
Journal of Instruction-Level Parallelism 1 (1999) 1-6 Submitted 6/98; published 3/99

Value Pro�ling and Optimization

Brad Calder calder@cs.ucsd.edu

Peter Feller pfeller@home.com

Department of Computer Science and Engineering

University of California, San Diego

9500 Gilman Drive

La Jolla, CA 92093-0114 USA

Alan Eustace eustace@pa.dec.com

Western Research Lab

Compaq Computer Corporation

250 University Avenue

Palo Alto, CA 94301 USA

Abstract

Variables and instructions that have invariant or predictable values at run-time, but
cannot be identi�ed as such using compiler analysis, can bene�t from value-based compiler
optimizations. Value-based optimizations include all optimizations based on a predictable
value or range of values for a variable or instruction at run-time. These include constant
propagation, code specialization, optimizations assuming the value predictability of an
instruction, continuous optimization, and partial evaluation.

This paper explores the value behavior found from pro�ling load instructions and mem-
ory locations. We compare the value predictability and invariant behavior of instructions
(registers) and variables (memory locations) found from value pro�ling across di�erent in-
puts. We use the value pro�les to perform code-specialization for a couple of programs,
showing that value pro�les can be used to reduce a program's execution time up to 21%.
The ability to accurately and e�ciently generate value pro�les is also examined using con-
vergent pro�ling and random sampling.

1. Introduction

Many compiler optimization techniques depend upon analysis to determine which variables
have invariant behavior. Variables which have invariant run-time behavior, but cannot be
labeled as such at compile-time, do not fully bene�t from these optimizations. This paper
examines using pro�le feedback information to identify which variables have invariant/semi-
invariant behavior. A semi-invariant variable is one that cannot be identi�ed as a constant
at compile-time, but has a high degree of invariant behavior at run-time. This occurs
when a variable has one to N (where N is small) possible values which account for most
of the variable's values at run-time. In addition to knowing a variable's invariance, certain
compiler optimizations are also dependent on knowing a list or range of a variable's top
values. Value Pro�ling can be used to identify the invariance and the top N values or range
of a variable.

Value Pro�ling can also be used to identify the predictability of instructions for value
prediction and value-based optimization. Value prediction [1, 2, 3, 4] enables programs to
exceed the limits which are placed upon them by their data-dependencies. The goal is to

Calder, Feller, & Eustace

break true data-dependencies by predicting the outcome value of instructions before they
are executed, and forwarding these speculated values to instructions which depend on them.

We originally proposed and evaluated Value Pro�ling in [5]. In that work, we examined
the invariance of parameters, load instructions, and the breakdown of invariance between
di�erent instruction types. We showed that the invariance and last value predictability of
instructions was similar between di�erent inputs. In addition, we presented two approaches
for reducing the time for value pro�ling. The �rst approach, called Convergent Pro�ling,
used an intelligent form of sampling to determine when the pro�ling information (invariance)
converged. When this happened, pro�ling was turned o�, decreasing the time to obtain an
accurate value pro�le. The second approach presented results for estimating the invariance
of all instructions using only a basic block pro�le and a value pro�le for load instructions.
We showed that an accurate estimation of invariance for the remaining instructions could
be generated by propagating the invariance from the load instructions through the data
dependency graph. Therefore, when pro�ling instructions in this paper we concentrate only
on the load instructions.

In this paper we:

� Provide a detailed design analysis of the value pro�ler used, showing how many values
need to be kept track of to capture value and invariance information.

� Examine memory location (variable) value pro�ling and how it di�ers from value
pro�ling instructions.

� Use value pro�les to perform code-specialization compiler optimizations, obtaining a
21% execution time speedup for m88ksim and a 15% speedup for hydro2d.

� Compare the performance of our previously proposed convergent value pro�ling to
random sampling, and provide timing results for convergent pro�ling.

Section 2 describes related work and the potential uses for value pro�ling. Section 3 will
describe value pro�ling, the algorithms and data structures used to gather value pro�les,
and how changing the parameters in our data structure a�ects the invariance and the top
values found. Section 4 describes the programs and methodology used to gather the value
pro�les, and the metrics used to evaluate the results. Section 5 examines the invariance
and the value predictability behavior of load instructions. Section 6 shows the results for
pro�ling memory locations (variables). Section 7 provides code samples and speedup results
using value pro�les for value-based code specialization. Section 8 compares the performance
of convergent pro�ling to random sampling, and Section 9 summarizes this paper.

2. Motivation and Related Work

Value pro�ling can be a bene�t to several areas of current compiler and architecture re-
search. Value pro�les can be used to provide feedback to value prediction indicating which
instructions show a high degree of predictability. Value pro�ling can also be used to pro-
vide an automated approach for identifying semi-invariant variables for guiding dynamic
compilation, adaptive execution, and code specialization.

2

Value Profiling and Optimization

2.1 Value Prediction

The recent publications on value prediction [1, 2, 3, 4] in hardware provided motivation
for our research into value pro�ling. Lipasti et al. [3] introduced the term value locality,
which describes the likelihood of the recurrence of a previously seen value within a storage
location. The study showed that on average 49% of the instructions wrote the same value as
they did the last time they were executed, and 61% of the executed instructions produced
the same value as one of the last 4 values produced by that instruction using a 16K value
prediction table. These results show that there is a high degree of temporal locality in the
values produced by instructions.

Last Value Prediction (LVP) is implemented in hardware using an N entry value history
table [2]. The table contains a value �eld and an optional tag, which would store the identity
of the instruction which is mapped to the entry. The PC of the executing instruction is
used to hash into that table to retrieve the last value. Several additional value predictor
models have been proposed [6, 7, 8, 9]. These include stride prediction, context prediction,
and several hybrid approaches.

Gabbay et al. [6] studied the applicability of program pro�ling to aid value prediction.
His motivation for using pro�ling information was to classify the instructions tendency to
be value predictable. The opcodes of instructions found to be predictable were annotated.
Then only instructions marked predictable were considered for value prediction. The main
advantage of this approach was better usage of the prediction table, which resulted in
decreased number of mispredictions.

Value prediction can bene�t in several ways from value pro�ling. By classifying in-
structions into predictable, not predictable, or hard to predict, one can determine which
instructions to statically predict or not to predict. Value pro�ling can be used to even
classify instructions indicating which type of predictor would better predict the instruction
for a hybrid predictor. This increases the prediction accuracy and decreases the con
icts
or aliasing in a prediction table. In addition, critical path analysis can be combined with
value pro�ling, to identify which instructions should consume a predicted value [1].

2.2 Load Speculation and Value Speculation Optimizations

The Memory Con
ict Bu�er (MCB) proposed by Gallagher et al. [10] provides a hardware
solution with compiler support to allow load instructions to speculatively execute before
stores. The compiler inserts a check instruction at the point where the load is known to be
non-speculative. The check instruction checks to see if a store wrote to the same address
since the speculative load was executed. If the speculation was incorrect, recover code has
to be executed.

Moudgill and Moreno [11] proposed a similar approach but instead of comparing ad-
dresses as in the MCB approach, they compare the speculated value and the real value of
the load. They speculatively execute the load and its dependent instructions, and they also
re-execute the load in its original location. They then check the value of the speculative load
with the correctly loaded value. If they are di�erent a recovery sequence must be executed.

Fu et al. [12, 13] examined breaking dependency chains by having the compiler insert
new instructions to provide predicted values for value prediction. They examined inserting
add instructions to provide compiler-based stride value prediction for loads. Value pro�ling

3

Calder, Feller, & Eustace

was shown in this work to be a valuable tool in guiding this type of value speculation
scheduling.

Reinman et al. [14] examined using value pro�ling and memory disambiguation pro�ling
to identify the loads that will have communication with stores, and the predictability for
those loads during execution. These pro�les were used to �nd the loads that will bene�t
from either memory renaming [15] or last value prediction, and then to classify the loads to
use the more accurate form of prediction.

2.3 Compiler Analysis for Run-Time Optimization

Dynamic compilation and adaptive execution are emerging directions for compiler research
which provide improved execution performance by delaying part of the compilation pro-
cess to run-time. These techniques range from �lling in compiler generated specialized
templates at run-time to fully adaptive code generation for continuous optimization. For
these techniques to be e�ective the compiler can help determine which sections of code
to concentrate on for run-time optimization. Existing techniques for dynamic compilation
and adaptive execution require the user to identify run-time invariants using user guided
annotations [16, 17, 18, 19, 20]. One of the goals of value pro�ling is to provide an auto-
mated approach for identifying semi-invariant variables and to use this to guide run-time
optimization.

Staging analysis has been proposed by Lee and Leone [20] as an e�ective means for deter-
mining which computations can be performed early by the compiler and which optimizations
should be performed late or postponed by the compiler for dynamic code generation. Their
approach requires programmers to provide hints to the staging analysis to determine what
arguments have semi-invariant behavior. Code fragments can then be optimized by parti-
tioning the invariant parts of the program fragment. Knoblock and Ruf [19] used a form of
staging analysis and annotations to guide data specialization.

Autrey and Wolfe [21] have started to investigate a form of staging analysis for auto-
matic identi�cation of semi-invariant variables. Consel and Noel [17] use partial evaluation
techniques to automatically generate templates for run-time code generation, although their
approach still requires the user to annotate arguments of the top-level procedures, global
variables and a few data structures as run-time constants. Auslander et al. [16] proposed a
dynamic compilation system that uses a unique form of binding time analysis to generate
templates for code sequences that have been identi�ed as semi-invariant. Their approach
currently uses user de�ned annotations to indicate which variables are semi-invariant.

The annotations needed to drive the above techniques require the identi�cation of semi-
invariant variables, and value pro�ling can be used to automate this process. To automate
this process, these approaches can use their current techniques for generating code to identify
code regions that could potentially bene�t from run-time code generation and optimization.
Value pro�ling can then be used to determine which of these code regions have variables
with semi-invariant behavior. Then those code regions identi�ed as pro�table by value
pro�ling would be candidates for run-time optimization.

4

Value Profiling and Optimization

2.4 Code Specialization

Code specialization is a compiler optimization that selectively executes an optimized version
of the code conditioned on the value of a variable. Given an invariant variable and its value,
the original code is duplicated and optimized using the value. There will be one general
version of the code, and a special version of the code. The two versions of the code will be
conditioned on the semi-invariant variable, to choose which version to execute.

Calder and Grunwald [22] found that up to 80% of all function calls in C++ languages
are made indirectly. These indirect function calls are virtual function calls, and can have
multiple branch destinations. They pose a serious performance bottleneck for future pro-
cessors that try to exploit instruction level parallelism. One method to reduce the penalty
of virtual function calls is to create a specialized version of the method, and have the
code conditioned on the type of the object used in the virtual function call. Calder and
Grunwald [23] found that on average 66% of the virtual function calls had only a single des-
tination, and these could bene�t from code specialization. H�olzle et al. [24] implemented
a run-time type feedback system. Using the type feedback information, the compiler can
then inline any dynamically dispatched function calls, specializing the dispatch based on
the frequently encountered object types. They implemented their system in Self [25], which
dynamically compiles or recompiles the code applying the optimization with polymorphic
inline caches. Dean et al. [26, 27] extend the approach of customization by specializing
only those cases where the highest bene�t can be achieved. Selective specialization uses a
run-time pro�le to determine exactly where customization would be most bene�cial.

Richardson [28] studied the potential performance gain due to replacing a complex in-
struction with trivial operands, with a trivial instruction. He pro�led the operands of arith-
metic operations looking for long latency calculations, with semi-invariant and optimizable
inputs. These long latency calculations could then be specialized based on the optimizable
inputs. He found that these optimizations can lead to up to 22% in performance gain, and

oating-point intensive programs gave the highest speedup.

The pro�lers needed for these techniques are a special case of a more general form of
a value pro�ler. Value pro�ling provides information on how invariant a given instruction
or variable is and the instruction's top values. The invariance of a variable is crucial in
determining if a particular section of code should be specialized. For some optimizations,
knowing the value information is just as important as the invariance. Code specialization
is one example where the invariance as well as the values are crucial.

3. Value Pro�ling

Value pro�ling is used to �nd (1) the invariance of an instruction over the life-time of the
program, (2) the top N result values for an instruction, and (3) the value predictability of
the instruction.

3.1 TNV Table

The value pro�ling information required ranges from needing to know only the invariance
of an instruction to also having to know the top N values or a popular range of values.
Figure 1 shows a simple pro�ler to keep track of this information in pseudo-code. The value

5

Calder, Feller, & Eustace

void InstructionPro�le::collect stats (Reg cur value) f
total executed ++;
if (cur value == last value) f
lvp 1 metric ++;
num times pro�led ++;

g else f
LFE insert into tnv table(last value, num times pro�led);
num times pro�led = 1;
last value = cur value;

g
g

Figure 1: A simple value pro�ler keeping track of the N most frequent occurring values,
along with the last value prediction (LVP) metric.

pro�ler keeps a Top-N-Value (TNV) table for the register being written by an instruction.
There is always a TNV table associated with the entity that is the target of pro�ling. In
the case of the loads, there will be a TNV table for each load, and when pro�ling memory
locations, there will be one TNV table for each memory location.

The TNV table stores (value, number of occurrences) pairs for each entry with a least
frequently encountered (LFE) replacement policy. When inserting a value into the table, if
the entry already exists its occurrence count is incremented by the number of recent pro�led
occurrences. If the value is not found, the least frequently used entry is replaced.

There can also be other useful �elds as part of the structure, including a counter for the
number of 0-values encountered, and a counter for stride prediction.

3.2 TNV Table Design Alternatives

For this research, we analyzed all of the parameter settings for the TNV table. The goal
was to determine what settings provide the most accurate value pro�ling. We varied every
design parameter, trying many di�erent possibilities for table sizes and time intervals. In
this paper we only provide a summary for each parameter, discussing the con�gurations
that performed well. The detailed results for each program from varying these parameters
can be found in [29].

3.2.1 Replacement Policy for Top N Value Table

We chose not to use an LRU replacement policy for the TNV table, since replacing the
least recently used value does not take into consideration the number of occurrences for
that value. Instead, we use a Least Frequently Encountered (LFE), replacement policy for
the TNV table. LFE chooses to replace the table entry that has the smallest frequency
count. This is the value that has been encountered during pro�ling, according to the TNV
table, the least amount of time. A straight forward LFE replacement policy for the TNV
table can lead to situations where an invariant value cannot make its way into the TNV

6

Value Profiling and Optimization

table. For example, if a TNV table of size N already contains N entries, each pro�led more
than once, then using a least frequently encountered replacement policy for a sequence of
:::XY XY XYXY::: (where X and Y are not in the table) will make X and Y battle with
each other to get into the TNV table, but neither will succeed. The TNV table can be
made more forgiving by either adding a \temp" TNV table to store the current values for
a speci�ed time period which is later merged into a �nal TNV table, or by just clearing out
the bottom entries of the TNV table every so often.

The approach we used in this paper was to divide the TNV table into two distinct
parts, the steady part and the clear part. The steady part of the table will never be
ushed
during pro�ling, but the clear part will be
ushed once a clear-interval amount of time has
expired. The clear interval de�nes the number of times an instruction is pro�led before the
clear part of the table is
ushed. The value which was encountered the least number of
times in the steady part will be referred to as the Least-Frequently-Used (LFU) value. For
a new value to work its way into the steady part of the table, the clear-interval needs to be
larger than the frequency count of the LFU entry. The clear-interval is computed by taking
the maximum of the minimum clear interval size, and twice the number of times the LFU
value was encountered. In this paper we used a minimum clear interval size of 2000 times.
The table size is equal to the total number of steady entries added to the number of clear
entries.

3.2.2 Baseline TNV Table Configuration

There are three di�erent parameters that can a�ect value pro�ling and the replacement
policy. The steady part size, clear size, and the clear interval size. The invariance and top
values found for these di�erent value tables are compared to a larger TNV reference table
with a table size of 50 entries and a clear interval size of 2000. In the table, 25 of these
entries were for the steady part and the other 25 were for the clear part. We chose a large
TNV table size for comparison, since the goal is to determine the minimum sizes for the
steady part and clear part of the table for e�cient, but accurate, value pro�ling. We use
the following two metrics to examine the di�erent TNV parameters:

� Find-Top. The percent of time the top value for an instruction in the 50 entry table
is equal to one of the values for that instruction in the steady part of the smaller
table being examined. This metric indicates the ability of the smaller table sizes we
examine to �nd the top values found in a much larger table.

� Di�-All. The weighted di�erence in invariance between two pro�les for all values in
the steady part of the TNV table. The di�erence in invariance is calculated on an
instruction by instruction basis and is included into an average weighted by execution
based on the 50 entry table pro�le, for only those instructions that are executed in
both pro�les. The metric shows how close the invariance found for the smaller TNV
pro�ler matched that of the large 50 entry TNV table.

3.2.3 Least Frequently Encountered Vs LRU

As described above, we used a least frequently encountered replacement policy for the TNV
table instead of least recently used. When a value is encountered and it is not in the TNV

7

Calder, Feller, & Eustace

LFE Replacement Policy LRU Replacement Policy
Program Inv-Top Di�-Top Di�-All Find-Top Di�-Top Di�-All Find-Top

compress 44.2 0.1 0.1 100.0 3.3 1.6 91.6
gcc 45.6 0.3 0.4 99.8 13.5 7.7 84.5
go 35.4 0.5 0.8 99.3 9.4 4.7 95.6
ijpeg 19.0 0.4 0.4 100.0 8.4 4.1 74.0
li 38.9 1.8 2.6 98.0 7.7 5.4 77.5
perl 66.9 1.3 2.6 100.0 4.5 4.7 93.1
m88ksim 76.3 0.2 0.4 99.9 14.3 5.6 93.9
vortex 60.4 0.9 1.5 100.0 12.7 7.0 86.8
applu 33.7 0.0 0.0 100.0 0.8 0.3 100.0
apsi 18.3 0.0 0.1 100.0 8.2 4.3 96.5
fpppp 28.2 0.1 0.1 100.0 2.0 0.9 97.5
hydro2d 61.9 0.2 0.2 100.0 56.7 24.0 78.3
mgrid 3.9 0.1 0.1 100.0 3.7 1.5 99.4
su2cor 17.5 0.0 0.0 100.0 3.8 1.7 90.7
swim 1.1 0.0 0.2 100.0 1.0 1.0 91.3
tomcatv 2.1 0.0 0.0 100.0 0.2 0.1 86.9
turb3d 37.9 0.4 0.5 100.0 28.4 10.9 96.7
wave5 11.0 0.0 0.0 100.0 1.1 0.7 97.8

Average 33.5 0.3 0.6 99.8 10.0 4.8 90.7

Table 1: The di�erence in invariance and top values found when using LFE and LRU for
the TNV table replacement policy, when pro�ling load instructions.

table, an entry in the TNV table needs to be removed in order to insert the new value. To
compare the performance of LFE and LRU we present results for a 6 entry TNV table, and
compare their performance to a 50 entry table using LFE. For LRU replacement, all 6 entries
are candidates for replacement. For LFE replacement, we use a size of 3 for the steady part
of the table, and the other 3 entries are the clear part of the table. Therefore, only the 3
entries with the least frequently encountered values are candidates for replacement when
using LFE replacement.

Figure 1 shows the ability for a 6 entry TNV table to capture the invariant behavior and
top values when using LFE and LRU replacement policy, when compared to the 50 entry
table mentioned above. The �rst column (Inv-Top) shows the percentage of references
on average the top value found in the 50 entry table accounts for when pro�ling load
instructions. An Inv-Top of 76% for m88ksim means that on average the most frequently
occurring value for a load accounts for 76% of the references performed by that load. The
column labeled Di�-Top shows the percent di�erence in Inv-Top between the 50 entry table
and the 6 entry TNV table for the two replacement policies. Di�-All and Find-Top are
described above. The di�erence metrics are weighted and calculated on an instruction by
instruction basis. The results show that a 6 entry TNV table with LFE replacement �nds
almost all of the top values and has a degree of invariance within .3% on average when
compared to the 50 entry table. Using LRU replacement for a 6 entry TNV table �nds only

8

Value Profiling and Optimization

0

10

20

30

40

50

60

70

80

90

100

co
m

pr
es

s
gc

c go

ijp
eg

 li
pe

rl

m
88

ks
im

vo
rte

x

ap
plu

ap

si

fp
pp

p

hy
dr

o2
d

m
gr

id

su
2c

or

sw
im

to
m

ca
tv

tu
rb

3d

wav
e5

Ave
ra

ge

P
er

ce
nt

 L
oa

ds
 C

ap
tu

re
d

Steady Size 1

Steady Size 3

Steady Size 5

Steady Size 10

Figure 2: Percentage of Loads Executions (Values) Captured for Top N Values. This graph
shows the percentage of executed loads captured using a TNV table with one,
three, �ve, and 10 entries for its steady part.

90% of the top values, and has an average di�erence in invariance of 10%. Since LFE and
LRU have roughly the same implementation cost, we use LFE in all of our results.

3.2.4 Steady State Entries

Increasing the steady size increases the number of values that are stored in the TNV table.
A steady size of 1 means that only 1 value will retire from the steady part of the table
after pro�ling is �nished. Figure 2 shows the percent of executed loads captured via value
pro�ling for di�erent sizes for the steady part of a TNV table. For each program there are
four bars. The �rst bar uses only one entry, the second bar uses three entries, the third bar
uses �ve entries, and the fourth bar shows the percent of executed loads (values) captured
when having a table with a steady part of size 10. Some programs show substantial increases
in values captured when comparing the use of only one entry to using 3 or 5 steady part
entries, and only a moderate gain when using ten entries. Perl and m88ksim illustrate this
behavior.

Table 2 shows the di�erence in invariance and values found for di�erent steady sizes in
comparison to a 50 entry TNV table with a steady size of 25. The results show that the
most signi�cant performance increase resulted from increasing a steady size of 1 entry to a
steady size of 2 entries. A steady size of 1 had an average 3.1% for Di�-All and 92.0% for
Find-Top. Increasing the table size to 2 entries reduced the Di�-All di�erence to 0.8% and
increased the Find-Top to 99.5%. Once the steady size reaches 4 entries, Find-Top is 100%
and Di�-All is 0.4%.

9

Calder, Feller, & Eustace

Steady Sizes
1 2 3 4 5

Program D(a) F(t) D(a) F(t) D(a) F(t) D(a) F(t) D(a) F(t)

compress 0.4 100.0 0.1 100.0 0.1 100.0 0.1 100.0 0.1 100.0
gcc 3.2 92.4 0.7 99.5 0.4 99.8 0.0 100.0 0.0 100.0
go 4.4 85.3 1.1 98.2 0.8 99.3 0.6 99.8 0.5 99.8
ijpeg 1.0 96.0 0.5 100.0 0.4 100.0 0.4 100.0 0.3 100.0
li 7.2 87.0 3.1 97.7 2.6 98.0 2.0 99.5 1.6 99.5
perl 11.7 83.3 3.2 99.3 2.6 100.0 1.9 100.0 1.5 100.0
m88ksim 2.6 97.1 0.7 99.9 0.4 99.9 0.3 100.0 0.2 100.0
vortex 6.9 89.6 1.9 99.8 1.5 100.0 1.1 100.0 1.0 100.0
applu 0.3 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0
apsi 0.3 99.3 0.1 100.0 0.1 100.0 0.1 100.0 0.1 100.0
fpppp 11.1 51.7 0.2 100.0 0.1 100.0 0.1 100.0 0.1 100.0
hydro2d 3.5 90.0 0.6 99.1 0.2 100.0 0.1 100.0 0.1 100.0
mgrid 0.3 100.0 0.2 100.0 0.1 100.0 0.1 100.0 0.1 100.0
su2cor 0.6 97.2 0.1 99.8 0.0 100.0 0.0 100.0 0.0 100.0
swim 0.0 97.9 0.2 100.0 0.2 100.0 0.2 100.0 0.1 100.0
tomcatv 0.1 92.3 0.0 99.8 0.0 100.0 0.0 100.0 0.0 100.0
turb3d 1.4 97.2 1.0 98.4 0.5 100.0 0.4 100.0 0.2 100.0
wave5 0.1 99.2 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0

Average 3.1 92.0 0.8 99.5 0.6 99.8 0.4 100.0 0.3 100.0

Table 2: Steady Size Table. This Table shows how changing the number of entries in the
steady part of the TNV table a�ects the accuracy of the pro�ling data. For each
steady size the following metrics are given: D(a)=Di�-All, F(t)=Find-Top. The
sizes shown are compared against a 50 entry TNV table with a steady size of 25.

10

Value Profiling and Optimization

3.2.5 Clear Size

Increasing the clear size increases the number of values that are cleared from the TNV
table. This gives values occurring later during program execution a better chance to get
into the steady part of the TNV table. In examining the clear sizes, we varied the number
of table entries cleared from 0 to 5 for a TNV table of size 6. A clear size of 0 means, that
once the TNV table is �lled, no new values can make it into the table, even if these �rst
encountered values were completely random and have only been encountered once. Not
clearing any entries in the TNV table resulted in decreased performance (number of values
captured) for almost all programs. For a table size of 6 entries, the best clear size was 2
to 3 entries, which resulted in a Di�-All of 0.4% and a Find-Top of 99.9%. Detailed results
for examining the clear size can be found in [29].

3.2.6 Clear Interval

Increasing the clear interval gives less frequently occurring values a higher chance to make it
into the TNV-table, once the TNV-table has been �lled. This results from increasing their
chances of getting their visit count incremented beyond the visit count of the LFU value. For
a value to make it into the steady part of the table, the clear interval has to at least be larger
than the LFU entry in the steady part of the table. We examined several di�erent criteria
for setting the clear interval and several minimum clear interval values. Having a minimum
clear interval between 2,000 to 500,000 instruction invocations and setting the clear interval
to be two to three times larger than the LFU entry of the steady part provided reasonable
results. Overall, the results were not that sensitive to di�erent clear interval sizes. Detailed
results for examining the clear interval can be found in [29].

For the results presented in the remainder of the paper, we use a TNV table size of 6,
with a steady size of 3, a clear part of 3, and a clear interval of 2000 pro�led instructions.

4. Methodology

To perform our evaluation, we collected information for the SPEC95 programs. The pro-
grams were compiled on a DEC Alpha AXP-21164 processor using the DEC C and FOR-
TRAN compilers. We compiled the SPEC benchmark suite under OSF/1 V4.0 operating
system using full compiler optimization (-O4 -ifo). Table 3 shows the two data sets we
used in gathering results for each program, and the number of instructions executed in
millions.

We used ATOM [30] to instrument the programs and gather the value pro�les. The
ATOM instrumentation tool has an interface that allows the elements of the program exe-
cutable, such as instructions, basic blocks, and procedures, to be queried and manipulated.
In particular, ATOM allows an \instrumentation" program to navigate through the ba-
sic blocks of a program executable, and collect information about registers used, opcodes,
branch conditions, and perform control-
ow and data-
ow analysis.

11

Calder, Feller, & Eustace

test train
Program Name Exe M Name Exe M

compress ref 93 short 9
gcc 1cp-decl 1041 1stmt 337
go 5stone21 32699 2stone9 546
ijpeg specmun 34716 vigo 39483
li ref (w/o puzzle) 18089 puzzle 28243
m88ksim ref 76271 train 135
perl primes 17262 scrabble 28243
vortex ref 90882 train 3189
applu ref 46189 train 265
apsi ref 29284 train 1461
fpppp ref 122187 train 234
hydro2d ref 42785 train 4447
mgrid ref 69167 train 9271
su2cor ref 33928 train 10744
swim ref 35063 train 429
tomcatv ref 27832 train 4729
turb3d ref 81333 train 8160
wave5 ref 29521 train 1943

Table 3: Data sets used in gathering results for each program, and the number of instruc-
tions executed in millions for each data set.

4.1 Metrics

We now describe some of the metrics we will use in the remainder of this paper. Certain
metrics are used to describe the characteristics of one particular pro�le, others are used to
compare two pro�les.

4.2 Pro�le Metrics

The following metrics are used to describe the characteristics of one particular pro�le.

1. Instruction Invariance (Inv-M).
When an instruction is said to have an \Invariance-M" of X%, this is calculated by
taking the number of times the top M (M is also referred to as the history depth)
values for the instruction occurred during pro�ling, as found in the �nal TNV table
after pro�ling, and dividing this by the number of times the instruction was executed
(pro�led). By Inv-M we mean the percent of time an instruction spends executing its
most frequent M values. The overall invariance for a pro�le is computed by summing
the invariances of all instructions weighted by their visit count. The resulting sum is
then divided by the total visit count. For the invariance we have two special cases:

� Invariance of Top Value (Inv-Top).
This metric computes the invariance only for the most frequently occurring value

12

Value Profiling and Optimization

and is computed by dividing the frequency count of the most frequently occurring
value in the �nal TNV table, by the number of times the instruction was pro�led.

� Invariance of All Values (Inv-All).
This metric computes the invariance for all values in the steady part of the �nal
TNV-table. The number of occurrences for all values in the steady part of the
�nal TNV table are added together and divided by the number of times the
instruction was pro�led.

2. Instruction's Last Value Prediction (LVP).
This metric measures the number of last value correct predictions made for an in-
struction. Keeping track of the number of correct predictions equates to the number
of times an instruction's destination register was assigned a value that was the same
as the last value for that instruction. To compute the LVP over all instructions in
the program, all instruction LVP's are summed up and weighted by their instruction
count. The LVP metric provides an indication of the temporal reuse of values for an
instruction, and it is di�erent from the invariance of an instruction. For example,
an instruction may write a register with values X and Y in the following repetitive
pattern :::XY XY XY XY:::. This pattern would result in a LVP (which stores only
the most recent value) of 0%, but the instruction has an invariance Inv-top of 50%
and Inv-2 of 100%. Another example is when 1000 di�erent values are the result of
an instruction each 100 times in a row before switching to the next value. In this
case the LVP metric would determine that the variable used its last value 99% of the
time, but the instruction has only a 0.1% invariance for Inv-Top. The LVP di�ers
from invariance because it does not have state associated with each value indicating
the number of times the value has occurred.

4.3 Metrics for Comparing Two Pro�les

In this paper we compare pro�les of the same program pro�led with di�erent inputs, as well
as pro�les generated by a full pro�ler to that of a convergent and random pro�ler. When
doing this, we examine both the di�erences in their invariances and also the di�erence in
their top values.

4.3.1 Difference in Invariances

The following are the two metrics used to compare two pro�le's invariances:

1. Di�erence in Invariance of Top Value (Di�-Top).
This metric shows the weighted di�erence in invariance between two pro�les for the
top most value in the TNV table. The di�erence in invariance is calculated on an
instruction by instruction basis and is included into an average weighted by execution
based on the �rst pro�le, for only those instructions that are executed in both pro�les.

2. Di�erence in Invariance of All Values (Di�-All).
This metric shows the weighted di�erence in invariance between two pro�les for all
values in the steady part of the TNV table. As in Di�-Top, the di�erence in invariance
for Di�-All is calculated on an instruction by instruction basis and is included into an

13

Calder, Feller, & Eustace

average weighted by execution based on the �rst pro�le, for only those instructions
that are executed in both pro�les.

4.3.2 Difference in Values

To compare two pro�les we would also like to compare the top values found in both pro�les.
When calculating this metric, we only look at instructions whose invariance in the �rst pro-
�le are greater than a given invariance threshold. The reason for only looking at instructions
with an Inv-Top larger than a given threshold is to ignore all the instructions with random
invariance. For variant (semi-random) instructions, there is a high likelihood that the top
values in the two pro�les are di�erent, and we are not interested in these instructions since
they would not be candidates for optimization. We use an invariance threshold of 30%.
This was shown to �lter out the instructions with random behavior. Results for additional
thresholds can be found in [29].

1. Finding the Top Value (Find-Top).
The Find-Top metric shows the percent of time the top value for an instruction in the
�rst pro�le is equal to one of the values in the steady part of the table in the second
pro�le. An instruction is only included in this metric if its Inv-Top in the �rst pro�le
is greater than the invariance threshold of 30%.

4.4 Graphs

The graphs which show the invariance, prediction accuracy and percent zero, show their
results in terms of overall program execution, where the program execution is represented
on the x-axis. The graph is formed by sorting all the instructions by the metric on the y-
axis, and then putting the instructions into 100 buckets, �lling the buckets in sorted order.
Each bucket represents 1% of the executed load instructions for the program. The number
of instructions put into each bucket depends upon the number of times each instruction
was executed. Finally, the average result, weighted by execution frequency, of each bucket
is graphed. Therefore, the y-axis metric is non-accumulative, and the x-axis represents the
percent of executed instructions.

5. Pro�ling Instructions

This section shows the results from pro�ling load instructions. Results are shown for the
invariance, the accuracy of LVP, and the percent of zero values encountered during pro�ling.
We conclude this section by comparing the invariance, LVP accuracy, and Zero values for
two di�erent input sets.

5.1 Invariance of Loads

Figures 3 and 4 show the invariance for load instructions in terms of the percent of dynami-
cally executed loads in each program. Each �gure is broken up into two graphs. One graph
showing the invariance for the C programs, and the other graph showing the invariance
for the FORTRAN programs. Figure 3 shows the percent invariance calculated for the top
value (Inv-Top) in the steady part of the TNV table for each instruction, and Figure 4 shows

14

Value Profiling and Optimization

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percent Executed Loads

P
er

ce
nt

 In
va

ria
nc

e
T

op
compress gcc
go ijpeg
li perl
m88ksim vortex

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percent Executed Loads
P

er
ce

nt
 In

va
ria

nc
e

T
op

applu apsi
fpppp hydro2d
mgrid su2cor
swim tomcatv
turb3d wave5

Figure 3: Invariance of Loads (Top Value). The graphs show the percent invariance of the
top value (Inv-Top) in the TNV table. The percent invariance is shown on the
y-axis, and the x-axis is the percent of executed load instructions.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percent Executed Loads

P
er

ce
nt

 In
va

ria
nc

e
A

ll

compress gcc
 go ijpeg
 li perl
 m88ksim vortex

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percent Executed Loads

P
er

ce
nt

 In
va

ria
nc

e
A

ll

 applu apsi
 fpppp hydro2d
 mgrid su2cor
 swim tomcatv
 turb3d wave5

Figure 4: Invariance of Loads (All Values). The graphs shows the percent invariance of the
top 3 values (Inv-All) in the TNV table. The percent invariance is shown on the
y-axis, and the percent of executed load instructions on the x-axis.

15

Calder, Feller, & Eustace

the percent invariance for the top three values (Inv-All). See x4.4 for an explanation on how
the graphs were created. The invariance is non-accumulative, and the x-axis is weighted
by frequency of execution. Therefore, if we were interested in optimizing all instructions
that had an Inv-Top invariance greater than 50% for gcc, this would account for 45% of
the executed loads. Figure 3 shows that some of the programs, compress and vortex, have
100% Inv-Top invariance for 40% or more of their executed loads, and m88ksim and perl

have a 100% Inv-All invariance for almost 75% of their loads. It is interesting to note from
these graphs the bi-polar nature of the load invariance for many of the programs. Most of
the loads are either completely invariant or very variant. This indicates that one could use
value pro�ling to accurately classify the invariance.

5.2 Percent Prediction Accuracy

Figure 5 shows the Last Value Prediction accuracy for each program. It is interesting to see
for programs like compress and m88ksim that their LVP graph looks very similar to their
Inv-Top graph. Whereas, the LVP graph and Inv-Top graph are very di�erent for hydro2d
and ijpeg. The values for loads in these two programs have much higher prediction accuracy
than invariant behavior.

5.3 Percent Zeroes

The value of zero was by far the most popular value found during value pro�ling. Figure 6
shows the percent of load instructions whose resulting register value is a zero value. The
results for m88ksim show that almost 50% of the executed load instructions loaded a value
of zero. The reason for this will be shown in section 7.

5.3.1 Zero, LVP, and Invariance Across Different Input Sets

Table 4 compares the LVP accuracy, the percent zeroes, and the invariance between di�erent
inputs. The di�erence is calculated on an instruction by instruction basis subtracting the
value of the metric being calculated, and then taking the weighted average. The results show
that there is a high degree of similarity in the pro�les for the two data sets. Perl showed
the largest di�erence between inputs for all three metrics. Whereas, swim and wave5 have a
large di�erence between inputs for only LVP. For the rest of the programs, the results show
that pro�les from di�erent data sets have a high correlation when using value pro�ling.

6. Pro�ling Memory Locations

In this section we extend the pro�ling of load instructions to pro�ling of variables and
memory locations. The motivation for this research was to compare the predictability and
invariance of load instructions with the variables used by those instructions. Our prior
research [5] focused only on pro�ling instructions. In conducting that research, we found
that many instructions that are hard to predict or that have variant behavior actually
access data (variables) that are invariant or are very predictable. The best example of this
behavior are load instructions inside of a procedure that is called from several di�erent
points in the program with di�erent variables as parameters.

16

Value Profiling and Optimization

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percent Executed Loads

P
er

ce
nt

 L
V

P
 P

re
di

ct
io

n
A

cc
ur

ac
y

compress gcc
 go ijpeg
 li perl
 m88ksim vortex

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percent Executed Loads
P

re
ce

nt
 L

V
P

 P
re

di
ct

io
n

A
cc

ur
ac

y

 applu apsi
 fpppp hydro2d
 mgrid su2cor
 swim tomcatv
 turb3d wave5

Figure 5: Last Value Predictability of Loads. The graph shows the percent prediction
accuracy using LVP. The percent prediction accuracy is shown on the y-axis, and
the percent of executed load instructions on the x-axis.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percent Executed Loads

P
er

ce
nt

 Z
er

o

compress gcc
 go ijpeg
 li perl
 m88ksim vortex

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percent Executed Loads

P
er

ce
nt

 Z
er

o

 applu apsi
 fpppp hydro2d
 mgrid su2cor
 swim tomcatv
 turb3d wave5

Figure 6: Zero Value for Loads. The graph shows the percent of time the result of the load
instruction had a zero value. The percent zero values is shown on the y-axis, and
the percent of executed load instructions on the x-axis.

17

Calder, Feller, & Eustace

LVP ZERO INV

Program test train Di� test train Di� test train Di�-Top

compress 50 53 1 1 2 0 44 48 2
gcc 55 53 2 13 12 1 46 45 3
go 47 49 3 7 8 1 35 38 4
ijpeg 46 48 3 10 10 0 19 19 1
li 38 46 9 10 11 2 39 43 7
perl 60 55 14 14 14 6 67 57 13
m88ksim 75 81 4 53 51 3 76 84 4
vortex 66 66 2 27 28 1 60 61 5

applu 35 36 0 15 15 0 34 35 1
apsi 18 27 2 1 2 1 18 29 5
fpppp 46 46 2 3 4 2 28 23 10
hydro2d 83 84 1 48 48 1 62 63 1
mgrid 4 4 0 4 4 0 4 4 0
su2cor 18 18 0 2 2 0 17 17 0
swim 3 23 16 0 0 0 1 7 1
tomcatv 3 4 0 0 1 0 2 3 0
turb3d 36 41 3 30 34 3 38 42 3
wave5 15 33 16 3 7 5 11 22 6

Average 39 43 4 13 14 1 33 36 4

Table 4: LVP/ZERO/INV Comparison. Shows the di�erence between LVP, ZERO and
Inv-Top from the test input to the train input.

A simple example of this can be seen in Figure 7. The example illustrates how it is
possible for an instruction (the load of record �eld p->foo inside ProcA) to operate on
invariant data, but to have changing values. The procedure ProcA is called twice inside
the while loop each time passing in one of the two di�erent objects. Another procedure
ProcB de�ned in a third party library is called which may or may not modify the variables.
Therefore, at compile-time it may be unknown whether the value of foo will change or not.
Pro�ling the load instruction (p->foo) inside of ProcA results in a load instruction whose top
value occurs only 50% of the time and a load which has 0% last value prediction accuracy.
This is because the load instruction sees the value sequence v1,v2,v1,v2,v1,v2,etc. If
the function were inlined or specialized, the load and add instruction would be 100% LVP
predictable and invariant. Pro�ling the variables v1 and v2 being passed into ProcA would
re
ect this invariance correctly, rather than pro�ling only the load instruction. If this
behavior was identi�ed, the compiler could then specialize the di�erent procedure sites,
increasing the invariance and predictability of the instructions.

If the invariance and predictability of the parameters are pro�led, compiler analysis
can also be used to determine if the invariance and predictability would be higher if the
procedure was specialized/inlined or not. Compiler analysis cannot always determine this

18

Value Profiling and Optimization

....
while () f
ProcA (&v1);
ProcA (&v2);
ProcB (&v1,&v2);

g
...

void ProcA (struct REC *p)
f
a = b + p->foo;
...

g

Figure 7: Example of Memory Locations Being More Invariant than the Instructions.
ProcA is called two times from within the while loop, with invariant parame-
ters, but the load inside of ProcA (p->foo) only has an Inv-Top invariance of
50%.

because of global variables, indirect calls, third party routines, or many de�nitions that
could potentially reach a use in a procedure via long call chains. In these situations, the
value pro�ling information would need to be kept track of using a form of call path value
pro�ling, or using a memory location (variable) pro�le as described in this section. One
could even implement a value pro�ler that kept track of the invariance and values for
di�erent addresses encountered by a load, on a per load basis.

6.1 Memory Location Value Pro�ler

The goal is to determine how the invariance and predictability of load instructions corre-
spond to the variables they load. To pro�le the values stored in variables, we chose to pro�le
at the granularity of memory locations. For our purposes, a memory location represents
any simple data type, �eld within a record, or element within an array.

Instead of trying to pro�le the variable names, we chose to pro�le the values stored in
memory locations (addresses) because memory locations can be dynamic, being allocated
and freed during program execution. In addition, heap objects are not associated with
any one variable name during execution. For the purposes of this study, we treat each
consecutive eight-byte piece of memory (on the 64-bit Alpha architecture) from the start of
each global or heap object as a variable and pro�le the top values for each 8-byte memory
location. This is not exact because the size of some �elds for an object and some types
may be smaller than eight-bytes. When pro�ling stack variables, we concatenated a unique
procedure ID with the load's o�set, in order to create a unique address when gathering the
value pro�le information. In addition, each allocated heap memory address is given its own
TNV table. When a heap object is deallocated, its TNV information is stored to the pro�le

19

Calder, Feller, & Eustace

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

compress gcc go li perl m88ksim fpppp su2cor turb3d

P
er

ce
nt

 M
em

or
y

Lo
ca

tio
ns

 A
cc

es
se

d

Text

Heap

Stack

Global

Figure 8: Memory References by Type. The graph shows the percentage of references each
variable type (Global, Stack, Heap, and loads to the Text segment) accounts for
in each program.

on disk, and a new TNV table is created for the same memory addresses if the addresses
are used again in a later memory allocation.

The memory location pro�ler is a two-step pro�ler. Step one generates a pro�le which
contains the address, and number of times each memory location was accessed. Step two
reads in the description �le generated by the �rst step and then value pro�les the top 99%
percent of accessed memory locations. We only pro�le the top 99% of the accessed memory
locations to reduce memory usage and time to pro�le.

During pro�ling, the memory address is �rst hashed and checked to see if it should be
pro�led (in the top 99%). If so, a TNV table exists for that memory location, and the
value being loaded is recorded as in a normal TNV table update described in Section 3. In
addition to the values being stored in the TNV table, for each value we keep track of the
list of loads that had that value and the number of times the load had that value for the
memory location during execution. With this information, we can determine exactly which
load PCs were responsible for what value and how many times.

Figure 8 shows the breakdown of memory references in terms of the type of data being
accessed for each program. The references are broken up into those to the global data
segment, stack, heap objects, and those loads accessing the text segment.

6.2 Invariance of Memory Locations

Figure 9 displays the invariance of memory locations with respect to percent of memory
locations referenced. It is interesting to note, that for certain programs, the invariance is
much higher for memory locations than it is for load instructions. 15% of the loads for
su2cor are shown to be 100% invariant in Figure 3. In comparison, 33% of the memory

20

Value Profiling and Optimization

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percent Memory Locations Accessed

P
er

ce
nt

 In
va

ria
nc

e
T

op

compress

gcc

go

li

perl

m88ksim

fpppp

su2cor

turb3d

Figure 9: Invariance of Memory Locations (Top). The graph shows the percent invariance
of the top value in the TNV table. The percent invariance is shown on the y-axis,
and the percent of accessed memory locations on the x-axis.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percent Memory Locations Accessed

P
er

ce
nt

 In
va

ria
nc

e
A

ll

compress

gcc

go

li

perl

m88ksim

fpppp

su2cor

turb3d

Figure 10: Invariance of Memory Locations (All). The graph shows the percent invariance
of all the values (Inv-3) in the TNV table. The percent invariance is shown on
the y-axis, and the percent of accessed memory locations on the x-axis.

21

Calder, Feller, & Eustace

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percent Memory Locations Accessed

P
er

ce
nt

 L
V

P
 P

re
di

ct
io

n
A

cc
ur

ac
y

compress
gcc
go
li
perl
m88ksim
fpppp
su2cor
turb3d

Figure 11: LVP of Memory Locations. The graph shows the percentage of time the value
of the Memory Location was the same as for the previous time the memory
location was accessed. The percent LVP is shown on the y-axis, and the percent
of dynamically referenced memory locations on the x-axis.

locations accessed by su2cor are shown to have 100% invariance in Figure 9. The values
seen by the load instructions varied more than the memory locations because the loads
accessed several di�erent addresses (memory locations). Another interesting observation is
the extreme bi-polar nature of the invariance of the memory locations. The �gure shows
that either the value in the memory location almost never changed (100% invariant) or it
was very random (0% invariant).

Figure 10 shows the same information as Figure 9 for a history depth of three. This
shows the invariance of the top three values found for each memory location.

6.3 LVP Accuracy of Memory Locations

Figure 11 illustrates the last value prediction accuracy for accessed memory locations. 50%
of all memory locations accessed have an LVP of 80% or higher for almost all the programs.
It is interesting to note that the LVP prediction accuracy is much higher than the invariance
found in Figures 9 and 10. This occurs because even when a new value is stored to a given
memory location, it still might be loaded by a handful of di�erent load instructions before
its value changes via a store. This can easily create a LVP accuracy in the 80% even though
the top value seen for a memory location is not signi�cant. This can be seen for fpppp

which has 0% invariance for more than 90% of its memory references, but it still has higher
than a 70% LVP prediction accuracy for 80% of its references.

22

Value Profiling and Optimization

Programs 1 10 100 1000 10000 100000

compress 210 (77.0) 27 (17.6) 0 (0.0) 0 (0.0) 2 (1.9) 6 (3.5)
gcc 12445 (55.1) 7608 (32.5) 3385 (10.7) 2210 (1.4) 30 (0.3) 0 (0.0)
go 4312 (41.4) 2552 (27.7) 2617 (8.1) 1165 (9.8) 740 (13.0) 0 (0.0)
li 634 (57.2) 256 (14.1) 54 (6.3) 52 (0.4) 87 (18.9) 17 (3.0)
perl 290 (53.5) 80 (46.5) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
m88ksim 800 (43.4) 226 (39.7) 68 (16.9) 3 (0.0) 0 (0.0) 0 (0.0)

fpppp 2630 (67.0) 584 (32.4) 59 (0.2) 22 (0.4) 0 (0.0) 0 (0.0)
su2cor 1128 (51.5) 167 (3.2) 38 (0.4) 16 (6.5) 382 (30.2) 36 (8.3)
turb3d 237 (13.9) 34 (4.8) 62 (81.3) 0 (0.0) 0 (0.0) 0 (0.0)

Average 2520 (51.1) 1281 (24.3) 698 (13.8) 385 (2.1) 137 (7.1) 6 (1.6)

Table 5: Percent Static Loads Accessing Di�erent Memory Locations. This table shows the
number of static loads accessing 1 to 1,000,000 di�erent addresses. The number
in parenthesis shows the weighted percent of dynamic references the static loads
account for. The last column shows the static loads referencing between 100,000
to 1,000,000 di�erent memory locations.

6.4 Number of Memory Locations Accessed by a Load

Table 5 illustrates how many di�erent memory locations a given load instruction accesses.
The �rst number in each column shows the number of static loads, and the number in
parenthesis shows the weighted percent of executed loads they account for. Results show
that 51% of the executed loads access only one memory location. 24% of all executed static
loads, accessed between two and ten di�erent memory locations. An extreme case is su2cor
for which 8% of the executed static loads accessed between 100,000 and 1,000,000 di�erent
memory locations. In a case like this it would be very unlikely to achieve a high degree of
invariance for those load instructions, unless all those memory locations contain the same
values.

7. Value-based Code Specialization

In this section we examine the performance potential of using value pro�ling to guide code
specialization. We took the instruction value pro�le for the top C and FORTRAN program
with the highest invariances, m88ksim and hydro2d, as shown in Figure 3. We then used
the value pro�le information to guide specialization performed by hand. The programs
were run on an Alpha 21164 500 MHZ processor, and they were compiled with the DEC
compilers using full optimization (-O5 -ifo -om). The execution times were recorded using
the SPEC runspec scripts. Our results show that value pro�ling can be an e�ective tool for
providing feedback to pro�le-driven optimizers, and it can be a useful performance pro�ling
tool for programmers pointing out potential places for optimization.

23

Calder, Feller, & Eustace

if (expdi� >= 0) f
for (*s = 0 ; expdi� > 0 ; expdi� {) f
*s j= *bmantlo & 1;
*bmantlo >>= 1;
*bmantlo j= *bmanthi << 31;
*bmanthi >>= 1;

g
*resexp = aexp;

g else f
expdi� = - expdi�;
for (*s = 0 ; expdi� > 0 ; expdi�{) f
*s j= *amantlo & 1;
*amantlo >>= 1;
*amantlo j= *amanthi << 31;
*amanthi >>= 1;

g
*resexp = bexp;
g

(a) Original Code

if (expdi� >= 0) f
for (*s = 0 ; expdi� > 0 ; expdi�{) f
*s j= *bmantlo & 1;
*bmantlo >>= 1;
*bmantlo j= *bmanthi << 31;
*bmanthi >>= 1;

g
*resexp = aexp;

g else f
if (*amantlo jj *amanthi) f
expdi� = - expdi�;
for (*s = 0 ; expdi� > 0 ; expdi� {) f
*s j= *amantlo & 1;
*amantlo >>= 1;
*amantlo j= *amanthi << 31;
*amanthi >>= 1;

g
g else f
*s = 0;
g
*resexp = bexp;

g

(b) Optimized Code

Figure 12: m88ksim: alignd - The original function alignd accounts for 11% of the ex-
ecuted instructions in m88ksim. The code in (a) was code specialized as shown
in (b). This modi�cation led to a speedup of 13%.

7.1 M88ksim

The value pro�le for m88ksim showed that most of its invariant instructions were executed
in procedures killtime and alignd. The routine killtime accounts for 23% of all dynamic
executed instructions, and alignd for 11% of all executed instructions.

Figure 12 illustrates the code specialization performed on the routine alignd, where
amantlo and amanthi are parameters to the function. Our value pro�ler indicated 100%
invariance for amantlo and amanthi, with a value of zero. Using the value pro�le, the
compiler could perform the simple code transformation, as shown in Figure 12(b). Special-
izing the if-clause to only execute when amantlo and amanthi are non-zero decreases the
execution time of m88ksim by 13%.

Figure 13 shows the killtime routine in m88ksim. The value pro�le indicated that
the load which was responsible for loading m88000.time left[i] had a zero value 99%
of the time, and so did the load for funct units[i].busy. Straight forward compiler
code specialization did not provide a performance bene�t. Instead, this is an example
where a performance tool pointed out a potential performance problem (a lot of redundant
computation), which could easily be optimized by a programmer.

24

Value Profiling and Optimization

void killtime (unsigned int time to kill)
f
register int i;
Clock += time to kill;

for (i = 0; i < 32; i++) f
m88000.time left[i] -= MIN(m88000.time left[i], time to kill);

g
if (usecmmu) f
Dcmmutime - = MIN(Dcmmutime, time to kill);
mbus latency - = MIN(mbus latency, time to kill);

g
for (i=0; i<=4; i++) f
funct units[i].busy -= MIN(funct units[i].busy, time to kill);

g
g

int execute(...)
f
...
if ((f->rsd used) && (ir->dest ! = 0)) f
m88000.Regs[ir->dest] = m88000.ALU;
if ((usecmmu) && (ir->op >= (unsigned)LDB)
&& (ir->op <= (unsigned)LDHU)) f
m88000.time left[ir->dest] = f->fu latency + Dcmmutime;
if ((ir->op == LDD) && ((ir->dest) <= 30)) f
m88000.time left[(ir->dest)+1]=f->fu latency+Dcmmutime+1;

g
g else f
m88000.time left[ir->dest] = f->fu latency;
if ((ir->op == LDD) && ((ir->dest) <= 30)) f
m88000.time left[(ir->dest)+1] = f->fu latency + 1;

g
g
m88000.wb pri[ir->dest] = f->wb pri;

g
...
g

Figure 13: m88ksim: killtime - The original function killtime accounts for 23% of all
executed instructions in m88ksim.

25

Calder, Feller, & Eustace

struct PROCESSOR f
...
WORD time left map next, =� next map register �=
WORD time left map[REGs], =� map time left regs �=

...
g

void killtime (unsigned int time to kill) f
register int i;
Clock += time to kill;
i = 0;
while (i < m88000.time left map next) f
int index = m88000.time left map[i];
m88000.time left[index] -= MIN(m88000.time left[index], time to kill);
if (m88000.time left[index] == 0) f
m88000.time left map[i] =
m88000.time left map[{ { m88000.time left map next];

g else
i++;

g
if (usecmmu) f
Dcmmutime - = MIN(Dcmmutime, time to kill);
mbus latency - = MIN(mbus latency, time to kill);

g
for (i=0; i<=4; i++) f
funct units[i].busy -= MIN(funct units[i].busy, time to kill);

g
g

int execute(...) f
...
if ((f->rsd used) && (ir->dest ! = 0)) f
m88000.Regs[ir->dest] = m88000.ALU;
if ((usecmmu) && (ir->op >= (unsigned)LDB) && (ir->op <= (unsigned)LDHU)) f
if (m88000.time left[ir->dest] == 0)
m88000.time left map[m88000.time left map next++] = ir->dest;
m88000.time left[ir->dest] = f->fu latency + Dcmmutime;
if ((ir->op == LDD) && ((ir->dest) <= 30)) f
if (m88000.time left[(ir->dest)+1] == 0)
m88000.time left map[m88000.time left map next++] = (ir->dest)+1;
m88000.time left[(ir->dest)+1]=f->fu latency+Dcmmutime+1;

g
g else f
if (m88000.time left[ir->dest] == 0)
m88000.time left map[m88000.time left map next++] = ir->dest;
m88000.time left[ir->dest] = f->fu latency;
if ((ir->op == LDD) && ((ir->dest) <= 30)) f
if (m88000.time left[(ir->dest)+1] == 0)
m88000.time left map[m88000.time left map next++] = (ir->dest)+1;
m88000.time left[(ir->dest)+1] = f->fu latency + 1;

g
g
m88000.wb pri[ir->dest] = f->wb pri;

g
...
g

Figure 14: m88ksim: killtime - This is an optimized version a programmer could create
by changing their data structures. The changes in are shown in bold text. This
optimization resulted in a 9% execution speedup.

26

Value Profiling and Optimization

QP = VMAX(I,J) - UTDF(I,J)
QM = UTDF(I,J) - VMIN(I,J)

IF (PP .EQ. 0.0D0)
RP(I,J)=0.0D0

ELSE
RP(I,J)=DMIN1(DBLE(1.0D0),QP/PP)

END IF

IF (PM .EQ. 0.0D0)
RN(I,J)=0.0D0

ELSE
RM(I,J)=DMIN1(DBLE(1.0D0),QM/PM)

END IF

(a) Original Code

QP = VMAX(I,J) - UTDF(I,J)
QM = UTDF(I,J) - VMIN(I,J)

IF (QP .EQ. 0.0D0)
RP(I,J) = 0.0D0

ELSE
IF (PP .EQ. 0.0D0)
RP(I,J)=0.0D0

ELSE
RP(I,J)=DMIN1(DBLE(1.0D0),QP/PP)

END IF
END IF

IF (QM .EQ. 0.0D0)
RM(I,J)=0.0D0

ELSE
IF (PM .EQ. 0.0D0)
RN(I,J)=0.0D0

ELSE
RM(I,J)=DMIN1(DBLE(1.0D0),QM/PM)

END IF
END IF

(b) Optimized Code

Figure 15: hydro2d: filter - the function filter accounts for 13% of the executed in-
structions in hydro2d. The original code is shown in (a) and the specialized
version in (b). This modi�cation led to a speedup of 11%.

Since only a few registers if any had a non-zero time left value during the execution of
the �rst loop in killtime, we restructured the algorithm by using a small array that keeps
a map of the non-zero time left elements. This array would only contain those elements
of time left that are non-zero. Since this list is short, the while loop only needs to be
executed a few times. The optimized code is shown in Figure 14. The map is added to the
structure PROCESSOR. Additional code in killtime is required to make sure that items get
deleted from the map when their time left becomes zero. The routine execution had to
be modi�ed to make sure that the map was updated properly. A register was added to the
map every time its time left value changed.

The killtime optimization provided a 9% execution time speedup. Performing both
the alignd and killtime optimizations together resulted in an overall execution speedup
of 21% for m88ksim.

7.2 Hydro2d

The value pro�le for hydro2d showed that most of its invariant instructions were executed
in filter and tistep. The routine filter accounts for 41% of all executed instructions,
and tistep for 4% of all executed instructions.

27

Calder, Feller, & Eustace

K = 0
DO 400 J = 1,NQ
DO 400 I = 1,MQ
VSD = SQRT (GAM * PR(I,J) / RO(I,J))
VZ1 = VSD + ABS(VZ(I,J)) + DVZ(I,J)
VZ2 = VZ1 ** 2
VR1 = VSD + ABS(VR(I,J)) + DVR(I,J)
VR2 = VR1 ** 2

XPZ = DBLE(0.25D0) * DPZ(I,J) / VZ2
XPR = DBLE(0.25D0) * DPR(I,J) / VR2

IF (XPZ .LT. 1.0D-3) DPZ(I,J) = 1.0D0
IF (XPR .LT. 1.0D-3) DPR(I,J) = 1.0D0

TCZ = DBLE(0.5D0) * DZ(I) / DPZ(I,J) *
(SQRT(VZ2 + DBLE(4.0D0)*DPZ(I,J)) - VZ1)
TCR = DBLE(0.5D0) * DR(J) / DPR(I,J) *
(SQRT(VR2 + DBLE(4.0D0)*DPR(I,J)) - VR1)

IF (XPZ .LT. 1.0D-3)
TCZ = DZ(I) / VZ1 * (DBLE(1.0D0) - XPZ)
IF (XPR .LT. 1.0D-3)
TCR = DR(J) / VR1 * (DBLE(1.0D0) - XPR)
K = K + 1
TST(K) = DMIN1(TCZ , TCR)
400 CONTINUE

(a) Original Code

K = 0
DO 400 J = 1,NQ
DO 400 I = 1,MQ
VSD = SQRT (GAM * PR(I,J) / RO(I,J))
VZ1 = VSD + ABS(VZ(I,J)) + DVZ(I,J)
VZ2 = VZ1 ** 2
VR1 = VSD + ABS(VR(I,J)) + DVR(I,J)
VR2 = VR1 ** 2
IF ((DPZ(I,J) .EQ. 0.0D0) .AND.
(DPR(I,J) .EQ. 0.0D0)) THEN
TCZ = DZ(I) / VZ1
TCR = DR(J) / VR1
ELSE
XPZ = DBLE(0.25D0) * DPZ(I,J) / VZ2
XPR = DBLE(0.25D0) * DPR(I,J) / VR2
IF (XPZ .LT. 1.0D-3) DPZ(I,J) = 1.0D0
IF (XPR .LT. 1.0D-3) DPR(I,J) = 1.0D0

TCZ = DBLE(0.5D0) * DZ(I) / DPZ(I,J) *
(SQRT(VZ2 + DBLE(4.0D0)*DPZ(I,J)) - VZ1)
TCR = DBLE(0.5D0) * DR(J) / DPR(I,J) *
(SQRT(VR2 + DBLE(4.0D0)*DPR(I,J)) - VR1)

IF (XPZ .LT. 1.0D-3)
TCZ = DZ(I) / VZ1 * (DBLE(1.0D0) - XPZ)
IF (XPR .LT. 1.0D-3)
TCR = DR(J) / VR1 * (DBLE(1.0D0) - XPR)

END IF
K = K + 1
TST(K) = DMIN1(TCZ , TCR)
400 CONTINUE

(b) Optimized Code

Figure 16: hydro2d: tistep - the function tistep accounts for 4% of the executed in-
structions in hydro 2d. The original code is shown in (a) and the specialized
version in (b). This modi�cation led to a speedup of 2%.

Figure 15(a) shows a small fraction of the function filter from the SPEC95 FORTRAN
program hydro2d. This code fragment is inside of a loop that accounts for 13% of all
executed instructions. Our value pro�ler found QP and QM to be zero 98% of the time.
Performing the simple code specialization shown in Figure 15(b) resulted in 11% speedup.

Figure 16(a) shows the original version of the tistep routine. This routine executes 4%
of all instructions in hydro2d. DPZ(I,J) and DPR(I,J) were
agged as invariant by our
value pro�ler with an invariance of 99% and a value of zero. Code specialization resulted
in an overall speedup of 2% using the optimized code in Figure 16(b). There were a few
additional 1-2% speedup cases we found via the value pro�le for hydro2d resulting in an
overall execution speedup of 15%.

28

Value Profiling and Optimization

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Static Loads

P
er

ce
nt

 In
va

ria
nc

e
T

op

 1st Interval

 2nd Interval

 3rd Interval

 4th Interval

 5th Interval

 6th Interval

 7th Interval

 8th Interval

 9th Interval

 10th Interval

Figure 17: Interval Invariance for Compress. This graph shows the invariance during dif-
ferent parts of execution for each instruction. Each instructions execution is
broken up into ten equal chunks of time based on number of load instructions
executed. The invariance was then gathered for each static load instruction for
each of the ten intervals. The invariance for the top value found for each interval
is plotted for each static load. Only load instructions executed more than 100
times are shown.

29

Calder, Feller, & Eustace

8. Convergent Value Pro�ling

The amount of time a user will wait for a pro�le to be generated will vary depending on the
gains achievable from using value pro�ling. The level of detail required from a value pro�ler
determines the impact on the time to pro�le. The problem with a straight forward pro�ler,
as shown in Figure 1, is it could run a hundred times slower than the original application,
especially if all of the instructions are pro�led. One solution we proposed in [5] was to use
an intelligent pro�ler that realizes the data (invariance and top N values) being pro�led is
converging to a steady state and then pro�ling is turned o� on an instruction by instruction
basis.

Figure 17 shows the invariance of load values for compress throughout program execu-
tion. Each static load has its execution broken up into 10 time intervals, and the invariance
is kept track of separately for each time interval and then plotted. Each interval in this
example represents 10% of a load's execution. The �gure shows that about 40% of all
executed loads are always invariant, and 30% are random across all time intervals. The
convergent pro�ler would classify these loads quickly into their respective category. The
remaining 30% of the loads have and invariance that varies over time, and these loads pose
a greater challenge for a sampling pro�ler to obtain an accurate invariance. The goal for
using this intelligent sampler is to quickly classify those instructions that are invariant or
random, while continuing to pro�le the harder to classify instructions. For example, Fig-
ure 17 shows that the static loads numbered 33, 34, and 35 had a wide range of invariance
during their execution. Over the 10 sampled intervals their invariance oscillated with the
following Inv-Top invariances: 48%, 37%, 74%, 93%, 42%, 79%, 64%, 100%, 100%, and
68%.

8.1 Convergent Value Pro�ler

In examining the value invariance of instructions, we noticed that most instructions converge
in the �rst few percent of their execution to a steady state. Once this steady state is reached,
there is no point to further pro�ling the instruction. By keeping track of the percent
change in invariance one can classify instructions as either \converged" or \changing". The
convergent pro�ler stops pro�ling the instructions that are classi�ed as converged based
on a convergence criteria. This convergence criteria is tested after a given time period
(convergence-interval) of pro�ling the instruction.

To model this behavior, the pro�ling code is conditioned on a boolean to test if pro�ling
is turned o� or on for an instruction. If pro�ling is turned on, normal pro�ling occurs, and
after a given convergence interval the convergence criteria is tested. The pro�ling condition
is then set to false if the pro�le has converged for the instruction. If pro�ling is turned
o�, periodically the execution counter is checked to see if a given backo� time period has
elapsed. This is used to periodically turn pro�ling back on to see if the invariance is at all
changing.

We examined the performance of several heuristics for the convergence criteria for value
pro�ling. The heuristic we found to provide the best performance only continues to pro�le
if the change in invariance for the current convergence interval is greater than an inv-
increase bound or lower than an inv-decrease bound. This heuristic will be referred to as
Conv(Inc/Dec). If the percent invariance is changing above or below these bounds, pro�ling

30

Value Profiling and Optimization

Convergence Algorithm
Conv(Inc=10%/Dec=10%) None (Random)

Program Prof Di�-Top Di�-All Find-Top Prof Di�-Top Di�-All Find-Top

compress 4.2 1.7 0.3 97.7 4.1 3.3 0.7 99.7
gcc 21.8 2.7 0.6 98.0 23.0 3.0 0.5 97.0
go 1.3 4.2 1.0 99.8 1.1 4.4 1.3 99.8
ijpeg 0.2 2.3 0.7 99.7 0.3 2.6 0.8 99.9
li 0.3 5.1 1.6 98.0 0.2 5.6 1.8 98.1
perl 0.1 3.0 0.4 99.7 0.2 2.3 0.5 100.0
m88ksim 0.1 2.3 0.3 99.6 0.1 2.6 0.6 100.0
vortex 0.4 6.7 1.0 98.6 0.4 7.2 1.1 99.0

applu 0.1 0.2 0.1 100.0 0.3 0.3 0.1 100.0
apsi 0.2 4.2 1.0 99.9 0.5 8.4 1.9 100.0
fpppp 0.5 7.9 0.6 100.0 0.3 9.3 0.9 100.0
hydro2d 8.2 4.7 1.4 95.7 0.2 6.3 1.2 99.8
mgrid 0.1 5.3 1.3 99.8 0.0 25.0 5.1 99.8
su2cor 0.3 3.0 0.7 99.9 0.3 12.9 2.8 99.7
swim 0.0 0.9 0.4 100.0 0.0 1.3 0.6 100.0
tomcatv 0.1 1.2 0.4 100.0 0.1 1.8 0.5 100.0
turb3d 0.2 9.0 1.9 99.9 0.1 24.3 5.0 100.0
wave5 0.3 2.1 0.7 99.9 0.4 10.5 2.5 100.0

Average 2.1 3.7 0.8 99.2 1.8 7.3 1.5 99.6

Table 6: Results for di�erent converging algorithms using the fast-converging backo�. The
invariance and values found for convergent pro�ling and random sampling are
compared to a value pro�le of the complete execution of the program.

continues. Otherwise pro�ling stops because the invariance has converged to be within these
bounds. When calculating the invariance the total frequency of the steady part of the TNV
table is examined. For the results, we use a convergence-interval for testing the criteria
of 2000 instruction executions, and an inv-increase threshold of 10% and an inv-decrease
threshold of 10%. If the invariance is not increasing or decreasing by more than 10%, then
pro�ling is turned o�.

Once pro�ling is turned o�, it will be turned on after the backo� period has elapsed.
We examined several di�erent backo� methods. The technique we used in this paper is
a fast-converging backo� method, which is computed by multiplying the total number of
instructions pro�led by twice the number of times the instruction's invariance has converged.
The more times the instruction converges, the longer the backo� period.

Table 6 shows the performance of the convergent pro�ler, when using the upper and
lower change in invariance bounds for determining convergence. The Prof column shows
the percentage of executed load instructions that had pro�ling turned on. The results
show that this heuristic spends on average 2.3% of its time pro�ling. When comparing the

31

Calder, Feller, & Eustace

invariance found to a pro�ler that pro�les the full length of a program's execution, there
was only a 3.7% di�erence in invariance. Results for additional thresholds and di�erent
backo� periods/algorithms can be found in [29].

8.2 Comparing Convergent Pro�ling and Random Sampling

We now analyze how the convergent algorithm compares to a random sampling method.
Unlike a traditional random sampler which randomly samples instructions every so often
taking the value, our random sampler continuously samples instructions for a given time-
interval, and then backs o� for a random amount of time, and then samples again. The
number of instructions to backo�, is a random number where the upper bound to the
random function increases exponentially. The upper bound starts at 2000 and increases ex-
ponentially each time a new sampling interval takes place. Therefore, the random function
chooses a random number between 2000 and the upper bound of instructions to backo�.
When pro�ling starts, a sample of 2000 values is taken. Then pro�ling for the instruction
is turned o� a random amount of time using the two bounds. This sampling and random
backo� continues until the program �nishes execution. Table 6 shows that when using the
Conv(Inc/Dec) heuristic, better results are achieved for the di�erence in invariance. How-
ever, both the convergent and random algorithm found all the top values when compared
to the full length pro�le.

In terms of invariance, the Conv(Inc/Dec) heuristic performs better for all programs.
For mgrid, su2cor, turb3d, and wave5, the di�erence in invariance is 11% to 25% for
random sampling, compared to 2% to 9% for the Conv(Inc/Dec) heuristic. These results
show the need for some form of intelligent sampler for these programs, but random sampling
provides good results for many of the programs.

Random sampling can be either as accurate as convergent pro�ling, less accurate, or
more accurate. It depends on the sampling regimen, and the amount of time the program
is pro�led. We actually examine several di�erent backo� algorithms and di�erent sampling
periods, but only showed results in Table 6 for a sampling con�guration that gave good
performance and the same pro�ling time as convergent pro�ling. Results for additional
random sampling algorithms and random backo� thresholds can be found in [29].

8.3 Convergent Pro�ling Timings

Figure 7 shows the time it takes to execute and pro�le the SPEC programs. The �rst
column shows the time in seconds to execute the programs on a 500 MHZ Alpha 21164.
All of the rest of the results are shown as multiples of the original execution time. As
described in section 4, all programs were compiled with full optimization (-O4 -ifo), and
all programs were pro�led using ATOM [30] with the -A1 option for optimization. ATOM is
made to be a general purpose pro�ling tool for research, so a performance hit is taken when
using it for pro�ling. To see this e�ect, the column labeled Freq shows the performance
when using ATOM to only keep track of the number of times each load was executed. We
insert an ATOM call for every load instruction. ATOM then creates a procedure call to
our analysis routine which increments a counter for the load, when the load is executed. A
commercial pro�ler could perform in-lining to help reduce the overhead of performing the
procedure call for each load, and perform additional optimizations on the data structures

32

Value Profiling and Optimization

Time Slowdown
Program Original Freq Conv Full

compress 0.5s 3.0 6.4 20.4
gcc 4.6s 3.7 11.0 30.8
go 120.4s 4.7 13.2 45.3
ijpeg 74.2s 5.5 10.5 35.0
li 57.1s 5.5 11.9 40.5
perl 53.0s 5.0 14.9 37.7
m88ksim 206.7s 4.4 9.8 28.2
vortex 141.6s 4.7 12.6 55.0
applu 294.2s 2.3 4.7 15.6
apsi 108.9s 3.1 6.5 22.8
fpppp 286.2s 7.6 31.7 104.3
hydro2d 276.2s 2.1 4.3 11.1
mgrid 253.2s 4.7 11.7 43.8
su2cor 180.1s 2.4 4.8 16.9
swim 173.9s 2.6 5.6 21.5
tomcatv 197.2s 2.3 4.7 16.9
turb3d 215.2s 3.8 8.3 26.7
wave5 163.9s 2.4 5.3 19.6

Average 156.0s 3.8 10.0 32.9

Table 7: The time it takes to execute and pro�le each program. Execution time is shown
in seconds. Simulation time is shown as multiples of the original execution time.

after in-lining. Since ATOM does not perform/allow this in-lining, it has a �xed amount of
additional overhead. The results show that it takes 3.8 times longer to execute the program
when gathering these frequency counts using ATOM. The column labeled Conv shows that
the convergent pro�ler results in an average 10 time slowdown when pro�ling. Pro�ling the
load instructions for the complete execution of the program results in an average slowdown
of 33 times.

9. Summary

In the paper we presented value pro�ling and examined the design of a simple value pro�ler.
Our results showed that using a value pro�ling table that keeps two to four values in the
steady part of the table throughout pro�ling captures the invariance and the top values
for the programs examined. Having two to three clear entries reserved to allow new values
to make it into the steady part of the table, also resulted in an accurate value pro�le.
Therefore, only a table size of 4 to 6 entries is needed to accurately capture the invariant
information.

This paper explored the invariant behavior of values for loads, and memory locations, as
well as their value predictability. Our results show that the invariance and LVP, found for
instructions when using value pro�ling, are very predictable between di�erent input sets.

As an alternative to pro�ling instructions, we implemented a technique for pro�ling
memory locations (variables). Value pro�ling memory locations (variables) could expose
more optimization potential than only using an instruction value pro�ler. This can expose

33

Calder, Feller, & Eustace

invariant behavior for instructions inside of procedures called from several locations in
the program. Our results showed higher prediction accuracy and more invariant behavior
for the memory locations over pro�ling instructions. Also, the memory locations were
much easier to classify as very invariant/predictable or very random/unpredictable than
the load instruction pro�les. Using compiler analysis with value pro�ling of parameters or
value pro�ling with path information could also potentially expose more opportunities for
optimization.

Convergent value pro�ling was examined as an accurate technique to decrease pro�ling
time. We compared the performance of convergent pro�ling to a random sampler and found
that on average both pro�led about 2% of the executed instructions, with an average 10
time slowdown in execution. Convergent pro�ling had an invariance that was only 3.7%
di�erent from a full length pro�ler, whereas the random sampling had an average di�erence
in invariance of 7.3% from the full length pro�ler. For half of the programs the random
sampler was just as accurate as the convergent pro�ler, but for the other half the convergent
pro�ler was up to 20% more accurate than random sampling.

We also showed the potential of value pro�ling for optimization. Using value pro�ling
for compiler-based code specialization resulted in a 13% speedup for alignd in m88ksim

and a total 15% speedup for hydro2d. In addition, we showed the bene�t of using value
pro�ling as a performance analysis tool. Value pro�ling identi�ed a signi�cant amount of
redundant computation for killtime in m88ksim, and with a simple change in algorithm
and modi�cation of a data structure, we were able to reduce the execution time by 9% for
m88ksim. Combining both optimizations for m88ksim resulted in a combined 21% reduction
in execution time.

9.1 Future Directions

The convergent pro�ler we examined was not fully optimized for memory usage and in-
struction count, and had additional overhead from using ATOM that a commercial pro�ler
would not necessarily have. Therefore, one should be able to further reduce the overhead
shown in this paper due to value pro�ling. In addition, using hardware sampling, as in
DCPI [31], could potentially reduce this overhead to a few percent.

Di�erent algorithms could also be used for value pro�ling to reduce the pro�ling time,
but at a tradeo� of a lose in accuracy. An example of this would be to use random index into
the TNV table. If the index is a hit (same value), then the frequency counter is incremented,
and if it is a miss the value would be replaced. If the goal of the pro�ler is to only �nd the
most invariant load instructions, random index/replacement could provide accurate results.

Another future direction for this research is motivated by the value prediction accuracies
found for the memory locations. The last value prediction accuracies shown in Figure 11
are much higher than seen when predicting the last value based on the instruction's PC
as shown in Figure 5. This suggests that hardware value prediction could possibly bene�t
from predicting some load instructions using a form of memory address to index into the
value table instead of the load instruction's PC. To make such an architecture worthwhile,
an address other than the e�ective address would probably be needed. Two studies [32, 33]
have suggested predictive techniques for generating fast or approximate memory addresses
early in the pipeline, which could then be used to index into a value prediction table.

34

Value Profiling and Optimization

Acknowledgments

We would like to thank the anonymous reviewers for the useful comments. This work was
funded in part by NSF CAREER grant No. CCR-9733278, UC MICRO grant No. 97-018,
and a Compaq Computer Corporation external research grant No. US-0040-97.

References

[1] B. Calder, G. Reinman, , and D. Tullsen, \Selective value prediction," in 26th Annual
International Symposium on Computer Architecture, May 1999.

[2] F. Gabbay and A. Mendelson, \Speculative execution based on value prediction." EE
Department TR 1080, Technion - Israel Institue of Technology, Nov. 1996.

[3] M. Lipasti and J. Shen, \Exceeding the data
ow limit via value prediction," in 29th
International Symposium on Microarchitecture, pp. 226{237, Dec. 1996.

[4] M. Lipasti, C. Wilkerson, and J. Shen, \Value locality and load value prediction," in
Seventh International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 138{147, Oct. 1996.

[5] B. Calder, P. Feller, and A. Eustace, \Value pro�ling," in 30th International Symposium
on Microarchitecture, pp. 259{269, Dec. 1997.

[6] F. Gabbay and A. Mendelson, \Can program pro�ling support value prediction?," in
30th International Symposium on Microarchitecture, pp. 270{280, Dec. 1997.

[7] Y. Sazeides and J. E. Smith, \The predictability of data values," in 30th International
Symposium on Microarchitecture, pp. 248{258, Dec. 1997.

[8] K. Wang and M. Franklin, \Highly accurate data value prediction using hybrid predic-
tors," in 30th International Symposium on Microarchitecture, pp. 281{290, Dec. 1997.

[9] G. Reinman and B. Calder, \Predictive techniques for aggressive load speculation," in
31st International Symposium on Microarchitecture, Dec. 1998.

[10] D. Gallagher, W. Chen, S. Mahlke, J. Gyllenhaal, and W. Hwu, \Dynamic memory
disambiguation using the memory con
ict bu�er," in Six International Conference on
Architectural Support for Programming Languages and Operating Systems, pp. 183{193,
Oct. 1994.

[11] M. Moudgill and J. H. Moreno, \Run-time detection and recovery from incorrectly
reordered memory operations." IBM Research Report, May 1997.

[12] C. Fu, M. Jennings, S. Larin, and T. Conte, \Value speculation scheduling for high
performance processors," in Eigth International Conference on Architectural Support
for Programming Languages and Operating Systems, Oct. 1998.

[13] C. Fu, M. Jennings, S. Larin, and T. Conte, \Software-only value speculation schedul-
ing," tech. rep., Department of Electrical and Computer Engineering, North Carolina
State University, June 1998.

35

Calder, Feller, & Eustace

[14] G. Reinman, B. Calder, D. Tullsen, G. Tyson, and T. Austin, \Classifying load and
store instructions for memory renaming," in International Conference on Supercom-
puting, June 1999.

[15] G. Tyson and T. M. Austin, \Improving the accuracy and performance of memory
communication through renaming," in 30th Annual International Symposium on Mi-
croarchitecture, pp. 218{227, Dec. 1997.

[16] J. Auslander, M. Philipose, C. Chambers, S. Eggers, and B. Bershad, \Fast, e�ec-
tive dynamic compilation," in Proceedings of the ACM SIGPLAN '96 Conference on
Programming Language Design and Implementation, pp. 149{159, ACM, May 1996.

[17] C. Consel and F. Noel, \A general approach for run-time specialization and its applica-
tion to C," in Thirteenth ACM Symposium on Principles of Programming Languages,
pp. 145{156, ACM, Jan. 1996.

[18] D. Engler, W. Hsieh, and M. Kaashoek, \`C: A language for high-level e�cient, and
machine-independent dynamic code generation," in Thirteenth ACM Symposium on
Principles of Programming Languages, pp. 131{144, ACM, Jan. 1996.

[19] T. Knoblock and E. Ruf, \Data specialization," in Proceedings of the ACM SIGPLAN
'96 Conference on Programming Language Design and Implementation, pp. 215{225,
ACM, Jan. 1996.

[20] P. Lee and M. Leone, \Optimizing ml with run-time code generation," in Proceed-
ings of the ACM SIGPLAN '96 Conference on Programming Language Design and
Implementation, pp. 137{148, ACM, May 1996.

[21] T. Autrey and M. Wolfe, \Initial results for glacial variable analysis," in 9th Interna-
tional Workshop on Languages and Compilers for Parallel Computing, Aug. 1996.

[22] B. Calder, D. Grunwald, and B. Zorn, \Quantifying behavioral di�erences between C
and C++ programs," Journal of Programming Languages, vol. 2, no. 4, pp. 313{351,
1994.

[23] B. Calder and D. Grunwald, \Reducing indirect function call overhead in C++ pro-
grams," in 1994 ACM Symposium on Principles of Programming Languages, pp. 397{
408, Jan. 1994.

[24] U. H�olzle and D. Ungar, \Optimizing dynamically-dispatched calls with run-time type
feedback," in Proceedings of the SIGPLAN'93 Conference on Programming Language
Design and Implementation, pp. 326{336, ACM, June 1994.

[25] U. H�olzle, C. Chambers, and D. Ungar, \Optimizing dynamically-types object-oriented
languages with polymorhic inline caches," in ECOOP'91, Fourth European Conference
on Object-Oriented Programming, pp. 21{38, July 1991.

[26] J. Dean, C. Chambers, and D. Grove, \Selective specialization for object-oriented
languages," in Proceedings of the ACM SIGPLAN '95 Conference on Programming
Language Design and Implementation, pp. 93{102, ACM, June 1995.

36

Value Profiling and Optimization

[27] D. Grove, J. Dean, C. Garret, and C. Chambers, \Pro�le-guided receiver class predic-
tion," in Proceedings of the ACM Conference on Object-Oriented Programming Sys-
tems, Languages and Applications, pp. 108{123, ACM, Oct. 1995.

[28] S. Richardson, \Exploiting trivial and redundant computation," in Proceedings of the
Eleventh Symposium on Computer Arithmetic, 1993.

[29] P. Feller, \Value pro�ling for instructions and memory locations," Tech. Rep. CS98-
581, Department of Computer Science and Engineering, University of California, San
Diego, Apr. 1998. MS Thesis.

[30] A. Srivastava and A. Eustace, \ATOM: A system for building customized program
analysis tools," in Proceedings of the Conference on Programming Language Design
and Implementation, pp. 196{205, ACM, 1994.

[31] J. M. Anderson, L. M. Berc, J. Dean, S. G. Ghemawat, M. R. Henzinger, S.-T. A. Le-
ung, R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger, W. E. Weihl, and G. Chrysos,
\Continous pro�ling: Where have all the cycles gone?," in Proceedings of the Sixteenth
ACM Symposium on Operating System Principles, Oct. 1997.

[32] T. Austin, D. Pnevmatikatos, and G. Sohi, \Streamlining data cache access with fast
address calculation," in 22nd Annual International Symposium on Computer Architec-
ture, June 1995.

[33] B. Calder, D. Grunwald, and J. Emer, \Predictive sequential associative cache," in
Proceedings of the Second International Symposium on High-Performance Computer
Architecture, Feb. 1996.

37

