Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

< previous | issue |       
 
Received: 6 November 2022
Accepted: 3 April 2023
Online: 13 August 2023
H. Editor: J. Sejkora
 
  full text (PDF, 6.62 MB)
 
Export to RIS
Export to BibTeX
Export to Mendeley
 

Original paper

Elena S. Zhitova, Rezeda M. Sheveleva, Andrey A. Zolotarev, Sergey V. Krivovichev, Vladimir V. Shilovskikh, Anton A. Nuzhdaev, Maria A. Nazarova

The crystal structure of magnesian halotrichite, (Fe,Mg)Al2(SO4)4·22H2O: hydrogen bonding, geometrical parameters and structural complexity

Journal of Geosciences, volume 68 (2023), issue 2, 163 - 178

DOI: http://doi.org/10.3190/jgeosci.372



Abdeen AM, Will G, Schafer W, Kirfel A, Bargouth MO, Recker K, Weiss A (1981) X-ray and neutron diffraction study of alums: II. The crystal structure of methylammonium aluminium alum III. The crystal structure of ammonium aluminium alum. Z Kristallogr 157: 147-166
http://doi.org/10.1524/zkri.1981.157.3-4.147

Balic-Žunic T, Garavelli A, Jakobsson SP, Jonasson K, Katerinopoulos A, Kyriakopoulos K, Acquafredda P (2016) Fumarolic Minerals: An Overview of Active European Volcanoes. In: Nemeth K (ed) Updates in Volcanology, from Volcano Modelling to Volcano Geology. InTech, Rijeka, Croatia, pp 267-322

Ballirano P (2006) Crystal chemistry of the halotrichite group XAl2(SO4)4×22H2O: the X = Fe-Mg-Mn-Zn compositional tetrahedron. Eur J Mineral 18: 463-469
http://doi.org/10.1127/0935-1221/2006/0018-0463

Baur WH (1964) On the crystal chemistry of salt hydrates. III. The determination of the crystal structure of FeSO4×7H2O (melanterite). Acta Crystallogr 17: 1167-1174
http://doi.org/10.1107/S0365110X64003000

Biagioni C, Moëlo Y, Orlandi P, Stanley CJ (2016) Lead-antimony sulfosalts from Tuscany (Italy). XVII. Meerschautite, (Ag,Cu)5.5Pb42.4(Sb,As)45.1S112O0.8, a new expanded derivative of owyheeite from the Pollone mine, Valdicastello Carducci: occurrence and crystal structure. Mineral Mag 80: 675-690
http://doi.org/10.1180/minmag.2016.080.011

Biagioni C, Mauro D, Pasero M (2020) Sulfates from the pyrite ore deposits of the Apuan Alps (Tuscany, Italy): A review. Minerals 10(12): 1092.
http://doi.org/10.3390/min10121092

Blatov VA, Shevchenko AP, Proserpio DM (2014) Applied topological analysis of crystal structures with the program package ToposPro. Cryst Growth Des 14(7): 3576-3586
http://doi.org/10.1021/cg500498k

Buzatu A, Dill HG, Buzgar N, Damian G, Maftei AE, Apopei AI (2016) Efflorescent sulfates from Baia Sprie mining area (Romania)-acid mine drainage and climatological approach. Sci Total Environ 542: 629-641
http://doi.org/10.1016/j.scitotenv.2015.10.139

Chesnokov BV, Shcherbakova EP, Nishanbaev TP (2008) Minerals of burned dumps of Chelyabinsk coal basin. Miass Institute of Mineralogy, Miass, Russia, pp 1-140 (in Russ)

Cody AD, Grammer, TR (1979) Magnesian halotrichite from White Island. N Z J Geol Geophys 22(4): 495-498
http://doi.org/10.1080/00288306.1979.10424158

D’Orazio M, Mauro D, Valerio M, Biagioni C (2021) Secondary Sulfates from the Monte Arsiccio Mine (Apuan Alps, Tuscany, Italy): Trace-element budget and role in the formation of acid mine drainage. Minerals 11(2): 206
http://doi.org/10.3390/min11020206

Demartin F, Castellano C, Gramaccioli C M, Campostrini I (2010) Aluminum-for-iron substitution, hydrogen bonding, and a novel structure-type in coquimbite-like minerals. Canad Mineral 48: 323-333
http://doi.org/10.3749/canmin.48.2.323

Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst 42: 339-341
http://doi.org/10.1107/S0021889808042726

Espana JS, Pamo EL, Santofimia E, Aduvire O, Reyes J, Barettino D (2005) Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Appl Geochem 20(7): 1320-1356
http://doi.org/10.1016/j.apgeochem.2005.01.011

Gagne OC, Hawthorne FC (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallogr B71: 561-578

Hakkou R, Benzaazoua M, Bussière B (2008) Acid mine drainage at the abandoned Kettara Mine (Morocco): 1. Environmental characterization. Mine Water Environ, 27(3): 145-159
http://doi.org/10.1007/s10230-008-0036-6

Jambor JL, Nordstrom DK, Alpers CN (2000) Metal-sulfate salts from sulfide mineral oxidation. Rev Mineral Geochem 40(1): 303-350
http://doi.org/10.2138/rmg.2000.40.6

Jeffrey GA (1997) An introduction to hydrogen bonding. New York: Oxford university press, 12.

Kampf AR, Hughes JM, Nash BP, Marty J (2016) Vanarsite, packratite, morrisonite, and gatewayite: four new minerals containing the [As3+V4+,5+12As5+6O51] heteropolyanion, a novel polyoxometalate cluster. Canad Mineral 54: 145-162
http://doi.org/10.3749/canmin.1500062

Kampf AR, Cooper MA, Nash BP, Cerling TE, Marty J, Hummer DR, Celestian AJ, Rose TP, Trebisky TJ (2017) Rowleyite, [Na(NH4,K)9Cl4][V5+,4+2(P,As)O8]6·n[H2O,Na,NH4,K,Cl], a new mineral with a microporous framework structure. Amer Min 102: 1037-1044

Krivovichev SV (2012) Topological complexity of crystal structures: Quantitative approach. Acta Crystallogr A68: 393-398
http://doi.org/10.1107/S0108767312012044

Krivovichev SV (2013) Structural complexity of minerals: Information storage and processing in the mineral world. Mineral Mag 77: 275-326
http://doi.org/10.1180/minmag.2013.077.3.05

Krivovichev SV (2015) Structural complexity of minerals and mineral parageneses: Information and its evolution in the mineral world. In: Danisi R, Armbruster T (eds) Highlights in Mineralogical Crystallography. Walter de Gruyter GmbH, Berlin, Germany, pp 31-73
http://doi.org/10.1515/9783110417104-004

Krivovichev SV, Krivovichev VG, Hazen RM, Aksenov SM, Avdontceva MS, Banaru AM, Gorelova LA, Ismagilova RM, Kornyakov IV, Kuporev IV, Morrison SM, Panikorovskii TL, Starova GL (2022) Structural and Chemical Complexity of Minerals: an Update. Mineral Mag 86(2): 183-204
http://doi.org/10.1180/mgm.2022.23

Kruszewski Ł (2013) Supergene sulphate minerals from the burning coal mining dumps in the Upper Silesian Coal Basin, South Poland. Int J Coal Geol 105: 91-109
http://doi.org/10.1016/j.coal.2012.12.007

Kruszewski Ł (2019) Secondary sulphate minerals from Bhanine Valley coals (South Lebanon): a crystallochemical and geochemical study. Geol Q 63(1): 65-87
http://doi.org/10.7306/gq.1450

Lovas GA (1986) Structural study of halotrichite from Recsk (Mátra Mts., N-Hungary). Acta Geol Hung 29: 389-398

Matýsek D, Jirásek J, Osovský M, Skupien P (2014) Minerals formed by the weathering of sulfides in mines of the Czech part of the Upper Silesian Basin. Mineral Mag 78(5): 1265-1286
http://doi.org/10.1180/minmag.2014.078.5.12

Majzlan J, Kiefer B (2006) An X-ray and neutron-diffraction study of synthetic ferricopiapite, Fe14/3(SO4)6(OD,OH)2(D2O,H2O)20, and ab-initio calculations on the structure of magnesiocopiapite MgFe4(SO4)6(OH)2(H2O)20. Canad Mineral 44: 1227-1237
http://doi.org/10.2113/gscanmin.44.5.1227

Majzlan J, Dachs E, Benisek A, Plášil J, Sejkora J (2018) Thermodynamics, crystal chemistry and structural complexity of the Fe(SO4)(OH)(H2O)x phases: Fe(SO4)(OH), metahohmannite, butlerite, parabutlerite, amarantite, hohmannite, and fibroferrite. Eur J Mineral 30(2): 259-275
http://doi.org/10.1127/ejm/2017/0029-2677

Mauro D, Biagioni C, Pasero M (2018) Crystal-chemistry of sulfates from Apuan Alps (Tuscany, Italy). I. Crystal structure and hydrogen bond system of melanterite, Fe(H2O)6(SO4)·H2O. Period Mineral 87: 89-96

Mauro D, Biagioni C, Pasero M, Skogby H (2019) Crystal-chemistry of sulfates From the Apuan Alps (Tuscany, Italy). III. Mg-rich sulfate assemblages from the Fornovolasco mining complex. Atti della Società Toscana di Scienze Naturali, Memorie, Serie A 126: 33-44

Mauro D, Biagioni C, Pasero M, Skogby H, Zaccarini F (2020) Redefinition of coquimbite, AlFe3+3(SO4)6(H2O)12·6H2O. Mineral Mag 84(2): 275-282
http://doi.org/10.1180/mgm.2020.15

Menchetti S, Sabelli C (1974) Alunogen. Its structure and twinning. Tschermaks Mineral Petrog Mitt 21: 164-178
http://doi.org/10.1007/BF01081029

Menchetti S, Sabelli C (1976) The halotrichite group: the crystal structure of apjohnite. Mineral Mag 40: 599-608
http://doi.org/10.1180/minmag.1976.040.314.07

Montgomery H, Lingafelter E C (1964) The crystal structure of Tutton’s salts. II. Magnesium ammonium sulfate hexahydrate and nickel ammonium sulfate hexahydrate. Acta Crystallogr 17: 1478-1479
http://doi.org/10.1107/S0365110X6400367X

Nyburg SC, Steed J, Aleksovska S, Petrusevski VM (2000) Structure of the alums. I. On the sulfate group disorder in the alpha-alums. Acta Crystallogr B56: 204-209

Olds TA, Plášil J, Kampf AR, Simonetti A, Sadergaski LR, Chen Y-S, Burns PC (2017a) Ewingite: Earth’s most complex mineral. Geology 45: 1007-1010
http://doi.org/10.1130/G39433.1

Olds TA, Plášil J, Kampf AR, Škoda R, Burns PC, Čejka J, Bourgoin V, Boulliard J-C (2017b) Gauthierite, KPb[(UO2)7O5(OH)7]·8H2O, a new uranyl-oxide hydroxy-hydrate mineral from Shinkolobwe with a novel uranyl-anion sheet-topology. Eur J Mineral 29: 129-141
http://doi.org/10.1127/ejm/2017/0029-2586

Olds TA, Plášil J, Kampf AR, Dal Bo F, Burns PC (2018) Paddlewheelite, a new uranyl carbonate from the Jáchymov district, Bohemia, Czech Republic. Minerals 8: 511
http://doi.org/10.3390/min8110511

Quartieri S, Triscari M, Viani A (2000) Crystal structure of the hydrated sulphate pickeringite (MgAl2(SO4)4·22H2O) X-ray powder diffraction study. Eur J Mineral 12(6): 1131-1138
http://doi.org/10.1127/ejm/12/6/1131

Rigaku Oxford Diffraction (2021) Rigaku CrysAlisPro Software System, Version 1.171.41.104a

Russo M, Campostrini I, Demartin F (2017) I minerali di origine fumarolica dei Campi Flegrei: Solfatara di Pozzuoli (Napoli) e dintorni. Micro 15: 122-192

Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(5): 751-767
http://doi.org/10.1107/S0567739476001551

Sheldrick GM (2008) A Short History of SHELX. Acta Crystallogr A64: 112-122
http://doi.org/10.1107/S0108767307043930

Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C71: 3-8

Shevko EP, Bortnikova SB, Abrosimova NA, Kamenetsky VS, Bortnikova SP, Panin GL, Zelenski M (2018) Trace Elements and Minerals in Fumarolic Sulfur: The Case of Ebeko Volcano, Kuriles. Geofluids, 2018: 1-16
http://doi.org/10.1155/2018/4586363

Zhitova ES, Khanin DA, Nuzhdaev AA, Nazarova MA, Ismagilova RM, Shilovskikh VV, Kupchinenko AN, Kuznetsov RA, Zhegunov PS (2022) Efflorescent Sulphates with M+ and M2+ Cations from Fumarole and Active Geothermal Fields of Mutnovsky Volcano (Kamchatka, Russia). Minerals 12: 600
http://doi.org/10.3390/min12050600

Zolotarev AA, Krivovichev SV, Avdontceva MS, Shilovskikh VV, Rassomakhin MA, Yapaskurt VO, Pekov IV (2020a) Crystal Chemistry of Alkali-Aluminum-Iron Sulfates from the Burnt Mine Dumps of the Chelyabinsk Coal Basin, South Urals, Russia. Crystals 10: 1062
http://doi.org/10.3390/cryst10111062

Zolotarev AA, Krivovichev SV, Cámara F, Bindi L, Zhitova ES, Hawthorne F, Sokolova E (2020b) Extraordinary structural complexity of ilmajokite: A multilevel hierarchical framework structure of natural origin. IUCrJ 7: 121-128
http://doi.org/10.1107/S2052252519016622

The RRUFF Project. Accesed on October 3, 2022, at https://rruff.info/R060108
Link

The RRUFF Project. Accesed on October 3, 2022, at https://rruff.info/R060118
Link

The RRUFF Project. Accesed on October 3, 2022, at https://rruff.info/R070673
Link

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2022): 0.826

IF (WoS, 2022): 1.4

5 YEAR IF (WoS, 2022): 1.8

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943