Journal of Instruction-Level Parallelism 13 (2011) 1-28 Submitted 10/10; published 3/11

Performance Oriented Prefetching Enhancements Using Commit

Stalls
R Manikantan RMANI @CSA.IISC.ERNET.IN
R Govindarajan GOVIND@CSA.IISC.ERNET.IN
Indian Institute of Science, Bangalore, India
Abstract

Loads that miss in L1 or L2 caches, and are waiting for theia dathe head of the ROB, cause
significant slow down in the form of commit stalls. We idewtifiat most of these commit stalls are
caused by a small set of loads, referred thldCOS(Loads Incurring Majority of COmmit Stalls).
We propose simple history-based classifiers that track dostalls suffered by loads to help us
identify this small set of loads. In this paper we study twefptching enhancements enabled by
classifiers.

In the first enhancement, the classifiers are used to traipréfetcher to focus on the misses
suffered by LIMCOS. This, referred to as focused prefetghiesults in a 9.8% gain in IPC over
naive GHB based delta correlation prefetcher along with.8%0eduction in memory traffic for a
set of 17 memory-intensive SPEC2000 benchmarks. Anothgritant impact of focused prefetch-
ing is a 61% improvement in the accuracy of prefetches. Weodstrate that the proposed classifi-
cation criterion performs better than other existing cidgtéke criticality and delinquent loads Also
we show that the criterion of focusing on commit stalls isustienough across cache levels and can
be applied to any prefetcher without any modifications togrefetcher. We also demonstrate the
positive impact thaFocused Prefetchingas in a multi-core scenario. In the case of global history
based prefetchers, we demonstrate not only the applisabfiifocused prefetching, but also the
second enhancement based on classifiers — filtering of phefebnce they are generated.

1. Introduction

In-order commit is employed in superscalar processors to ensure thatctigected state of the
processor is updated by instructions in program order even thoughdtistrs may be issued and
executed out-of-order. The downside of in-order commit is expercenteen long latency instruc-
tions and loads that miss in the cache reach the head of the ROB and wakifordimpletion or
arrival of data. This stalls the commit of all future instructions including theksieh have already
completed execution. Such commit stalls have a negative impact on perf@n@mthe other hand,
it is not easy to implement out-of-order commit processors as it requipEnsive checkpointing
mechanisms to ensure correctness [1]. Further, expensive memaipoiing mechanisms are
required to support out-of-order commit of stores.

Figure 1 shows that in the SPEC2000 benchmark Suilese to 60% of commit stalls are
caused by loads These load stalls are experienced in spite of having a hierarchy oéséichthis
case L1 and L2). Prefetching is widely used to augment the performdmeeltes by bringing in
data into the caches before an actual demand request will be made.

1. fma3dis not considered as it did not run in our framework.
2. The machine configuration and simulation parameters are summaridedtion 5, and no prefetcher was used for
this study.

MANIKANTAN & GOVINDARAJAN

120

100

80

60 —

40

%Total Commit Stalls

20

o -

S & & DR S S F DR E AN S D D
S S TG ST IS TS T

D
S
S BN

&
é@ SN

Benchmark

Figure 1: Fraction of commit stall cycles that can be attributed to loads.

A wide variety of prefetchers have been studied for data caches 2,536, 7, 8, 9, 10]. All
these prefetchers are normally trained on the miss/access stream and igksfiil patterns/trends
among the accesses. The impact of any prefetcher on performansedsdrathe usefulness and the
timely arrival of prefetched data. However, prefetchers can haegative impact on performance
due to increased memory traffic and pollution caused by the prefetchethdaizshe [11].

An analysis of the commit stalls caused by various load instructions showe $inaell number
of loads account for a large fraction of the commit stalls. These loadefaead to as LIMCOS
(Loads Incurring Majority of COmmit Stalls). We demonstrate that simple classifiased on
history can be designed to easily identify this small set of loads. The classifie off the critical
path and work by tracking the stalls experienced by individual loads.

In this paper, we propod®cused Prefetching mechanism that uses the classifiers to filter the
training stream seen by a prefetcher, i.e., only the misses suffered lsyideatified by the classifier
act as the training stream for the prefetcher. The intuition belindised Prefetching that using
the limited hardware resources of prefetchers to store more informatiart BBMCOS can help
us learn their behaviour better. By focusing on misses suffered by OBlGocused prefetching
eliminates misses that have a significant impact on performance. The othesiimg aspect is that
our method is agnostic to the prefetcher used. As our method does ngectheninternal working
of a prefetcher, it can be applied to any of the current prefetching amesims.

Experimental evaluation shows tHaicused Prefetchingmproves performance (IPC) by 9.8%
on an average for a set of 17 memory-intensive SPEC2000 benchovarksaive prefetching using
Global History Buffer (GHB) and delta correlation prefetcher [8]. Alkis gain in performance is
achieved along with a 20% reduction in memory traffic and a 61% improvemeng iadturacy
of prefetches. In a quad-core scenafocused Prefetchingnproved the performance of naive
prefetching by 6.0% for multi-programmed workloads. The interesting featuour method is the
applicability of Focused Prefetchintp global history based delta correlation prefetchers [8]. These
prefetchers are dependent on seeing the entire training stream tat fuéatie accesses. Contrary
to expectations, even for this class of prefetchers, filtering the trainiegrathelps in improving
the performance in terms of IPC by 4.6% on an average. Also in the coritgiti@l history based
prefetchers, a more suitable alternative will be to filter the prefetchestbegare generated. In this
way, no useful training information is lost. Thus, for global history pifers, we demonstrate the
application of our LIMCOS classifiers fdter the prefetches once they are generated. The filtering
based on commit stalls improved the performance of the naive prefetch&®®y Finally, we

PERFORMANCEORIENTED PREFETCHINGENHANCEMENTS USING COMMIT STALLS

IPC

-0.4

Benchmark

Figure 2: IPC for Baseline (No Prefetch) and PerfectL2.

demonstrate that the classification criterion of load commit stalls is better than gxigtiria like
either criticality [12] or load-specific criteria like delinquent loads [13]n@xared to the approaches
mentioned above, otiocused Prefetchingcheme results in an IPC improvement of 4.6% and 4.2%
respectively.

In Section 2, we present the motivation behind our work. Simple classifiedentify LIMCOS
loads are discussed in Section 3. An application of the classifiecsised Prefetchinig discussed
in Section 4. Detailed simulation results and comparison with other schemesaeniad in Sec-
tion 5. A summary of related work can be found in Section 6. Concluding te3r@ae presented in
Section 7.

2. Motivation

2.1. Memory Intensive Benchmarks

Figure 2 shows the absolute IPC for baseline and a machine with a pe#eeiche. The machine
parameters can be obtained from Section 5 and no prefetcher is ugbd faurrpose of this study.
The configuration with perfect L2 can be thought of as an 100% atzaral timely prefetch to
mask all L2 misses. The potential gains in performance are an indicator ofg¢h®ry intensive
nature of the benchmarks. In 8 benchmarssi, crafty, eon, gzip, mesa, perl, sixtrack, vortex
the performance improvement with a perfect L2 is very small. The remaininghinearks show
at the least 20% improvement in IPC with perfect L2. These are classgiedemory-intensive
benchmarks. Similar criterion has been used in earlier works [8] to identifpangintensive
benchmarks. Henceforth, we will discuss results in detail for the sét ofdmory-intensive bench-
marks identified here. Fig 2 also shows the geometric mean of IPC for alhbenks and the 17
memory-intensive benchmarks.

2.2. Commit Stalls and Individual Loads

Figure 1 shows that loads account for most of the commit stalls. We analfyzénier by studying
the contribution of individual loads. The fraction of commit stalls accountegldrious number
of static loads (from 1 to 64, in powers of two) is shown in Figure 3 for thenEmory-intensive
benchmarks.

MANIKANTAN & GOVINDARAJAN

Fraction of Stalls

Benchmark

Figure 3: Individual Loads and their contribution to commit stalls: Fractio€ofmit Stall ac-
counted for by various number of static loads.

It can be observed that in all the benchmarks, only a small set of statis émadunt for most
of the commit stalls. For instance, 10 static loads can account for anywbeseen 50%t(olf)
to 95% @algel,lucas,mcf,wupwik@f the total stalls caused by loads. The only exception to this
among the memory-intensive benchmarkappluwhich requires 11 static loads to cover 50% of
load commit stalls. 16 static loads as can be observed from Figure 3 adopanthe least 70% of
commit stalls except iappluandparser.

As the LIMCOS loads encounter commit stalls mainly due to cache misses, viedcant a
limit study to identify the potential benefits that could be achieved if these lo&ds t® hit in
the L2 cache. For the purpose of the limit study, we used a profile run ttifidéme static loads
that account for 50% of load commit stalls(LIMCOS-50). We implemented aalimbal scheme,
referred to asnstant Replacemeygimilar to [13], in which the static loads identified in the previous
step, suffer no L2 cache misses. In other words, any data requgdiesl $elected set of static loads
is brought instantaneously into the L2 cache if it is not present in the cattie can be thought of
as an 100% accurate and timely prefetch focused on the small set of stdiic loa

Figure 4 shows the gain in IPC over baseline (no prefetchinstant ReplacemenfApplying
Instant Replacemelfibr the static loads in LIMCOS-50 results in a 63% gain in IPC over baseline
for the memory-intensive benchmarks (the corresponding number is ddthe entire set of 25
benchmarks studied). Aastant Replacememiimics 100% accurate prefetching for LIMCOS-50,
the results indicate that there is a scope for significant performanceygiiousing on the LIMCOS
loads.

2.3. Commit Stalls and Delinquent Loads

Previous research [13] has shown that a small set of loads acavunirfajor fraction of the cache
misses. This small set of loads is referred toDedinquent Loads A load experiences commit
stalls only when it misses the L1 cache and is waiting for data to arrive fromrltevels of cache
or memory. Naive expectations might lead one to believe that the loads tlwatrédor most of

the misses, the Delinquent loads, will account for most of these commit stallsthiB need not
necessarily be the case, and a comparison between the loads accoomtiogniit stalls and the
delinquent loads, shows only a partial overlap. This can be obsemvedHigure 5, which shows

PERFORMANCEORIENTED PREFETCHINGENHANCEMENTS USING COMMIT STALLS

100.34 570.99

70

60

50

%IPC Gain

@ < 2 < @ R S
55 & & < @g‘ &2 B 5

Benchmark

Figure 4: Gain in Performance for Instant Replacement over Baseline.

Benchmark

Figure 5: Relation to Delinquent Loads: Overlap between Loads accguwotirb0% of stalls and
50% of misses.

the number of static loads that account for 50% of misses, the number oflstaifcthat account
for 50% of load commit stalls and the overlap between them. When more thanetinguegnt
load miss happens in parallel, the oldest miss is held responsible for the conlisiisththe later
delinquent loads might not get counted as part of LIMCOS. The laclpeffect match between the
delinquent loads and the LIMCOS loads can be attributed to the effectsrabljed_evel Parallelism
(MLP) [14]. Focused Prefetchingsing Classifiers will identify all these overlapping loads one
after the other (from the oldest to the youngest) and will eliminate the stallsredfiby them.
Initially Focused Prefetchingyill target the oldest among the overlapping loads and will try to
remove stalls experienced by it. On addressing the stalls seen by the oltbghi® second oldest
among the overlapping loads will now contribute to many commit stalls and hendeevlassified
as LIMCOS. Hence the claim above that overlapping loads will be adeltesse after the other.

3. Classifiers

In this section, we discuss the rationale behind the design of our classiiedssequently, we
propose two types of classifiers and evaluate their effectiveness itifyaegn LIMCOS.

MANIKANTAN & GOVINDARAJAN

¢ Stall Cycles
Stall Cycles
NSl Stall Cycles > Min Stalls
Total Load Stall Count [1==============<
' YES/Increment
¥ H PC Tag Saturating Counter
PC Tag Per-PC Stall Coun| H
4 LOAD PC
LOAD PC H
v '’ bits Counter Value
per-PCStall> 7 L peeeeeeeed > O
......... > = '
(Threshold ¥ p====== ' Mn-1)
Total Load Stall
No | H No
Yes E H Yes
LIMCOS Non!UMCOS LIMCOS Non™LIMCOS
Per PC Stall Table (PPST) Per PC Stall Table (PPST)
(a) Counting Classifier (b) Confidence Based

Figure 6: Classifier Organization.

3.1. Rationale Behind Classifiers

Figure 1 indicates that loads account for most of the commit stalls, while FRytwether shows
that only a few static loads account for most of the commiit stalls. Taking theaets fogether, we
conclude that a few loads should suffer commit stalls frequently. We makefubis fact to design
simple history based classifiers that can identify loads causing a signifie&tipn of commit
stalls. We propose two types of classifier§@unting classifiewhich uses counters to keep track
of the absolute number of stalls experienced by each load &whfidence based Classifjevhich
approximates the counts using confidence counters.

3.2. Counting Classifier

The Counting Classifier works by keeping track of the stalls experiengebebindividual loads.
Any load that has accounted for more than a certain fraction of total stalhsssefar is classified as
one stalling frequently. Figure 6(a) illustrates the key structures andglaiaation of the counting
classifier. There are two main operations associated with any classifietpdate where the
classifier needs to be updated when a load incurs commit stalliSlassification where for a given
load, the classifier needs to decide whether or not it belongs to LIMCOS.

As can be seen from Figure 6(a), the classifier is an array of courtaliied Per PC Stall
Table(PPST), which is tagged and indexed based on load POpéateis performed when a load
that has stalled at the head of the ROB for a few cycles commitsUpdateoperation requires
the knowledge of the load PC and the number of cycles of stall incurred lydiéxing based on
load PC is common to bottipdateand Classificationoperations. The operations that are specific
to Updateare shown in the shaded region of Figure 6{#)datesare carried out only if the number
of stall cycles encountered is greater tidim Stalls a design parameter of the classifier specified
in terms of number of processor cycles. This helps to reduce the numlestrads required in
the classifier and to avoid updates from loads that do not experierqpeefrestalls. In case of the
stall cycles incurred by the load being abdvn Stalls it is added to the PPST entry of the load
(identified by the PC) and is also added to the global counter which indicatéstéh commit stalls
caused by loads. In case the load in question is not being tracked by #sifiela a new entry

PERFORMANCEORIENTED PREFETCHINGENHANCEMENTS USING COMMIT STALLS

is allocated in the PPST to track the stalls experienced by the load. LRU rematés used to
identify the candidate for replacement in the classifier.

The Classificationprocedure should indicate as to whether a load belongs to LIMCOS or not.
The dotted lines in Figure 6(a) show the steps involvedlassification TheCounting Classifigras
mentioned above, is indexed using the PC of the load. If the load in questiohliging tracked by
the classifier currently, it is classified as non-LIMCOS. Otherwise, thetibbelassified as LIMCOS
if the stall cycles in the corresponding PPST entry accounts for more tfi&reaholdfraction of
the total stalls caused by the loads. Thus the counting classifier has twogtars, namelyvlin
StallsandThreshold

The design with a single global counter tracking the commit stalls caused by dtiats can
affect the efficiency of the classifier as new entries in the PPST will rgmteslassified as LIMCOS
due to the high value of the global counter. To overcome this, we clear thalglounter and all
the PPST entries periodically. This period is set as 1 million cycles for all thelaiions carried
out in this study. Also we wait until a reasonable amount of history is gadhmstore we make any
attempts at classifying a load. This value is fixed as 10,000 load stall cydiesefficiency of this
design, in terms of impact on performance, is discussed in detail in Section 5.3.1

3.3. Confidence Based Classifier

The Confidence Based Classifisran approximation of the mechanism behind @wainting Clas-
sifier. The organization of th€onfidence based Classifigr illustrated in Figure 6(b). The key
difference is the use of saturating counters in PPST instead of countiragtied number of stalls
experienced by each load. We used 5 bit saturating counters in eadhdPR® AnUpdate in-
dicated by the shaded region of Figure 6(b), involves incrementing thigddeone counter for a
given load if the stall cycles caused by it is greater théin Stalls The PPST is indexed using
the load PC and the replacement of existing entries, if required is carrteasimg LRU policy,
as in the counting classifie€lassification indicated by dotted lines, classifies a load as LIMCOS
if the counter value is more than half of the maximum value. In the following sextion will
see that our proposed scherRecused Prefetchingttempts to eliminate commit stalls suffered by
the LIMCOS loads. If the attempt is successful, LIMCOS loads will staringeewer and fewer
commit stalls. Yet they should still be classified as LIMCOS. Hence we doelice the counter
value if the load is classified as Non-LIMCOS. The classification mechanés®adoon observing
the confidence value also eliminates the need for the global counter whichsisnp inCounting
Classifier

While the basic principle behind the working of both the classifiers is the samies die a
few differences between the classifier designs. In the presenceuddd prefetching, which is
discussed in Section 4, the stalls suffered by a load identified as belongldi1@OS by the
classifiers will be eliminated to a greater extent. Thus the dynamic instancess stdltic load
might not incur commit stalls. Yet they still need to be identified as LIMCOS. Tmdidence based
classifier will classify these loads as LIMCOS (as there is no decremesandidence) and will
enable focused prefetching. The counting classifier, on the other hagid not classify future
instances of this load as frequently stalling as (i) the commit stalls are remoeetb dacused
prefetching and (ii) other loads might add to the overall stalls caused by kadl theThreshold
might not be met over a period of time. For small saturation values, the cooédmsed classifier

MANIKANTAN & GOVINDARAJAN

‘ = Overall Accuracy B Accuracy B False Positive ‘

Accuracy

Benchmark

Figure 7: Accuracy of Counting Classifier: 32 Entries, Min Stalls 16 cydieseshold 1/32.

can learn faster and will be able to make classification decisions earlier cednjpathe counting
classifier. The key characteristics common to the design of both the clasaifger

e The tracking of commit stalls is an operation already supported in the pmse3se classi-
fiers need to be updated only when loads suffer commit stalls.

e The update of the classifier can be kept entirely off the critical path

¢ As the classification decisions are based on PC of the load instruction,dhdyednitiated
much earlier in the pipeline, once the PC is known.

3.4. Evaluating the Classifiers

In this section, the classifiers are evaluated on the basis of their ability toadelguidentify LIM-
COS and non-LIMCOS loads. The machine configuration used for tixpsgiments are presented
in Table 1. No prefetcher is used during these studies. The ability of theifetes to identify cor-
rectly the loads accounting for 50% of the load commit stalls, LIMCO3i&8tudied. The criteria
used to judge the performance of the classifiers aré\{@rall Accuracy The fraction of dynamic
loads that are identified correctly as either belonging to LIMCOS-50 ox(iipt.IMCOS Accuracy
The fraction of LIMCOS loads that are classified accurately. Failse Positive RateThe fraction
of non-LIMCOS loads that are wrongly identified as belonging to LIMCOS.

Figure 7 shows th®verall Accuracy, LIMCOS accura@ndFalse Positive Ratéor the Count-
ing Classifierdesign used in the rest of this study. The overall accuracy is 94.4% aveaage for
the set of 17 memory-intensive benchmarks. Further the LIMCOS aocigalso high, (84% on
an average), and the false positive rate, on an average, remainsnabgololn our experiments,
theMin Stallsis kept at 16 cycles fo€ounting Classifieand 32 cycles foConfidence Based Clas-
sifier to enable theCounting Classifieto learn quickly as the counters in the PPST are cleared
periodically after every million cycles.

Figure 8 shows th®©verall Accuracy, LIMCOS accura@ndFalse Positive Ratéor the Con-
fidence Based Classifidiesign used in the rest of this study. While the Overall Accuracy (84%) is

3. The trends observed were similar for LIMCOS-80, where loadewating for 80% of the load commit stalls are
treated as part of LIMCOS.

PERFORMANCEORIENTED PREFETCHINGENHANCEMENTS USING COMMIT STALLS

‘ [Owerall Accuracy B Accuracy B False Positive ‘

Accuracy

%)
©
o
S

Benchmark

Figure 8: Accuracy of Confidence Classifier: 32 Entries, 8 Way Aasige, Min Stall 32 cycles.

TRAINING STREAM TRAINING STREAM TRAINING STREAM
\ \ \ \ \ I CLASSIFIER I J J J J J
‘ PREFETCHER ‘
‘ PREFETCHER ‘ l i i

‘ PREFETCHER ‘

J J J J | TE'ECT%T;M |

PREFETCH ADDRESS pREFETCH ADDRESS PREFETCH ADDRESS
STREAM STREAM STREAM

(a) Current (b) Focused Prefetching (c) Feedback Directed

Figure 9: Focused Prefetching and other prefetch mechanisms.

slightly lower compared to th€ounting Classifierthe quick learning allows the confidence based
classifier to achieve high LIMCOS Accuracy of 90%. The flip side of thielglearning and the not
reducing the confidence values can be seen by the relatively highepfagive rate of 17%. The
interesting aspect to note is the reasonably high overall accuracy adhigihe classifiers in-spite
of using only 32 entries.

4. Focused Prefetching

Focused prefetching an application of the classifiers mentioned in Section 3.1.. Focused prefetch-
ing is a filtering mechanism that helps any prefetcher to focus more on missesehikely to have
a significant impact on performance.

Any existing prefetcher, as shown in Figure 9(a), is made up of three @oemps — the main
prefetching algorithm, the input to it which is normally a stream of misses andutpeitowhich
is a stream of prefetch addresses. The prefetching algorithm identéiegstin the input stream
and generates the prefetch stream which contains the addresses fiaato be accessed in the
future.

In Focused Prefetchinghe thrust is in filtering the training stream seen by the prefetcher. As
shown in Figure 9(b), given any prefetch algorithm, we use a classifi#teicthe training stream so

MANIKANTAN & GOVINDARAJAN

that the core of the prefetcher sees only the misses caused by LIMCEXS @ae of the two clas-
sifiers proposed in Section 3 could be used to implerReatised Prefetchingrhe rationale behind
this filtering is that, by definition of LIMCOS loads, eliminating the misses suffénethe loads
identified by the classifier will lead to lesser commit stalls and improved perfarenakiso seeing
only a part of the training stream, will allow the prefetcher to use its hardwesi@urces efficiently
and improve the accuracy of the prefetches. The improved accurdogesrerating prefetches in
response only to a subset of the misses translates into lesser numbeted wasfetches being
generated. This also alleviates the pressure on the memory and redunentbey traffic caused
by naive prefetchingFocused Prefetching oblivious to the underlying prefetch mechanism and
hence has a wide applicability.

An important aspect to consider Focused Prefetching thetiming of the Classificationre-
guests to the classifier. The outcome of @lassificationstep decides whether or not the miss will
form a part of the input stream to the prefetcher. If the prefetchersiscéated with a cache level
where the load PC information is available, fBassificationrequest could be made once a miss
is suffered. At caches closer to memory, where load PC information igggneot available [8],
the Classificationrequest has to be made earlier in the pipeline and the result has to begiszpag
along with the load request. As the classifiers are indexed based on loadePassification re-
guest could be made once the PC is known. In our simulations, the classificadioest is made
earlier in the pipeline, once the instruction is identified as a load.

A recent research in eliminating the harmful effects of prefetching andindg the maximum
benefit out of it isFeedback Directed Prefetching (FDP)1]. FDP, as shown in Figure 9(c), fil-
ters the prefetches once they are generated based on the prefetccgdimeliness and pollution
caused by the prefetcher. FDP achieves this by controlling the prefegeeel Further, FDP is are-
active mechanism and is oblivious to the importance of the misses eliminated bgtbieper. FDP
is orthogonal to Focused Prefetching and can complement our scheme ewénitsrperformance.

5. Results
5.1. Simulation Details

The simulation framework used in this study is built on top of sira-alphasimulator [15]. The
machine model and other relevant parameters are presented in Tablehlle¥s of cache has 32
MSHRS [16] out of which 16 are reserved for prefetches. Reguleesses are given priority over
prefetches. We used the early single simulation point [17] for all our simukatibine interval size
considered is 100 million instructions.

Most of the detailed evaluation is carried out for prefetching at the LBeza€or this purpose,
we consider a per-PC Delta correlation prefetcher built on top of Glolsbh Buffer (GHB) [8].
The prefetcher is made up of two structure§labal History Buffer which holds the most recent
misses in FIFO order and &mdex Tablevhich chains the misses that share the same characteristics
together. In this study, we use thralex Tabldo chain together misses that were caused by the same
load instruction. The per-PC delta correlation prefetching mechanisndetiagairs to decide the
prefetch addresses. When a miss occurs, the two most recent defiere(itiés between the 3 most
recent misses) are computed. The miss history is searched backwaedmdch with the delta
pair computed above. Once a match is found, for a prefetch degreesstithad in this study, the
next 8 deltas in the per-PC miss stream following the delta pair are used tmatgetiee prefetch
addresses. The prefetching mechanism of Delta correlation is used ashivis: to be one of

10

PERFORMANCEORIENTED PREFETCHINGENHANCEMENTS USING COMMIT STALLS

Fetch/Issue/Commit Width 8

ROB/LQ/SQ 128/32/32 Entries

Int ALU/Mult 6/2

FP ALU/Mult 6/2

Branch Predictor 21264's Predictor, 32 Entry RAS

Memory Hierarchy L1 DCache - 32KB, 4 Way , 32 Byte linesize, 1 cycle

Unified L2 - 1MB, 8 Way, 64 Byte linesize, 12 cycle
All the caches have 32 MSHRs

12}

Memory Latency Minimum 225 cycles
Prefetcher At L2 - 512 Entry 16 Index GHB Per PC Delta Corre-
lation
512 Entry 256 Index was also evaluated for Baseline
Prefetch Degree 8
Counting Classifier 32 Entries, Lower Limit 16 and Threshold 1/32
Confidence Classifier 32 Entries, 8 Way Associative, Lower Limit 32

Table 1: Machine Configuration.

the best performing prefetch algorithm[8]. Though we evaluated facpssfetching with a GHB
containing 16 Index table entries (capability to chain together miss streamafd$), as we focus
only on a small set of PCs, for fairness, we compared it with a naivefoledr that uses a GHB with
256 index table entries. The classifier configurations opted for heth@i@nes that are evaluated
in Section 3.

207.55

mB-16
W B-256
H Count
M Conf

%IPC Gain

art
mef 4
twolf 4

pr
Avg

o o
o o
> >

ammp 4
applu
bzip
galgel -
lucas
mgrid
parser -
swim

equake 1
facerec
wupwise

Benchmark

Figure 10: Performance gains of GHB with PC-Delta Correlation and feacBsefetching over a
Baseline with no prefetcher.

5.2. Performance and Traffic Gains with Focused Prefetching

In this section, we study the performanceraicused Prefetchingrhen applied to a GHB based
per-PC delta correlation prefetcher which tracks L2 misses and bringsefetched data into L2.

11

MANIKANTAN & GOVINDARAJAN

Figure 10 shows the improvement in IPC obtained by focused prefetchohgave prefetching
over no prefetching. In this figure, B-16 and B-256 stand for baselieetching with 16 and 256
Index Tableentries in the GHB respectively. Results are showrHmused Prefetchingsing both
the classifiers discussed in Section Bocused Prefetchingses anindex Tablewith 16 entries.

It can be observed that in most of the benchmaFksgused Prefetchingesults in performance
improvement over no prefetching and naive prefetching (baselinetphéfig). On an averafje
Focused Prefetchingvith Confidence Based Classifiegsults in an IPC gain of 37.2% over no
prefetching and 9.8% over naive prefetching (B-256). Between thédemce based and counter
based classifiers, the confidence based classifier results in a highgaif This can be attributed
to the relatively higheLIMCOS Accuracyf the confidence based classifier as shown in Section 3.
Also the gain in IPC over B-16, 8.6% usit@pnfidence Based Classifiand 7.3% usin@ounting
Classifierindicates that intelligent filtering carried out Bpcused Prefetchings better than any
naive filtering achieved by having lesser numbelnafex Tableentries.

Benchmarkdwolf andvpr gain very little improvement in performance with any prefetching.
In lucas, mcf, mgrid, swirandwupwisethe effect ofFocused Prefetchingver naive prefetching is
significant. On the other hand, in benchmarks Blpplu, equakendfacere¢ Focused Prefetching
suffers minor performance degradation compared to naive prefetdbapgcially infacereG where
focused prefetching is relatively unhelpful, focusing on the PCs identifyethe classifiers results
in a decrease in the number of prefetches by 83% and the number of pif&iches is brought
down by 75%. This results in a drop in the performance compared to nafetghing.

Figure 11 shows the reduction in the number of prefetches generatéachged Prefetching
compared to B-256. On an average, for the confidence based clashdgi@mumber of prefetches
generated goes down by 50% while the number of useful prefetchesigam by 26.3% (not shown
in figure). In spite of this reduction in the number of prefetches, focusimtipe loads in LIMCOS
leads to a 9.8% gain in performance over naive prefetching. This cortfierisenefits of focusing
on the LIMCOS loads. Using the counting classifier results in a performgaiceof 8.3% over
naive prefetching despite the fact that the number of prefetchesajedavent down by 52.4%.

The other intended benefit of focused prefetching is the improved abilityata keends in the
filtered miss stream and generate more useful prefetches. We use the Pnefeich Accuracy
which is defined as the fraction of useful prefetches among the totadtphefs generated [11].
The gains in accuracy over B-16 and B-256 @wunting ClassifieandConfidence Based Classifier
are shown in Figure 1Zocused Prefetchingpads to a 61% improvement in the prefetch accuracy
compared to naive prefetching. All the benchmarks, even those Whetsed Prefetchindid not
result in a major gain in performance, showed a gain in accuracy aslaagtsmployingFocused
Prefetching

Accuracy in prefetching and focusing on a subset of misses leadsdaoetia in the number of
wasted prefetches, thereby saving valuable memory bandwidth. Figat®®3 the reduction in the
memory traffic measured in terms of the number of bytes transferred. It igtampdo consider the
entire traffic rather than just the prefetch traffic as the pollution effecpsefetching can increase
the miss traffic. The average reduction in memory traffic experienced i%2@s8g the confidence
based classifier and 20.2% using the counting classifier. All the benchmslaokved a reduction in
the memory traffic on employingocused Prefetchingll the results together indicate that focusing
on the small set of LIMCOS loads is beneficial to performance. In sltodused Prefetching

4. \We use arithmetic mean in this paper, unless specified otherwise.
5. prefetches servicing a demand access.

12

PERFORMANCEORIENTED PREFETCHINGENHANCEMENTS USING COMMIT STALLS

120

M= ~ o e |
@ Count/B-256
H Conf/B-256

%Reduction in Prefetches Generated

1 o
> >

Benchmark

Figure 11: Reduction in the Number of Prefetches Generated by FoPustdching.

160.06 201.26
125

@ Count/B-16
H Count/B-256
Il Conf/B-16

Il Conf/B-256

105

85

65

45 —

25

Accuracy Gain over Naive Prefetch

art
gap
gcc

T T T T T T T T T T T T T T

o = o @ 3 = @ b7 =] 5 = 5 @

£ = IS £ 3 S 8 2 5 & £ S s 2 2

£ =3 = = 3 S = E 8 @ - g

< g 8 a 5
Benchmark

Figure 12: Improvement in prefetch accuracy due to Focused Prifgtch

60

50

a0

E Count/B-16
B Count/B-256
B Conf/B-16

30 I Conf/B-256

Reduction in Memory Traffic

Swim
twolf
wr
Ay

S S
> >

ammp
applu

Wupwise

Benchmark

Figure 13: Reduction in Memory Traffic by employing Focused Prefetching

enables one to eliminate the misses that matter and achieves more performairbeebgf more
relevant prefetches.

13

MANIKANTAN & GOVINDARAJAN

[Count/B-16
Il Count/B-256
[l Conf/B-16
[Conf/B-256

%IPC Gain over naive prefetching

T T T T T T T T
apsi crafty eon gzip mesa perl sixtrack vortex Avg
Benchmark

Figure 14: Gain in performance with Focused Prefetching for bencremartdiscussed in detail.

For completeness, we also show the performance gains experiendée fe@maining bench-
marks, excepfma3dwhich did not run in our framework. The gains in performance over B-16
and B-256 by employing focused prefetching are shown in Figure ldpdinFocused Prefetching
results in an IPC improvement of nearly 7%. Only twafty andeon there is a marginal perfor-
mance degradation (less than 1%) compared to naive prefetching. Ore@ye, for all the 25
benchmarks, the gain in performance over naive prefetching is 7%ofdidence based classifier
and 6% using counting classifier as shown by the last set of bars in Higui€or the entire set of
25 benchmarks, the memory traffic reduces by 22.8% for confideneel lstassifier and by 23.3%
for counting classifier. The interesting thing to note is that even in benclstfzakare not sensitive
to memory performance, there is a substantial reduction in memory traffic bipyimgpFocused
Prefetching

5.3. Classifier Design

The criterion used by counting classifier to classify aload is same as theed¢odefine LIMCOS,
while confidence based classifier provides an approximation of the samhtheBconfidence based
classifier is more suited to a hardware implementation. While the confidencedbassifler design
performed as well as the counting classifier, the former can be thougbttbé ideal design choice
for hardware implementation only if it manages to perform as well as the b&strming counting
classifier. In order to establish this, we study the design space of cowhsxgifiers.

5.3.1. Classifier Parameters

Performance of the counting classifier is dictated not just bsides but also by the other two design
parameterdjmit andthreshold described in Section 3. We give a brief description of the three im-
portant parametersizedetermines the number of entries in the classifini sets the lower limit

for a commit stall to cause an update in the classifiertarasholdis used in the classification step
to specify the fraction of total stalls a load should have accounted for ttabsifted as LIMCOS.
Though the parameters are used for different purposes in a classidar be seen that they are not
totally independent. For instance, with a higher valuesfae limit can have a lower value without
affecting the ability of the classifier adversely. Similarly, a higher valudirfait, for instance, will
mean that the classifier sees a lot less stalls duringytidatestep. This in turn might allow even

14

PERFORMANCEORIENTED PREFETCHINGENHANCEMENTS USING COMMIT STALLS

Parameter Range of Values

Size 16, 32, 64 Entries

Limit 8, 16, 32 Cycles

Threshold 1/8, 1/16, 1/32 of Tota
Stalls

Table 2: Counting classifier design space.

32/¢ -
16/3216

16/32/32 - I
32/8/8 -

32

32/3216 -
32/32/32

64/8/
/
32

'y
64/32/16 -
64/32/32 I

XX X = T 2 L X2 - T L2 L XL = T D2

6
16
6
/

IPC (GeoMean
O OO0 O o O
ool oo
O N®O® OO AN
16/8/ - I
/16 I
8/32 I
16/8 I
6/16 I
6/32 I

1
6
16/
16
3
3
3
2/
2
KY)
64
64
64
64/
64/
64

Size/Limit/ Threshold

Figure 15: IPC Gain for various classifier designs.

higherthresholdvalues to be satisfied durir@assification We varied the three design parameters
associated with the counting classifier and studied their effect on thegpnggerformance. Three
possible values were considered for each of the parameter resultingamfiurations. The values
considered for the study are shown in Table 2.

Figure 15 showithe geometric mean of IPC for the memory-intensive benchmarks for the var-
ious configurations of the counting classifier. Increasing the size otdlsifier helps in improving
performance. In comparison, the paraméimit has less of an impact. The impact lohit on
performance is higher at smaller classifier sizes like 16 entries than at izgs like 64 entries.
This is along expected lines as in a majority of the benchmarks, a few loaoigrador most of the
commit stalls and the classifier uses a LRU replacement policy in PPST. Thetiofghceshold
remains significant across various classifier sizes and for diffesgnés oflimit. In general, for a
given classifier, the best performance is obtained by a higher vallienfoduring theupdateoper-
ation and by relaxing théhresholdvalue during theclassificationstep. The other interesting thing
to note is that by appropriately adjusting it andthreshold as mentioned above, the impact
of sizeon performance can be made minimal. This can be observed from the fawittna limit
of 32 andthresholdof 32, there is only minimal difference between the performance of classifie
containing various number of entries.

5.3.2. Data Retention in Classifier
The other design decision taken with respect to the counting classifierg &f ttiaaring the clas-
sifiers every million cycles to avoid retention of stale data. In the absenagbfasclearing, with

6. The a/b/c labels shown along the X-axis in Figure 15 give the valuegtmrlsnit and (1/Threshold) respectively.

15

MANIKANTAN & GOVINDARAJAN

B NoClear [0 ReduceOnReplacement [Clear
0.64

Shidstall gl

0.48
16/8 16/16 16/32 32/8 32/16 32/32 64/8 64/16 64/32
Size/Threshold

IPC (GeoMean)

Figure 16: Stale Data in Classifier: Comparing the various alternativesfetedif design points.
The parameteimit is fixed at 32 cycles.

a fixed value for threshold, the absolute number of commit stalls a load shawdduffered to
be classified as LIMCOS keeps increasing steadily with émateoperation. This will result in
prefetch opportunities being ignored. This section shows that clearirgiassifier entries periodi-
cally gives the best possible performance.

We considered three possible design choices for the classifier:

e Clear. This is the scheme used so far, in which the PPST is cleared after a fixeedalnte
(2 million cycles in the study). The interval size didn't make much of a diffegetocthe
performance unless it was too low or too high.

e NoClear In this design, the contents of classifier are modified only through/aateoper-
ation of the classifier.

¢ ReduceOnReplacemerits the total stall cycles suffered by each load tracked by the classifier
is associated with the PPST entry allocated for it, the global stall count ceudddremented
on each PPST replacement by bringing the counter value down by theysfiek stored in
the replaced PPST entry.

The difference in performance gains betwé&daar andNoClearcan be used to observe the effect
of stale history in the classifiersReduceOnReplacemenn the other hand lets the classifier to
make theClassificationdecision only based on the current contents of the classifier. Oncdrgn en
in the PPST of the classifier gets replaced, it stops influencing the fGtassificationdecisions in
ReduceOnReplacement

Figure 16 shows the performance of the various retention schemesaatsvpoints in the clas-
sifier design space determined by the three parameter$ize,, Limitand Threshold As limit had
the least impact among the three parameters discussed in the previous, deditimprove read-
ability, we fix limit at 32 cycles while varying the other two parameters through the set dbfgoss
values listed in Table 2. The graph in Figure 16 shows the geometric meaiC dbiRhe set of
17 memory-intensive benchmarks. The key observations that can beamad@ Not clearing the
stale entries in classifier, as is doneNnClearaffects the potential performance gains, as can be

16

PERFORMANCEORIENTED PREFETCHINGENHANCEMENTS USING COMMIT STALLS

seen from the fact that it is the worst performing configuration of all.(ii) Veitarger classifier, the
impact of retaining all the history is mitigated to an extent.(iii) The configuration asddr in the
paperClearis the best performing configuration of all.

The gains ofClear overReduceOnReplacemartuld be attributed to the following reasons: (i)
some of the stale entries which have seen a lot of stalls might take longer &ptgted from the
classifier (ii) during some relatively stable sections of execution, the totld s&en so far might
reach high enough values that it might be harder to meet the criteria to Isffiethss LIMCOS.
This is further substantiated by the fact that relaxing the threshold valuewepthe performance
of ReduceOnReplacement

The impact ofsizeandthresholdremain similar to what was observed for {G&ear configura-
tion in the previous section. Though not shown here, the impdohdfwas higher for thé&NoClear
configuration especially when the classifier had lesser number of ertsesit is be noted that, the
configuration used so far in the paper is relatively more oblivious to theifilxsdesign parameters
compared to the other schemes. Also periodic clear enables even smabédreckato perform as
well as larger classifiers usimgpClearor ReduceOnReplacemesghemes. To summarize, the best
possible counting classifier design was adapted in this study and the ability odfidence based
classifier to match its performance indicates that using a simpler design @urditbased classi-
fier) or a smaller sized classifier (counting classifier with just 16 entrigsyesult in significant
performance gains in performance and reduction in memory traffic.

5.4. Relation to Other Criteria

In this section, we present quantitative comparisons with two of the mostyletated criteria for
Focused Prefetchingiz., criticality [12] anddelinquent load$13].

5.4.1. Criticality

Critical loads are defined as the loads that together with other critical itismaalecide the overall
execution time of the program. Earlier work has attempted to tailor prefetchivegrszs targeting
critical loads [18]. The implementation was dependent on a set of heutikédsad leading to a
load miss or branch misprediction and measuring the number of instructiond efterethe load to
identify the critical loads. However, such works report a significard loperformance compared to
naive prefetching for the L2 cache. For the purpose of this study, &rdifg critical loads using the
much rigorous criteria of criticality suggested by Fields [12]. The methodgbwggosed in [12]
works by constructing a graph where the edge weights are the delayddduwy an instruction at
various stages in the pipeline waiting for true dependencies and resmunsieaints to be resolved.
The longest path in this graph, known as the critical path, accounts famtive execution time.
Any delay to instructions in the critical path, the critical instructions, will add &dkecution time
of the program.

During simulations, we observed that instead of focusing on critical Idaddling both hits
and misses), it is better from a performance point of view to focus on ttie ktads that account
for a large fraction of the critical misses. This is a subtle but significanémdiffce compared to
the earlier work. Thus, to implemehRbcused Prefetchingith criticality as the criteria, we use the
definition of Fields [12] to identify a set of static loads that account for robsite critical misses
suffered at L2 cache.

17

MANIKANTAN & GOVINDARAJAN

@ Gain over Criticality B Gain over Delinquent

60
50
40

30
20
10 I
)
-10
-20

%Gain in IPC

|

art
gap
gee
mef-
Avg

ammp
applu -
bzip 4
equake 4
facerec -
galgel -
lucas
mgrid
parser
swim
wupwise |

Benchmark

Figure 17: Performance Gains of Focused Prefetching over Criticalitypafinquent Loads.

5.4.2. Delinquent Loads
Section 2 showed that there is a partial overlap between delinquent t2dsnd LIMCOS.

5.4.3. Performance Comparison
As critical loads are identified accurately using an off-line analysis,dwnéss and accuracy pur-
poses we do not use a dynamic classifier and use profile runs to identifyattie matching the
various criteria. The profile and actual runs use the same input datar@mdrafor 100 million
instructions at the simulation point [17]. The machine configuration used jprdiide runs is same
as the one shown in Table 1. However, no prefetcher is used in the puofdeFor each benchmark,
we identify the set of static loads that account for 50% of commit stalls(LIEB&0). An equal
number of static loads that account for most of the critical L2 misses arédalstfied. Similarly,
one more profile run is used to identify an equal number of delinquent.ldedocused Prefetch-
ing in this case eliminates the misses suffered by the static loads identified aboha;fess, it is
imperative to consider same number of loads for different criteria. LINSESD is used to determine
the number of loads as the criterion of commit stalls required the least numlzerdsfto achieve
50% coverage. We implementédcused Prefetchingt L2 cache to focus and eliminate the misses
suffered by these set of static loads identified using the three diffetiggria. The prefetcher used
is the same prefetcher considered so far in the study

Figure 17 gives the performance improvement achieved by commit stali@nit@rer the other
two. On an average, the gain in performance for commit stall based fbpustetching over criti-
cality based focused prefetching is 4.6% while the gain over delinquenbbxset! focused prefetch-
ing is 4.2%. Though there are a few benchmarks, where either criticalitglimodient loads seems
to be the better criteria, in a majority of the benchmarks, focusing on commit stadksthe maxi-
mum benefit. The only exception seems tdumaswhere the profile based identification of commit
stalls is not as efficient as other criteria. Butuicas the classifiers perform well at run time as less
than 10 loads account for 95% of the commit stalls, resulting in an IPC gaib.6¥%2over B-256.

5.5. Different Prefetchers and Cache Levels

We applyFocused Prefetchingp L1 Data Cache by filtering the training stream seen by a stride
prefetcher. This also allows us to study the effectivenedsoofised Prefetchingvith a different

18

PERFORMANCEORIENTED PREFETCHINGENHANCEMENTS USING COMMIT STALLS

100 [@ Conf/B-16 M Conf/B-256 ’7
80 —

60

40 —

e |

-40

9%IPC Gain

-60

ammp
applu
apsi
art
bzip
crafty -
eon
equake
facerec
galgel -
ga|
gec
9zip
lucas
mef -
mesa
mgrid 4
parser
perl
sixtrack -
swim
twolf -
vortex 1
pr -
wupwise
Avg

Benchmark

Figure 18: Performance Gains provided by Focused Prefetching at L1

prefetch algorithm. The stride prefetcher has a per-PC stride detectidgranmism and a confidence
mechanism of waiting for the same stride to appear more than once in suacksfice issuing
prefetches. The prefetch degree is set at 8. Some of the recerg mogrefetching have used the
stream buffer [6] as one of the prefetch mechanisms. We opted for ttle ptefetcher instead of
stream buffer as research shows that the performance of streéenibyfroves by using a per-PC
stride [3] or Markov prefetcher [19] along with it. The delta correlatioadictor used earlier can
be thought of as an approximation of the Markov predictor [5].

We studied~ocused Prefetchingith a confidence based classifier for the L1 cache. The perfor-
mance gains over naive prefetching with an ability to track 16 per-PC Stndk25%6 per-PC strides
are shown in Figure 18. For the set of 25 SPEC benchmaitksre is a 11% gain in performance
over B-16 with a 2.3% reduction in memory traffic. In a significant numbereaichmarks (10 out
of 25), there is at the least 5% improvement in IPC over naive prefetchiigcasandmgrid, the
gain in IPC is more than 70%. Compared to the more aggressive B-256 GlgalR is reduced and
is only 1.2%. Nonetheless, there is a gain over the naive prefetcherantetinory traffic reduces
by 8.2%.

5.5.1. Global History Based Prefetching
An important class of prefetchers for which the applicabilityf@e¢used prefetchingeeds to be
studied is the global history based prefetchersfBtused Prefetchingorks by filtering the history
seen by the prefetch algorithm. While filtering the training data on the basis of ited to Per-
PC history based prefetchers that have been studied so far in the fiagar potentially have
negative impact on the performance of global history based prefetchamisms. Global history
based prefetchers rely on the regularity that is present in the unfiltersdstnéam seen at a cache
level. Filtering out a part of history might result in a loss of useful cotreteinformation in a global
history based prefetcher. To study the suitability of focused prefet¢hisgch global history based
mechanisms, we apply it to the global history based variant of the deltdat@neprefetching [8].
An application of classifiers that might be more suited in this case is filteringejéfohes
once they are generated by a global history prefetcher. Figure 1@dijates conceptually the
organization of prefetcher and the classifier to achieve filtering of ftefs. As can be seen from

7. The full set of 25 benchmarks is used as all of them are sensitivé tathe misses.

19

MANIKANTAN & GOVINDARAJAN

TRAINING STREAM TRAINING STREAM

CLASSIFIER
PREFETCHER
CLASSIFIER

‘ PREFETCHER
A

PREFETCH ADDRESS PREFETCH ADDRESS
STREAM STREAM

(a) Focused Prefetching(b) Filtering Prefetches

Figure 19: Global History Prefetchers: Focused Prefetching andy udassifiers to filter the
prefetches.

B Focuse: d B Filtering

18

T | |

s -Jrl_- N m
N &

%IPC Gain
o
w

N

Figure 20: Global History Based Prefetching: Performance gains @otéiy focused prefetching
and filtering, applied to global history prefetchers, over unmodifiedlinesgrefetcher.

Figure 19, the classifier in the case of filtering is positioned after the phrefdgorithm, at its
output, unlikeFocused Prefetchingvhere the classifier is positioned before the prefetcher. Hence,
the prefetcher, in the case of filtering, sees all the training data and dbdsse out on useful
correlation information. The classifier is used to decide when to triggeefoteds. In this case,
only misses suffered by loads in LIMCOS trigger prefetches.

We used a confidence based classifier for the purpose of this stuéycoHfiguration of the
classifier remains the same as in the previous studies. The prefetch metldmgjwbal history
based delta correlation was implemented on top of a GHB with 512 entries anibhd@56table
entries. A prefetch degree of 8 was used. Figure 20 shows the gaiiov& baseline unmodi-
fied prefetching for focused prefetching and filtering, both the schémglemented on top of the
baseline global history based delta correlation prefetcher.

On an average the gains obtained by both the schemes are similar, 4.6&kused prefetch-
ing and 4.99% for filtering over naive prefetching. While naive prefetgihesulted in IPC gains of
20.12% over no prefetching, focused prefetching and filtering acthi28el2% and 26.20% gains
in IPC respectively. The negative effects of filtering the history, asiedo focused prefetching, is

20

PERFORMANCEORIENTED PREFETCHINGENHANCEMENTS USING COMMIT STALLS

seen primarily irmmmp, applandfacerecwhich lose performance compared to naive prefetching.
However, there is still a gain in performance over no prefetching evethése three benchmarks.
The loss in performance fdacerecis on the higher side, where a reduction in the prefetch op-
portunities hurts the performance, similar to the per-PC history case distcaesslier. It is also
interesting to note that even filtering of generated prefetches affedtspance negatively in the
case offacerec Other benchmarks where filtering affects performance negativelygrie, parser
andvpr. While ammp appluandequakefavour filtering over focused prefetching, the situation is
reversed in the case hfcas swimandwupwisewhere significant gains are to be had by employing
focused prefetching even along with a global history prefetcher. Ohd@ewfocused prefetching
retains the advantages provided by it even in the case of global hisafgtgiters though the impact
is reduced in this case. Filtering generated prefetches using classiéfieondtrates yet another use
of classifiers to enable performance aware prefetching.

5.6. Focused Prefetching ifMulti-Cores

The evaluation carried out so far focused on the performance ofidudivapplications run in a
stand-alone fashion. But modern processors are multicore machines piithltysage scenario
consisting of multiple programs being run in parallel. In such a scenariogitiermance of shared
resources in the memory subsystem — caches, memory bandwidth — becmiaétorthe perfor-
mance.Focused Prefetchingan help in relieving some of the pressure on the memory subsystem
by improving the prefetch efficiency. Hence in this section, we evaluatecttiermance ofocused
Prefetchingn the context of multicores running multi-programmed workloads.

We use M5 [20] simulator to study the performance impadtafused Prefetchingn multi-
core$. We simulate quad-core machines running 4 benchmarks in parallel. Tiarbarks are
selected from SPEC2000 and SPEC2006 benchmark suites. We areichohg schemes were
other cores are used to prefetch data for the main thread (Helper tlaeddbe like) [21]. The
CPU and L1 cache parameters are same as that used in the rest of the Tragpd.2 cache in
this case is shared among the 4 cores. We simulate a 8MB 32 way associteehe for the
purpose of this study. The machine useslphalSA. Each core uses the same confidence based
classifier as the rest of the study. The Quad-core workloads used stubig are listed in Table 3.
We use harmonic mean speedup(SMT speedup) [22] to summarize thenperte of the multi-
programmed workloads. Harmonic mean speedup of N applications beiig parallel is defined
as N§_ (StandAlonel PC;/IPC;). HereIPC; is the performance of thé” benchmark in the
workload in terms of its IPC. StandAlonelPC is the IPC observed when tinehbeark is run alone.

The prefetcher in this study is situated at the shared L2 and we use &£RiHR correlation
prefetcher. All the programs were fast forwarded for 10 billion ingtauns, with the last 1 billion
instructions used to warmup the processor structures. We simulated eddbasdn detail for 2
billion cycles and report the observed performance. Figure 21 shansatmonic mean speedup
of naive prefetching anBocused Prefetchingormalized to that of a machine with no prefetching.
The naive baseline prefetching provides a speedup of 22% overefigtgiring (Geometric mean)
while Focused Prefetchingnproves the performance by 29% compared to no prefetching. In all
cases, except workload Q6, it can be seen that prefetching is behtfiperformance. In the case

8. The sim-alpha [15] simulator used in the rest of the study did not haveubport to evaluate multicores.
9. We observed similar performance trends with 2MB and 4MB caches.

21

MANIKANTAN & GOVINDARAJAN

Q1 (300.twolf, 256.bzip2, 183.equake, 482.sphinx3)

Q2 (178.galgel, 179.art, 471.omnetpp, 410.bwaves)

Q3 (434.zeusmp, 183.equake, 459.GemsFDTD, 470.lbm)
Q4 (462.libquantum, 187.facerec, 183.equake, 171.swim)
Q5 (183.equake, 482.sphinx3, 189.lucas, 470.lbm)

Q6 (470.lIbm, 168.wupwise, 171.swim, 300.twolf)

Q7 (179.art, 470.lbm, 183.equake, 171.swim)

Q8 (168.wupwise, 482.sphinx3, 171.swim, 470.lbm)

Q9 (178.galgel, 459.GemsFDTD, 471.omnetpp, 179.art)
Q10 (187.facerec, 179.art, 171.swim, 410.bwaves)

Q11 (471.omnetpp, 459.GemsFDTD, 301.apsi, 300.twolf)
Q12 (183.equake, 187.facerec, 171.swim, 470.lbm)

Q13 (300.twolf, 171.swim, 482.sphinx3, 459.GemsFDTD)
Q14 (459.GemsFDTD, 179.art, 183.equake, 470.lbm)

Table 3: Quad-Core Workloads.

of Q6, while benchmarks 470.lbm and 171.swim gain in performance, rpeaftice degradation
observed in the case of 168.wupwise and 300.twolf affects the harmoeédsp observed with
prefetching. This primarily happens as harmonic speedup also takes sdoradairness along
with performance gain [22]. In fact, with naive prefetching Q6 showsia gf 24.6% and 13.3%
over no prefetching when the performance is summarized using other migitisroughput [22]
and weighted speedup [22] respectively. Witbhcused PrefetchingQ6 shows 26.7% and 14.3%
improvement over no prefetching using throughput and weighted spemeétrics respectively.
For the entire set of workloads, naive prefetching improves perfoceaner no prefetching by
24.4%(Throughput) and 24.2%(Weighted-speedup). UBbwysed Prefetchinghe performance
improvement over no prefetching are 31.9%(Throughput) and 31.6%kiteel-speedup’’.

Similar to the case of single coreBpcused Prefetchingan benefit multicores too and pro-
vides an average (Geometric Mean) speedup of 5.7% over naive leapsdifetching in terms of
harmonic/fair speedup metric. In terms of other metrics like throughput anchteeigpeedup,
the gains provided by focused prefetching over naive baselinetphaig are 6.0% and 5.9% re-
specitvely (Geometric Mean). Significant improvement in performance isis@erkloads Q7 and
Q12, whereFocused Prefetchingnproved the performance of all the individual benchmarks that
constitute the workload. Noticeable gap in performance between naivieoanded Prefetchingg
seen only in the case of workload Q10 whé&amrused Prefetchingnproved the performance of
benchmarkd10.bwavest the expense of the other three benchmarks. To understand the perfo
mance benefits provided yocused Prefetchingve studied the number of prefetches generated
and the number of useful prefetches for naive Badused PrefetchingA prefetch is useful if the
cache block brought in by it is accessed at the least once beforedadatgd from the cache. Fig-
ure 22(a) shows that similar to the single core scenario, lesser numhefetighes are generated by
Focused Prefetchinglust as in the single-core scenafocused Prefetchingenerates highly ac-
curate prefetches, as can be seen from Figure 22(b), which shewsctiease in useful prefetches
for Focused Prefetchingompared to the naive baseline prefetching. WRdeused Prefetching

10. We report geometric mean of the observed speedup.

22

PERFORMANCEORIENTED PREFETCHINGENHANCEMENTS USING COMMIT STALLS

Naive mm Focused

14 ol el —

1.3 | Rl R R

12 R

1.1

Normalized Speedup

@, 09 Qe 07 Qs Oe (O)N Od, QD @ 0 0, 0, 0 G
Workload 0 7R %

Figure 21: Quad-Core: Harmonic Mean Speedup of Baseline (NarefgtPhing and Focused
Prefetching Normalized to that of No Prefetching.

80 = - 70
70 :_ ,,, _:
g’; E E 2 Ll e I
G B0 el — 5
2 E 3 B S0l
& B0l e — g
E 40 U NN DU DR = 3 Ol e
s TF 3 3
% KUN SRR [EEEEEEEEREEE EREEEEl B B B EEEEEEREEEE — 2 [:71}) “ N
(0] E E o
s 20F W= 000000 N = a
£ E E © 20l
d o E B
& OF g -4 ll N B BN AN l A o= a "0 0o
10 E ' N N N A I - 0
0 Q9 % G O Q0,0 00047, 0 Q9 O G O o, 0 00047,
v Workload 07 v v Workload 07 e e %
(a) Reduction in Prefetches Generated (b) Increase in Useful Prefetches

Figure 22: Focused Prefetching Vs Baseline — Whideused Prefetchingenerates lesser num-
ber of prefetches compared to naive prefetching, it generates mouease prefetches
which is reflected in terms of the increase in the absolute humber of usefetghes
experienced byocused Prefetching

generates 28% less prefetches compared to naive prefetching, liteexes 14.7% more prefetch
hits compared to the baseline prefetching scenario. Workloads Q7 andl@®2the maximum
speedup in terms of harmonic speedup metric. It is interesting to note that \ahilénghe work-
load Q7 comes from a combination of eliminating wasted/useless prefetckdsigsee 22(a)) and
additional hits due to more accurate prefetches(Figure 22(b)), warkpd® gains mainly due to
the additional hits(useful prefetches) generateédigused Prefetching

In essence, we show thBbcused Prefetchingcales seamlessly to multi-core scenario and can
help improve the performance of prefetchers attached to shared caches

23

MANIKANTAN & GOVINDARAJAN

6. Related Work

The works related to contributions made in this paper can be classified inéortijer categories:
tracking commit stalls, prefetching mechanisanslfiltering prefetches

6.1. Tracking Commit Stalls

Tracking commit stalls experienced by a program and treating them as aatordior the DRAM
performance of the system has been carried out in [Zjavengef24] makes an observation
that loads missing in L2 account for a significant fraction of stall time, whickirislar to ours.
While [24], focuses on the misses from an address point of view angestgycache structure
reorganization, we focus on the stalls from an instruction point of viewfaods on improving
prefetching performance with out any modifications to existing prefetchiesads blocking the
ROB often is also demonstrated in [25] and it proposes load speculation avihead stalls at
commit. In short, they use commit stalls to filter the load speculation that needs toriEz®ut.
But the major difference is the fact that they try to eliminate all the commit stallsrridise focusing
on a few or the instructions that account for a lot of them as is done in this wo

6.2. Prefetching Mechanisms

Global History Buffe{8] has been shown to be the most effective way to track misses and also pr
vides the flexibility to implement a variety of prefetching schemes on top of it. Egnefetching
mechanisms used sequential [4] or next-line prefetching, while Markedigtors for prefetching
proposed in [5] identified complex patterns in the miss stream. The populatgirielg scheme of
tracking multiple streams in parallel, stream buffer is proposed in [6]. Lagtesarch also showed
that it is profitable to use either a stride [3] or Markov prefetcher [19] wtteam buffers. Our
approach is oblivious to the underlying prefetching mechanism usededpsithy filtering the input
stream seen by the prefetcher to improve the accuracy and efficiency.

6.3. Filtering Prefetches

Not treating all the loads as equal, and focusing only on a few of them wgagpfoposed in [18].

A complex tracking mechanism and large prediction structures are usectdyidand predict the

criticality of a load in [18]. However their performance evaluation revealedrer performance
compared to naive prefetching at L2 and resulted in a loss in perforncangeared to no prefetch-
ing at L1. One of the criteria employed in [18] to identify critical loads is to measiue number

of instructions issued in a certain number of cycles following the issue ofch Ibéhe number of

instructions issued is below a certain predetermined threshold, the loadsgiethas critical. The

major problem with this approach of tracking at issue is the fact that thanigokeds to be carried
out for multiple loads in parallel and if one of them is critical enough to atfegissue, all the other
loads will get wrongly classified as critical.

In Feedback Directed Prefetching (FDIP)1], the filtering of the generated prefetches is car-
ried out based on the accuracy, timeliness and pollution caused by tieéchef The filtering is
achieved by controlling the prefetch degree of the prefetcher. Theanirh involved in throttling
the prefetchers are reactive and are not aware of the relative impaetrformance of the loads that
suffer the misses. FDP filters prefetches once they are generated wehiléewthe training stream

24

PERFORMANCEORIENTED PREFETCHINGENHANCEMENTS USING COMMIT STALLS

seen by the prefetcher. This allows FDP to complement our scheme withouegative effects.
More recent works use criterion similar to FDP to manage multiple prefetch@r27].

A static filter which enables prefetching for a set of loads has been gedpo [28]. Unlike
Focused Prefetchingt requires a profiling run and requires knowledge of the underlyiegepch
mechanism. Also the filtering criteria is not performance oriented but is detednbiy the regular
behaviour observed in the miss stream of a particular load, which might leaditoprovement in
the accuracy of prefetches.

A filter based on usefulness of the prefetches is proposed in [29]sdieme works by filtering
prefetches once they are generated on a per prefetch basis. LikéhiDdéheme is also orthogonal
to Focused Prefetching

7. Conclusions

This paper proposed prefetching enhancements that target the pirejesdforts on a small set
of loads incurring majority of commit stalls. This resulted in gains in performamekreduced
memory traffic over naive prefetching. To summarize, the key contributione fimethis paper are:

e We observe that close to 60% of the commit stalls are caused by loads aadsthall set of
loads, referred to as LIMCOS incur most of these stalls.

e We propose simple hardware structures calldaissifierswhich are entirely off the critical
path to identify the occurrences of the LIMCOS loads.

e We demonstrate an application of tldassifiersto improve the performance gains from
prefetching inFocused PrefetchingWe show that focusing prefetching efforts on LIMCOS
loads can lead to gains in performance, reduction in the memory traffic anovietpprefetch
accuracy.

e We demonstrate the performance benefits provide#&dmysed Prefetchingh a multi-core
scenario.

¢ We demonstrate another applicationGlassifieran the form of filtering prefetches in global
history based prefetchers.

e We also demonstrate that the criterion of commit stalls is better than other welhksrgeria
like criticality [12] and delinquent loads [13].

References

[1] A. Cristal, D. Ortega, J. Llosa, and M. Valero, “Out-of-order compnibcessors,” irHPCA
'04: Proceedings of the 10th International Symposium on High Perface&omputer Archi-
tecture (Washington, DC, USA), p. 48, IEEE Computer Society, 2004.

[2] J.-L. Baer and T.-F. Chen, “"An effective on-chip preloadingesuok to reduce data access

penalty,” in Supercomputing '91: Proceedings of the 1991 ACM/IEEE conferencguper-
computing (New York, NY, USA), pp. 176-186, ACM, 1991.

25

[3]

MANIKANTAN & GOVINDARAJAN

K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic, “Memsygtem design considerations
for dynamically-scheduled processors,”IBICA '97: Proceedings of the 24th annual inter-
national symposium on Computer architectuiew York, NY, USA), pp. 133-143, ACM,
1997.

[4] J. W. C. Fu, J. H. Patel, and B. L. Janssens, “Stride directee@fotafng in scalar processors,”

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

SIGMICRO News|vol. 23, no. 1-2, pp. 102-110, 1992.

D. Joseph and D. Grunwald, “Prefetching using markov predi¢tior$SCA '97: Proceedings
of the 24th annual international symposium on Computer architec{iew York, NY, USA),
pp. 252-263, ACM, 1997.

N. P. Jouppi, “Improving direct-mapped cache performance by daéian of a small fully-
associative cache and prefetch buffers, 1SCA '90: Proceedings of the 17th annual inter-
national symposium on Computer Architectudew York, NY, USA), pp. 364-373, ACM,
1990.

K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith, “Ac/dc: An adaptista cache prefetcher,”
in PACT '04: Proceedings of the 13th International Conference on Pdraliehitectures
and Compilation Techniqueé/Nashington, DC, USA), pp. 135-145, IEEE Computer Society,
2004.

K. J. Nesbit and J. E. Smith, “Data cache prefetching using a glabtry buffer,” inHPCA
'04: Proceedings of the 10th International Symposium on High Perfan@&omputer Archi-
tecture (Washington, DC, USA), p. 96, IEEE Computer Society, 2004.

Z. Wang, D. Burger, K. S. McKinley, S. K. Reinhardt, and C. C.aNes, “Guided region
prefetching: a cooperative hardware/software approachS@A '03: Proceedings of the 30th
annual international symposium on Computer architect(idew York, NY, USA), pp. 388—
398, ACM, 2003.

R. Cooksey, S. Jourdan, and D. Grunwald, “A stateless, ctdisgcted data prefetching
mechanism,” irProceedings of the 10th international conference on Architectural i or
programming languages and operating systeABPLOS-X, (New York, NY, USA), pp. 279—
290, ACM, 2002.

S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed gtafing: Improving the
performance and bandwidth-efficiency of hardware prefetcher$JPCA '07: Proceedings
of the 2007 IEEE 13th International Symposium on High Performancep@tanArchitecture
(Washington, DC, USA), pp. 63—74, IEEE Computer Society, 2007.

B. Fields, S. Rubin, and R. Bdd “Focusing processor policies via critical-path prediction,”
SIGARCH Comput. Archit. Newsol. 29, no. 2, pp. 74-85, 2001.

J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee, Dvéry, and J. P. Shen, “Specu-
lative precomputation: long-range prefetching of delinquent load$3GA '01: Proceedings
of the 28th annual international symposium on Computer architec{iewv York, NY, USA),
pp. 14-25, ACM, 2001.

26

PERFORMANCEORIENTED PREFETCHINGENHANCEMENTS USING COMMIT STALLS

[14] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A case for rdware cache replace-
ment,” in ISCA '06: Proceedings of the 33rd annual international symposiunComputer
Architecture (Washington, DC, USA), pp. 167-178, IEEE Computer Society, 2006.

[15] R.D. Doug, D. Burger, S. W. Keckler, and T. Austin, “Sim-alphazalidated, execution-driven
alpha 21264 simulator,” tech. rep., 2001.

[16] D. Kroft, “Lockup-free instruction fetch/prefetch cache orgation,” in ISCA '81: Proceed-
ings of the 8th annual symposium on Computer Architect(lres Alamitos, CA, USA),
pp. 81-87, IEEE Computer Society Press, 1981.

[17] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, "Automaticdipracterizing large

scale program behavior,” IASPLOS-X: Proceedings of the 10th international conference on

Architectural support for programming languages and operating syst€New York, NY,
USA), pp. 45-57, ACM, 2002.

[18] R. D.-c. Ju, A. R. Lebeck, and C. Wilkerson, “Locality vs. criticafiiy ISCA '01: Proceed-
ings of the 28th annual international symposium on Computer archite€Bur€. Srinivasan,
ed.), (New York, NY, USA), pp. 132-143, ACM, 2001.

[19] T. Sherwood, S. Sair, and B. Calder, “Predictor-directed strgaffers,” inMICRO 33: Pro-
ceedings of the 33rd annual ACM/IEEE international symposium on lslichitecture (New
York, NY, USA), pp. 42-53, ACM, 2000.

[20] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, ai&d K. Reinhardt, “The
m5 simulator: Modeling networked systemiEEE Micro, vol. 26, pp. 52-60, 2006.

[21] I. Ganusov and M. Burtscher, “Future execution: A prefetcmireghanism that uses multiple
cores to speed up single thread8CM Trans. Archit. Code Optimvol. 3, pp. 424-449,
December 2006.

[22] K. Luo,J. Gummaraju, and M. Franklin, “Balancing thoughput aithiess in smt processors,”
pp. 164 -171, 2001.

[23] O. Mutlu and T. Moscibroda, “Stall-time fair memory access schedubngliip multiproces-
sors,” iNMICRO 40: Proceedings of the 40th Annual IEEE/ACM International [Bsium on
Microarchitecture (Washington, DC, USA), pp. 146-160, IEEE Computer Society, 2007.

[24] A. Basu, N. Kirman, M. Kirman, M. Chaudhuri, and J. Martinez, &8enger: A new last
level cache architecture with global block priority,” MICRO 40: Proceedings of the 40th
Annual IEEE/ACM International Symposium on Microarchitectwashington, DC, USA),
pp. 421-432, IEEE Computer Society, 2007.

[25] N. Kirman, M. Kirman, M. Chaudhuri, and J. F. Martinez, “Checkyed early load retire-
ment,” inHPCA '05: Proceedings of the 11th International Symposium on HigfeReance
Computer ArchitecturgWashington, DC, USA), pp. 16-27, IEEE Computer Society, 2005.

[26] E. Ebrahimi, O. Mutlu, and Y. Patt, “Techniques for bandwidth-edfit prefetching of linked
data structures in hybrid prefetching systems,High Performance Computer Architecture,
2009. HPCA 2009. IEEE 15th International Symposiumpm 7 —17, 2009.

27

MANIKANTAN & GOVINDARAJAN

[27] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, “Coordinated cdrdfonultiple prefetchers
in multi-core systems,” ifProceedings of the 42nd Annual IEEE/ACM International Sympo-
sium on MicroarchitectureMICRO 42, (New York, NY, USA), pp. 316-326, ACM, 2009.

[28] V. Srinivasan, “A static filter for reducing prefetch traffic,” teakp., 1999.

[29] X.Zhuang and H.-H. Lee, “A hardware-based cache pollutiorrifiitemechanism for aggres-
sive prefetches,” pp. 286 —293, oct. 2003.

28

