in the
filtered miss stream and generate more useful prefetches. We use the metricPrefetch Accuracy,
which is defined as the fraction of useful prefetches among the total prefetches generated [11].
The gains in accuracy over B-16 and B-256 forCounting ClassifierandConfidence Based Classifier
are shown in Figure 12.Focused Prefetchingleads to a 61% improvement in the prefetch accuracy
compared to naive prefetching. All the benchmarks, even those whereFocused Prefetchingdid not
result in a major gain in performance, showed a gain in accuracy as a result of employingFocused
Prefetching.

Accuracy in prefetching and focusing on a subset of misses leads to a reduction in the number of
wasted prefetches, thereby saving valuable memory bandwidth. Figure 13shows the reduction in the
memory traffic measured in terms of the number of bytes transferred. It is important to consider the
entire traffic rather than just the prefetch traffic as the pollution effects ofprefetching can increase
the miss traffic. The average reduction in memory traffic experienced is 20.3% using the confidence
based classifier and 20.2% using the counting classifier. All the benchmarks showed a reduction in
the memory traffic on employingFocused Prefetching. All the results together indicate that focusing
on the small set of LIMCOS loads is beneficial to performance. In short,Focused Prefetching

4. We use arithmetic mean in this paper, unless specified otherwise.
5. prefetches servicing a demand access.
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Figure 11: Reduction in the Number of Prefetches Generated by FocusedPrefetching.

Figure 12: Improvement in prefetch accuracy due to Focused Prefetching.

Figure 13: Reduction in Memory Traffic by employing Focused Prefetching.

enables one to eliminate the misses that matter and achieves more performance byvirtue of more
relevant prefetches.
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Figure 14: Gain in performance with Focused Prefetching for benchmarks not discussed in detail.

For completeness, we also show the performance gains experienced forthe remaining bench-
marks, exceptfma3dwhich did not run in our framework. The gains in performance over B-16
and B-256 by employing focused prefetching are shown in Figure 14. Inapsi, Focused Prefetching
results in an IPC improvement of nearly 7%. Only forcrafty andeon, there is a marginal perfor-
mance degradation (less than 1%) compared to naive prefetching. On an average, for all the 25
benchmarks, the gain in performance over naive prefetching is 7% for confidence based classifier
and 6% using counting classifier as shown by the last set of bars in Figure14. For the entire set of
25 benchmarks, the memory traffic reduces by 22.8% for confidence based classifier and by 23.3%
for counting classifier. The interesting thing to note is that even in benchmarks that are not sensitive
to memory performance, there is a substantial reduction in memory traffic by employing Focused
Prefetching.

5.3. Classifier Design

The criterion used by counting classifier to classify a load is same as the one used to define LIMCOS,
while confidence based classifier provides an approximation of the same. But the confidence based
classifier is more suited to a hardware implementation. While the confidence basedclassifier design
performed as well as the counting classifier, the former can be thought ofas the ideal design choice
for hardware implementation only if it manages to perform as well as the best performing counting
classifier. In order to establish this, we study the design space of countingclassifiers.

5.3.1. Classifier Parameters

Performance of the counting classifier is dictated not just by itssize, but also by the other two design
parameters,limit andthreshold, described in Section 3. We give a brief description of the three im-
portant parameters:sizedetermines the number of entries in the classifier,limit sets the lower limit
for a commit stall to cause an update in the classifier andthresholdis used in the classification step
to specify the fraction of total stalls a load should have accounted for to be classified as LIMCOS.
Though the parameters are used for different purposes in a classifier, it can be seen that they are not
totally independent. For instance, with a higher value forsize, limit can have a lower value without
affecting the ability of the classifier adversely. Similarly, a higher value forlimit, for instance, will
mean that the classifier sees a lot less stalls during theUpdatestep. This in turn might allow even
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Parameter Range of Values
Size 16, 32, 64 Entries
Limit 8, 16, 32 Cycles
Threshold 1/8, 1/16, 1/32 of Total

Stalls

Table 2: Counting classifier design space.

Figure 15: IPC Gain for various classifier designs.

higherthresholdvalues to be satisfied duringClassification. We varied the three design parameters
associated with the counting classifier and studied their effect on the program performance. Three
possible values were considered for each of the parameter resulting in 27configurations. The values
considered for the study are shown in Table 2.

Figure 15 shows6 the geometric mean of IPC for the memory-intensive benchmarks for the var-
ious configurations of the counting classifier. Increasing the size of the classifier helps in improving
performance. In comparison, the parameterlimit has less of an impact. The impact oflimit on
performance is higher at smaller classifier sizes like 16 entries than at larger sizes like 64 entries.
This is along expected lines as in a majority of the benchmarks, a few loads account for most of the
commit stalls and the classifier uses a LRU replacement policy in PPST. The impact of threshold
remains significant across various classifier sizes and for different values oflimit. In general, for a
given classifier, the best performance is obtained by a higher value forlimit during theupdateoper-
ation and by relaxing thethresholdvalue during theclassificationstep. The other interesting thing
to note is that by appropriately adjusting thelimit and threshold, as mentioned above, the impact
of sizeon performance can be made minimal. This can be observed from the fact that with a limit
of 32 andthresholdof 32, there is only minimal difference between the performance of classifiers
containing various number of entries.

5.3.2. Data Retention in Classifier

The other design decision taken with respect to the counting classifiers is that of clearing the clas-
sifiers every million cycles to avoid retention of stale data. In the absence of such a clearing, with

6. The a/b/c labels shown along the X-axis in Figure 15 give the values for size, limit and (1/Threshold) respectively.
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Figure 16: Stale Data in Classifier: Comparing the various alternatives at different design points.
The parameterlimit is fixed at 32 cycles.

a fixed value for threshold, the absolute number of commit stalls a load should have suffered to
be classified as LIMCOS keeps increasing steadily with eachUpdateoperation. This will result in
prefetch opportunities being ignored. This section shows that clearing theclassifier entries periodi-
cally gives the best possible performance.

We considered three possible design choices for the classifier:

• Clear: This is the scheme used so far, in which the PPST is cleared after a fixed interval
(1 million cycles in the study). The interval size didn’t make much of a difference to the
performance unless it was too low or too high.

• NoClear: In this design, the contents of classifier are modified only through theUpdateoper-
ation of the classifier.

• ReduceOnReplacement:As the total stall cycles suffered by each load tracked by the classifier
is associated with the PPST entry allocated for it, the global stall count could be decremented
on each PPST replacement by bringing the counter value down by the stall cycles stored in
the replaced PPST entry.

The difference in performance gains betweenClear andNoClearcan be used to observe the effect
of stale history in the classifiers.ReduceOnReplacementon the other hand lets the classifier to
make theClassificationdecision only based on the current contents of the classifier. Once an entry
in the PPST of the classifier gets replaced, it stops influencing the futureClassificationdecisions in
ReduceOnReplacement.

Figure 16 shows the performance of the various retention schemes at various points in the clas-
sifier design space determined by the three parameters viz.,Size, LimitandThreshold. As limit had
the least impact among the three parameters discussed in the previous section, to improve read-
ability, we fix limit at 32 cycles while varying the other two parameters through the set of possible
values listed in Table 2. The graph in Figure 16 shows the geometric mean of IPC for the set of
17 memory-intensive benchmarks. The key observations that can be madeare: (i) Not clearing the
stale entries in classifier, as is done inNoClearaffects the potential performance gains, as can be
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seen from the fact that it is the worst performing configuration of all.(ii) Witha larger classifier, the
impact of retaining all the history is mitigated to an extent.(iii) The configuration usedso far in the
paper,Clear is the best performing configuration of all.

The gains ofClearoverReduceOnReplacementcould be attributed to the following reasons: (i)
some of the stale entries which have seen a lot of stalls might take longer to get replaced from the
classifier (ii) during some relatively stable sections of execution, the total stalls seen so far might
reach high enough values that it might be harder to meet the criteria to be classified as LIMCOS.
This is further substantiated by the fact that relaxing the threshold value improves the performance
of ReduceOnReplacement.

The impact ofsizeandthresholdremain similar to what was observed for theClear configura-
tion in the previous section. Though not shown here, the impact oflimit was higher for theNoClear
configuration especially when the classifier had lesser number of entries.Also it is be noted that, the
configuration used so far in the paper is relatively more oblivious to the classifier design parameters
compared to the other schemes. Also periodic clear enables even smaller classifiers to perform as
well as larger classifiers usingNoClearor ReduceOnReplacementschemes. To summarize, the best
possible counting classifier design was adapted in this study and the ability of the confidence based
classifier to match its performance indicates that using a simpler design (confidence based classi-
fier) or a smaller sized classifier (counting classifier with just 16 entries) can result in significant
performance gains in performance and reduction in memory traffic.

5.4. Relation to Other Criteria

In this section, we present quantitative comparisons with two of the most closely related criteria for
Focused Prefetchingviz., criticality [12] anddelinquent loads[13].

5.4.1. Criticality

Critical loads are defined as the loads that together with other critical instructions decide the overall
execution time of the program. Earlier work has attempted to tailor prefetching schemes targeting
critical loads [18]. The implementation was dependent on a set of heuristicslike load leading to a
load miss or branch misprediction and measuring the number of instructions issued after the load to
identify the critical loads. However, such works report a significant loss in performance compared to
naive prefetching for the L2 cache. For the purpose of this study, we identify critical loads using the
much rigorous criteria of criticality suggested by Fields [12]. The methodologyproposed in [12]
works by constructing a graph where the edge weights are the delay incurred by an instruction at
various stages in the pipeline waiting for true dependencies and resourceconstraints to be resolved.
The longest path in this graph, known as the critical path, accounts for theentire execution time.
Any delay to instructions in the critical path, the critical instructions, will add to the execution time
of the program.

During simulations, we observed that instead of focusing on critical loads (including both hits
and misses), it is better from a performance point of view to focus on the static loads that account
for a large fraction of the critical misses. This is a subtle but significant difference compared to
the earlier work. Thus, to implementFocused Prefetchingwith criticality as the criteria, we use the
definition of Fields [12] to identify a set of static loads that account for mostof the critical misses
suffered at L2 cache.
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Figure 17: Performance Gains of Focused Prefetching over Criticality and Delinquent Loads.

5.4.2. Delinquent Loads

Section 2 showed that there is a partial overlap between delinquent loads [13] and LIMCOS.

5.4.3. Performance Comparison

As critical loads are identified accurately using an off-line analysis, for fairness and accuracy pur-
poses we do not use a dynamic classifier and use profile runs to identify theloads matching the
various criteria. The profile and actual runs use the same input data and are run for 100 million
instructions at the simulation point [17]. The machine configuration used in theprofile runs is same
as the one shown in Table 1. However, no prefetcher is used in the profileruns. For each benchmark,
we identify the set of static loads that account for 50% of commit stalls(LIMCOS-50). An equal
number of static loads that account for most of the critical L2 misses are alsoidentified. Similarly,
one more profile run is used to identify an equal number of delinquent loads. As Focused Prefetch-
ing in this case eliminates the misses suffered by the static loads identified above, for fairness, it is
imperative to consider same number of loads for different criteria. LIMCOS-50 is used to determine
the number of loads as the criterion of commit stalls required the least number ofloads to achieve
50% coverage. We implementedFocused Prefetchingat L2 cache to focus and eliminate the misses
suffered by these set of static loads identified using the three different criteria. The prefetcher used
is the same prefetcher considered so far in the study

Figure 17 gives the performance improvement achieved by commit stall criterion over the other
two. On an average, the gain in performance for commit stall based focused prefetching over criti-
cality based focused prefetching is 4.6% while the gain over delinquent loadbased focused prefetch-
ing is 4.2%. Though there are a few benchmarks, where either criticality or delinquent loads seems
to be the better criteria, in a majority of the benchmarks, focusing on commit stalls gives the maxi-
mum benefit. The only exception seems to belucaswhere the profile based identification of commit
stalls is not as efficient as other criteria. But inlucas, the classifiers perform well at run time as less
than 10 loads account for 95% of the commit stalls, resulting in an IPC gain of 25.6% over B-256.

5.5. Different Prefetchers and Cache Levels

We applyFocused Prefetchingto L1 Data Cache by filtering the training stream seen by a stride
prefetcher. This also allows us to study the effectiveness ofFocused Prefetchingwith a different
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Figure 18: Performance Gains provided by Focused Prefetching at L1.

prefetch algorithm. The stride prefetcher has a per-PC stride detection mechanism and a confidence
mechanism of waiting for the same stride to appear more than once in succession before issuing
prefetches. The prefetch degree is set at 8. Some of the recent works on prefetching have used the
stream buffer [6] as one of the prefetch mechanisms. We opted for the stride prefetcher instead of
stream buffer as research shows that the performance of stream buffer improves by using a per-PC
stride [3] or Markov prefetcher [19] along with it. The delta correlation predictor used earlier can
be thought of as an approximation of the Markov predictor [5].

We studiedFocused Prefetchingwith a confidence based classifier for the L1 cache. The perfor-
mance gains over naive prefetching with an ability to track 16 per-PC Strides and 256 per-PC strides
are shown in Figure 18. For the set of 25 SPEC benchmarks7, there is a 11% gain in performance
over B-16 with a 2.3% reduction in memory traffic. In a significant number of benchmarks (10 out
of 25), there is at the least 5% improvement in IPC over naive prefetching. In lucasandmgrid, the
gain in IPC is more than 70%. Compared to the more aggressive B-256, the IPC gain is reduced and
is only 1.2%. Nonetheless, there is a gain over the naive prefetcher and the memory traffic reduces
by 8.2%.

5.5.1. Global History Based Prefetching

An important class of prefetchers for which the applicability offocused prefetchingneeds to be
studied is the global history based prefetchers [8].Focused Prefetchingworks by filtering the history
seen by the prefetch algorithm. While filtering the training data on the basis of PCis suited to Per-
PC history based prefetchers that have been studied so far in the paper, it can potentially have
negative impact on the performance of global history based prefetch mechanisms. Global history
based prefetchers rely on the regularity that is present in the unfiltered miss stream seen at a cache
level. Filtering out a part of history might result in a loss of useful correlation information in a global
history based prefetcher. To study the suitability of focused prefetchingto such global history based
mechanisms, we apply it to the global history based variant of the delta correlation prefetching [8].

An application of classifiers that might be more suited in this case is filtering of prefetches
once they are generated by a global history prefetcher. Figure 19(b)illustrates conceptually the
organization of prefetcher and the classifier to achieve filtering of prefetches. As can be seen from

7. The full set of 25 benchmarks is used as all of them are sensitive to L1 cache misses.
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Figure 19: Global History Prefetchers: Focused Prefetching and using classifiers to filter the
prefetches.

Figure 20: Global History Based Prefetching: Performance gains obtained by focused prefetching
and filtering, applied to global history prefetchers, over unmodified baseline prefetcher.

Figure 19, the classifier in the case of filtering is positioned after the prefetch algorithm, at its
output, unlikeFocused Prefetching, where the classifier is positioned before the prefetcher. Hence,
the prefetcher, in the case of filtering, sees all the training data and does not lose out on useful
correlation information. The classifier is used to decide when to trigger prefetches. In this case,
only misses suffered by loads in LIMCOS trigger prefetches.

We used a confidence based classifier for the purpose of this study. The configuration of the
classifier remains the same as in the previous studies. The prefetch mechanism of global history
based delta correlation was implemented on top of a GHB with 512 entries and 256index table
entries. A prefetch degree of 8 was used. Figure 20 shows the gain in IPC over baseline unmodi-
fied prefetching for focused prefetching and filtering, both the schemesimplemented on top of the
baseline global history based delta correlation prefetcher.

On an average the gains obtained by both the schemes are similar, 4.66% for focused prefetch-
ing and 4.99% for filtering over naive prefetching. While naive prefetching resulted in IPC gains of
20.12% over no prefetching, focused prefetching and filtering achieved 26.12% and 26.20% gains
in IPC respectively. The negative effects of filtering the history, as is done in focused prefetching, is
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seen primarily inammp, appluandfacerecwhich lose performance compared to naive prefetching.
However, there is still a gain in performance over no prefetching even for these three benchmarks.
The loss in performance forfacerecis on the higher side, where a reduction in the prefetch op-
portunities hurts the performance, similar to the per-PC history case discussed earlier. It is also
interesting to note that even filtering of generated prefetches affects performance negatively in the
case offacerec. Other benchmarks where filtering affects performance negatively aremgrid, parser
andvpr. While ammp, appluandequakefavour filtering over focused prefetching, the situation is
reversed in the case oflucas, swimandwupwisewhere significant gains are to be had by employing
focused prefetching even along with a global history prefetcher. On a whole, focused prefetching
retains the advantages provided by it even in the case of global history prefetchers though the impact
is reduced in this case. Filtering generated prefetches using classifiers demonstrates yet another use
of classifiers to enable performance aware prefetching.

5.6. Focused Prefetching inMulti-Cores

The evaluation carried out so far focused on the performance of individual applications run in a
stand-alone fashion. But modern processors are multicore machines with typical usage scenario
consisting of multiple programs being run in parallel. In such a scenario, the performance of shared
resources in the memory subsystem – caches, memory bandwidth – become crucial to the perfor-
mance.Focused Prefetchingcan help in relieving some of the pressure on the memory subsystem
by improving the prefetch efficiency. Hence in this section, we evaluate the performance ofFocused
Prefetchingin the context of multicores running multi-programmed workloads.

We use M5 [20] simulator to study the performance impact ofFocused Prefetchingin multi-
cores8. We simulate quad-core machines running 4 benchmarks in parallel. The benchmarks are
selected from SPEC2000 and SPEC2006 benchmark suites. We are not studying schemes were
other cores are used to prefetch data for the main thread (Helper threadsand the like) [21]. The
CPU and L1 cache parameters are same as that used in the rest of the paper. The L2 cache in
this case is shared among the 4 cores. We simulate a 8MB 32 way associative L2 cache for the
purpose of this study9. The machine usesAlpha ISA. Each core uses the same confidence based
classifier as the rest of the study. The Quad-core workloads used in thisstudy are listed in Table 3.
We use harmonic mean speedup(SMT speedup) [22] to summarize the performance of the multi-
programmed workloads. Harmonic mean speedup of N applications being runin parallel is defined
as N/

∑
(StandAloneIPCi/IPCi). HereIPCi is the performance of theith benchmark in the

workload in terms of its IPC. StandAloneIPC is the IPC observed when the benchmark is run alone.

The prefetcher in this study is situated at the shared L2 and we use a Per-PC delta correlation
prefetcher. All the programs were fast forwarded for 10 billion instructions, with the last 1 billion
instructions used to warmup the processor structures. We simulated each workload in detail for 2
billion cycles and report the observed performance. Figure 21 shows the harmonic mean speedup
of naive prefetching andFocused Prefetchingnormalized to that of a machine with no prefetching.
The naive baseline prefetching provides a speedup of 22% over no prefetching (Geometric mean)
while Focused Prefetchingimproves the performance by 29% compared to no prefetching. In all
cases, except workload Q6, it can be seen that prefetching is beneficial to performance. In the case

8. The sim-alpha [15] simulator used in the rest of the study did not have the support to evaluate multicores.
9. We observed similar performance trends with 2MB and 4MB caches.
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Q1 (300.twolf, 256.bzip2, 183.equake, 482.sphinx3)
Q2 (178.galgel, 179.art, 471.omnetpp, 410.bwaves)
Q3 (434.zeusmp, 183.equake, 459.GemsFDTD, 470.lbm)
Q4 (462.libquantum, 187.facerec, 183.equake, 171.swim)
Q5 (183.equake, 482.sphinx3, 189.lucas, 470.lbm)
Q6 (470.lbm, 168.wupwise, 171.swim, 300.twolf)
Q7 (179.art, 470.lbm, 183.equake, 171.swim)
Q8 (168.wupwise, 482.sphinx3, 171.swim, 470.lbm)
Q9 (178.galgel, 459.GemsFDTD, 471.omnetpp, 179.art)
Q10 (187.facerec, 179.art, 171.swim, 410.bwaves)
Q11 (471.omnetpp, 459.GemsFDTD, 301.apsi, 300.twolf)
Q12 (183.equake, 187.facerec, 171.swim, 470.lbm)
Q13 (300.twolf, 171.swim, 482.sphinx3, 459.GemsFDTD)
Q14 (459.GemsFDTD, 179.art, 183.equake, 470.lbm)

Table 3: Quad-Core Workloads.

of Q6, while benchmarks 470.lbm and 171.swim gain in performance, performance degradation
observed in the case of 168.wupwise and 300.twolf affects the harmonic speedup observed with
prefetching. This primarily happens as harmonic speedup also takes into account fairness along
with performance gain [22]. In fact, with naive prefetching Q6 shows a gain of 24.6% and 13.3%
over no prefetching when the performance is summarized using other metricslike throughput [22]
and weighted speedup [22] respectively. WithFocused Prefetching, Q6 shows 26.7% and 14.3%
improvement over no prefetching using throughput and weighted speedup metrics respectively.
For the entire set of workloads, naive prefetching improves performance over no prefetching by
24.4%(Throughput) and 24.2%(Weighted-speedup). UsingFocused Prefetching, the performance
improvement over no prefetching are 31.9%(Throughput) and 31.6%(Weighted-speedup)10.

Similar to the case of single cores,Focused Prefetchingcan benefit multicores too and pro-
vides an average (Geometric Mean) speedup of 5.7% over naive baseline prefetching in terms of
harmonic/fair speedup metric. In terms of other metrics like throughput and weighted speedup,
the gains provided by focused prefetching over naive baseline prefetching are 6.0% and 5.9% re-
specitvely (Geometric Mean). Significant improvement in performance is seen in workloads Q7 and
Q12, whereFocused Prefetchingimproved the performance of all the individual benchmarks that
constitute the workload. Noticeable gap in performance between naive andFocused Prefetchingis
seen only in the case of workload Q10 whereFocused Prefetchingimproved the performance of
benchmark410.bwavesat the expense of the other three benchmarks. To understand the perfor-
mance benefits provided byFocused Prefetching, we studied the number of prefetches generated
and the number of useful prefetches for naive andFocused Prefetching. A prefetch is useful if the
cache block brought in by it is accessed at the least once before beingevicted from the cache. Fig-
ure 22(a) shows that similar to the single core scenario, lesser number of prefetches are generated by
Focused Prefetching. Just as in the single-core scenario,Focused Prefetchinggenerates highly ac-
curate prefetches, as can be seen from Figure 22(b), which shows the increase in useful prefetches
for Focused Prefetchingcompared to the naive baseline prefetching. WhileFocused Prefetching

10. We report geometric mean of the observed speedup.
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Figure 22: Focused Prefetching Vs Baseline – WhileFocused Prefetchinggenerates lesser num-
ber of prefetches compared to naive prefetching, it generates more accurate prefetches
which is reflected in terms of the increase in the absolute number of useful prefetches
experienced byFocused Prefetching.

generates 28% less prefetches compared to naive prefetching, it experiences 14.7% more prefetch
hits compared to the baseline prefetching scenario. Workloads Q7 and Q12show the maximum
speedup in terms of harmonic speedup metric. It is interesting to note that while gain in the work-
load Q7 comes from a combination of eliminating wasted/useless prefetches (see Figure 22(a)) and
additional hits due to more accurate prefetches(Figure 22(b)), workload Q12 gains mainly due to
the additional hits(useful prefetches) generated byFocused Prefetching.

In essence, we show thatFocused Prefetchingscales seamlessly to multi-core scenario and can
help improve the performance of prefetchers attached to shared caches.
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6. Related Work

The works related to contributions made in this paper can be classified into three major categories:
tracking commit stalls, prefetching mechanismsandfiltering prefetches.

6.1. Tracking Commit Stalls

Tracking commit stalls experienced by a program and treating them as an indicator for the DRAM
performance of the system has been carried out in [23].Scavenger[24] makes an observation
that loads missing in L2 account for a significant fraction of stall time, which issimilar to ours.
While [24], focuses on the misses from an address point of view and suggests cache structure
reorganization, we focus on the stalls from an instruction point of view andfocus on improving
prefetching performance with out any modifications to existing prefetchers. Loads blocking the
ROB often is also demonstrated in [25] and it proposes load speculation when a load stalls at
commit. In short, they use commit stalls to filter the load speculation that needs to be carried out.
But the major difference is the fact that they try to eliminate all the commit stalls rather than focusing
on a few or the instructions that account for a lot of them as is done in this work.

6.2. Prefetching Mechanisms

Global History Buffer[8] has been shown to be the most effective way to track misses and also pro-
vides the flexibility to implement a variety of prefetching schemes on top of it. Earlier prefetching
mechanisms used sequential [4] or next-line prefetching, while Markov predictors for prefetching
proposed in [5] identified complex patterns in the miss stream. The popular prefetching scheme of
tracking multiple streams in parallel, stream buffer is proposed in [6]. Latter research also showed
that it is profitable to use either a stride [3] or Markov prefetcher [19] withstream buffers. Our
approach is oblivious to the underlying prefetching mechanism used and helps by filtering the input
stream seen by the prefetcher to improve the accuracy and efficiency.

6.3. Filtering Prefetches

Not treating all the loads as equal, and focusing only on a few of them was first proposed in [18].
A complex tracking mechanism and large prediction structures are used to identify and predict the
criticality of a load in [18]. However their performance evaluation revealedpoorer performance
compared to naive prefetching at L2 and resulted in a loss in performancecompared to no prefetch-
ing at L1. One of the criteria employed in [18] to identify critical loads is to measure the number
of instructions issued in a certain number of cycles following the issue of a load. If the number of
instructions issued is below a certain predetermined threshold, the load is classified as critical. The
major problem with this approach of tracking at issue is the fact that the tracking needs to be carried
out for multiple loads in parallel and if one of them is critical enough to affectthe issue, all the other
loads will get wrongly classified as critical.

In Feedback Directed Prefetching (FDP)[11], the filtering of the generated prefetches is car-
ried out based on the accuracy, timeliness and pollution caused by the prefetcher. The filtering is
achieved by controlling the prefetch degree of the prefetcher. The mechanism involved in throttling
the prefetchers are reactive and are not aware of the relative impact on performance of the loads that
suffer the misses. FDP filters prefetches once they are generated while we filter the training stream
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seen by the prefetcher. This allows FDP to complement our scheme without anynegative effects.
More recent works use criterion similar to FDP to manage multiple prefetchers [26, 27].

A static filter which enables prefetching for a set of loads has been proposed in [28]. Unlike
Focused Prefetching, it requires a profiling run and requires knowledge of the underlying prefetch
mechanism. Also the filtering criteria is not performance oriented but is determined by the regular
behaviour observed in the miss stream of a particular load, which might lead toan improvement in
the accuracy of prefetches.

A filter based on usefulness of the prefetches is proposed in [29]. Thescheme works by filtering
prefetches once they are generated on a per prefetch basis. Like FDP, this scheme is also orthogonal
to Focused Prefetching.

7. Conclusions

This paper proposed prefetching enhancements that target the prefetching efforts on a small set
of loads incurring majority of commit stalls. This resulted in gains in performanceand reduced
memory traffic over naive prefetching. To summarize, the key contributions made in this paper are:

• We observe that close to 60% of the commit stalls are caused by loads and thata small set of
loads, referred to as LIMCOS incur most of these stalls.

• We propose simple hardware structures calledClassifierswhich are entirely off the critical
path to identify the occurrences of the LIMCOS loads.

• We demonstrate an application of theClassifiersto improve the performance gains from
prefetching inFocused Prefetching. We show that focusing prefetching efforts on LIMCOS
loads can lead to gains in performance, reduction in the memory traffic and improved prefetch
accuracy.

• We demonstrate the performance benefits provided byFocused Prefetchingin a multi-core
scenario.

• We demonstrate another application ofClassifiersin the form of filtering prefetches in global
history based prefetchers.

• We also demonstrate that the criterion of commit stalls is better than other well known criteria
like criticality [12] and delinquent loads [13].
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