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ABSTRACT. Many artificial systems simulate the physiological state of the 
human gastrointestinal tract (GIT) and its separate compartments. These 
systems have the biorelevant media and imitate the physical forces and transit 
times of the GIT compartments, however, they lack the food-related and within-
compartmental regulations and thus issues with translation of the data obtained 
to clinics arise. We aimed to introduce an alternative, simple and reliable ex vivo 
system which can be used in a laboratory setting, using fresh chyme from fed 
or fasted animals (pigs) to study the release profile of various drugs. For the 
present study we used porcine chyme collected from different gut compartments 
(stomach, duodenum and ileum) of six cross-bred male pigs in the fed state. 
Five different formulations of urate oxidase from Candida utilis were used as 
examples of tested drug substances. The performance of each formulation 
was tested by incubation in chyme at 37 °C for up to 4 h in the presence of 
uric acid. Samples were taken during the whole incubation time and the uric 
acid levels were estimated. The proposed ex vivo system provides information 
about the stability and performance of active drug substances in different gut 
compartments and can be used to test different formulations, assess possible 
drug-drug interactions, and the effects of fed and fasted conditions on the test 
substance of interest in the small and large intestine, taking into consideration 
diet-related changes in GIT secretions and intercompartmental regulation.
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Introduction
In vitro models for digestion are widely used 

and have a  broad range of applications, including 
studies on specific receptor binding, cell penetra-
tion, modulation of the activity of P-glycoprotein 
(PgP), breast cancer resistant protein (BCRP), or-
ganic anion transporters (OAT), cytochrome P450 
(CYP 450), drug-drug interactions, as well as the 
digestibility of individual nutrients, bioaccessibility 
of environmental contaminants and the dissolution/
release of new pharmaceutical products and for-
mulations (Verhoeckx et  al., 2015). These models 
vary from simple beakers with artificial biorelevant 
media, to sophisticated, dynamic models that simu-
late part of or the entire gastrointestinal tract (GIT) 
(Verhoeckx et al., 2015). Despite the physiology of 
the GIT being well understood and all the stages of 
digestion thoroughly characterized, both in terms of 
conditions and regulation of digestion, none of the 
currently available models can successfully depict 
the digestion process and thus provide researchers 
with precise information concerning the gut survival 
of ingested components. 

Various artificial GIT models have been devel-
oped over the last few decades. They include com-
plex systems reflecting the function of several GIT 
compartments (such as the TNO gastrointestinal 
model (TIM) (Bellman et al., 2016), the engineered 
stomach and small intestinal system (ESIN) (Guerra 
et  al., 2016), the in vitro dynamic system (DID-
GI®) (de La Pomelie et al., 2019), a GIT simulator  
(Simgi®) (e.g., Miralles et  al., 2018) reflecting the 
interactions between the stomach and small intes-
tine, a  dynamic stomach model (dynamic gastric 
model (DGM) (Wickham et  al., 2012), the human 
gastric simulator (HGS) (Kong and Singh, 2010), 
the artificial gastric digestive system (AGDS) (Liu 
et al., 2019) and the near real dynamic in vitro hu-
man stomach (new DIVHS) system (e.g., Wang 
et  al., 2019). However, all the above-mentioned 
models are mainly used for the investigation of 
feed digestion mechanisms, since it’s been recog-
nized that the digestion and performance of phar-
maceuticals and drugs employs different digestion 
mechanisms (Sensoy, 2021). Even though artificial 
GIT models are used during the initial steps of drug 
development, further progress undoubtedly requires 
the use of animal models.

Moreover, data obtained using the dynamic 
GIT models often requires a complicated analytical 
tool, such as physiologically based pharmacokinetic 
(PBPK) modelling, which involves the integration of 

mathematical modelling and simulations to predict 
the clinical pharmaco-kinetic profile of a drug. In fact, 
PBPK modelling extrapolates in vitro to in vivo data, 
which is useful in predicting how new formulations 
of known substances are dissolved and how the food 
components interact with any drugs administered per 
os. However, PBPK modelling has its own limita-
tions and unfortunately can’t be used when describ-
ing new drug substances and their formulations. Even 
properly developed PBPK models, for known drug 
substances, do not model the mechanisms involved 
in switching between the fasted and fed state, as well 
as any food-related and ‘within compartmental’ di-
gestive regulation (Sager et al., 2015; Li et al., 2018;  
Tistaert et al., 2019). These limitations and require-
ments for data analysis undoubtedly limit the use of 
in vitro models of the GIT. 

In the present work we used different oral for-
mulations of Candida utilis urate oxidase as an 
example of a  tested substance. Urate oxidase was 
chosen as an enzyme model since a lot of the stud-
ies related to urate oxidase of different origins and 
its’ effectiveness in reducing blood uric acid levels 
are currently taking place around the world, with 
moderate success with regards to implementation of 
the enzyme as a drug (Louyot et al., 1970; Sherman 
et  al., 2008; Szczurek et  al., 2017; Pierzynowska 
et al., 2020; Yip et al., 2023). Chyme from the small 
intestine of juvenile pigs was chosen as a test system, 
since the characteristics of the gastrointestinal tract 
and digestion properties (structure, length, food re-
tention time and food digestion/absorption etc.) are 
very similar between humans and pigs (Tajima and 
Aminov, 2015; Roura et al., 2016; Bergen, 2022).                                        

The aim of the current study was to introduce 
isolated porcine digesta as a  simple, efficient, and 
relevant ex vivo test system which could be used for 
fast and reliable estimation of the dissolution and 
release profile of oral drug formulations and com-
parison of their stability and biological activity. 

Material and methods

Animals

The present study was performed in accord-
ance with the recommendations in the Guide for 
the Care and Use of Laboratory Animals of the  
National Institutes of Health. All efforts were made 
to minimize animal suffering. The study was ap-
proved by the Second Local Ethics Committee 
for Animal Experimentation in Warsaw, Poland  
(approval no. WAW2/088/21). 
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The experiment was performed on crossbred 
((Polish Landrace × Yorkshire) × Hampshire)) pigs 
(Sus scrofa domesticus) purchased from a local herd 
(Karniewek, Poland). Six, male pigs, aged 16 ± 2 
weeks and weighing 35  ±  3 kg, were used in the 
study. Pigs were fed a  high-fat diet, with 18% fat 
content, mimicking the human diet (Morawski, 
Żurawia, Poland), and sacrificed 3  h after feeding 
(animals were euthanized by intravenous injection 
of sodium pentobarbiturate (100  mg/kg), Morbital 
(Biowet, Puławy, Poland)). Digesta from the 
duodenum, jejunum and ileum was collected, 
pooled and immediately frozen in aliquots at −80 °C 
for further experiments.

Test articles
Five different formulations of urate oxidase 

from Candida utilis (cat #U2625, Merck, Darm-
stadt, Germany) were used in the study. The main 
features of the formulations used are provided in the 
Table 1.

Test procedure
Experimental conditions and set-up are provided 

in Table 2. Chyme samples were thawed, and all 
tubes and jars were labelled appropriately. Fifteen 
ml of chyme from the duodenum, jejunum and il-
eum were taken from previously defrosted chyme 
samples and placed into 100 ml plastic jars to warm 
up for ~15 min at 37 °C, with shaking. Simulated 
intestinal fluid (SIF) (pH 6.8), in the same volume, 
was used as a  comparator. To prepare the SIF, 
potassium phosphate monobasic (10.2  g) and so-
dium dodecyl sulfate (3.75 g) were dissolved in  
a 1000 ml of deionized water and then pH adjust-
ed to 6.8 ± 0.1 with 1 N NaOH. The pH of each 
sample was recorded at the end of incubation using 
a pH meter, Jenway 370 (Keison Products, Essex, 
England). A 0.5 ml sample of chyme from the duo-
denum, jejunum and ileum was taken as a negative 
control. 

After warming up and pH measurement, the 
appropriately weighed uric acid from Candida 
utilis sample was added to each jar to achieve 
a  final concentration of 1.7 mg/ml. Then all the 
jars were incubated at 37  °C for ~30 min with 
shaking to allow the urate to be well mixed.  
At the end of the incubation period, 0’+ chyme 
sample (0.4  ml) was collected and frozen at 
−20 °C.

The appropriate test article (F0 (powder) or 
tablets) was added to the experimental jars based 
on Table 2.

The content of the jars was mixed well and at 
time 0 (0’+346, reaction start), as well as at 15, 
30, 60, 90, 120, 180 and 240 min after the start of 
the incubation period, two samples of 0.4 ml were 
collected from each jar in two empty pre-labelled 
1.5 ml Eppendorf tubes (one for urate measurement 
and one for urate oxidase estimation). Samples 
were placed in a heating block (VWR International, 
Radnor, Pennsylvania, USA) warmed at 90  °C 
to inactivate and stop the urate oxidase reaction 
for accurate urate measurement. The tubes were 
then frozen until further analysis of uric acid 
concentration.

Table 1. Urate oxidase formulations from Candida utilis used in the 
study

Formulation
Specific activity, 
units/mg

Activity  
per tablet

Form

F1 15 275 tablet
F2 26 500 tablet
F3 25 475 tablet
F4 25 470 tablet
F0 (drug substance) 26 N/A powder

Table 2. Experimental set-up

Ingredients Test system
Test 
formulation

No. of tablets/
weight of 
substance

Urate 
oxidase, 
units

  1 Duodenal chyme F0 53 mg 500
  2 Jejunal chyme
  3 Ileal chyme
  4 Duodenal chyme F1 2 tablets 546
  5 Jejunal chyme
  6 Ileal chyme
  7 Duodenal chyme F2 1 tablet 506
  8 Jejunal chyme
  9 Ileal chyme
10 Duodenal chyme F3 1 tablet 474
11 Jejunal chyme
12 Ileal chyme
13 Duodenal chyme F4 1 tablet 471
14 Jejunal chyme
15 Ileal chyme
16 SIF, pH 6.8 F0 53 mg 500
17 SIF, pH 6.8 F1 2 tablets 546
18 SIF, pH 6.8 F2 1 tablet 506
19 SIF, pH 6.8 F3 1 tablet 474
20 SIF, pH 6.8 F4 1 tablet 471
SIF – simulated intestinal fluid; formulations F0–F4 – see Table 1
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Urate measurements
The concentration of urate in samples was 

measured spectrophotometrically, using an enzy-
matic Uric Acid Assay Kit, Liquick Cor-UA 60 
PLUS (cat. # 2-258, P.Z. Cormay S.A., Lomianki, 
Poland), according to the manufacturer’s protocol 
with modifications for a  microplate reader. Prior 
to analysis samples were thawed, extracted with 
0.068M Li2CO3 (pH 11.5) (1:3, weight: volume, 
incubation 30  min on shaker at room tempera-
ture) and, following gentle mixing, were incubated 
in boiling water for 10  min, followed by 15  min 
centrifugation at 13  000  g at 4  °C. The resultant 
supernatant was then filtered through the Centrifu-
gal Concentrator Vivaspin 500, 10 kDa (Vivaspin 
R, Sartorius, Göttingen, Germany) at 15  min at 
13  000  g and 4  °C. The filtrate was used to de-
termine urate concentrations. Optical density was 
measured using a  Spectra Max i3x Multi-Mode 
detection platform (Molecular Devices, LLC,  
Sunnyvale, CA, USA)

Statistical analysis
Data is expressed as mean ± standard deviation 

(SD), from three independent experiments.  
The data distribution was checked using  
a Shapiro-Wilk normality test. A one-way ANOVA 
was used to estimate differences, data was not 
corrected for multiple comparisons. In all statistical 
analyses, P ≤ 0.05 was considered significant.  
All analyses were carried out using Prism,  
version 10 (GraphPad Software, Inc., San Diego, 
CA, USA).

Results

pH values
Data on mean pH values in different test 

systems are provided in Figure  1. The highest 
pH values were observed in the SIF system 
(6.44 ± 0.07) and the lowest pH was observed in 
the ileal chyme test system (5.14 ± 0.03). The pH 
values obtained from the duodenal and jejunal 
test systems were 5.9  ±  0.08 and 6.28  ±  0.08, 
respectively. All differences described above were 
significant (P < 0.05).

Changes in urate content
The curves of uric acid degradation and 

within-system differences of urate degradation by 
different formulations are shown in Figure 2 A–H.  

Urate degradation, which reflects enzyme activity, 
was significantly different between formulations 
within the same experimental system. For example, 
the most active formulations in the SIF system were 
F0 and F1 (lowest AUCs of UA concentration), 
while the F2 formulations demonstrated the 
lowest activity in the same incubation system  
(Figures 2A,B). At the same time, in the duodenal 
chyme test system the activities of F0, F1 and 
F2 formulations were not significantly different 
(Figures 2C,D). In the jejunal chyme test system, 
the F1 formulation appeared to be the most efficient 
in terms of urate degradation (Figures 2E,F), while 
in the ileal test system, the F1 and F0 formulations’ 
activity was the highest, while the F2, F3 and F4 
formulations demonstrated significantly lower 
abilities to degrade urate (Figures 2D,H).

The between-system differences in urate 
degradation by urate oxidase formulations are shown 
in Figures 3A–E. No differences were observed 
between the activity profiles of urate oxidase in the 
SIF test system and the ileal test system for any of 
the formulations (Figures 3A–E), but there were 
significant differences in the urate degrading ability 
of the F0 and F2 formulations in the SIF test system, 
when compared to that of the duodenal test system 
(Figures 3A,C).

Figure 1. pH values in the different test systems after 15 min of 
incubation

DUO – duodenal chyme samples, JEJ – jejunal chyme samples,  
ILE – ileal chyme samples, SIF – simulated intestinal fluid samples. 
Data was analysed using an ordinary one-way ANOVA test and 
presented as mean ± SD. Small letters given with result bars describe 
significant differences between groups when P < 0.05
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Figure 2. Uric acid degradation profiles in the different test systems  

DUO – duodenal chyme samples, SIF – simulated intestinal fluid samples, JEJ – jejunal chyme samples, ILE – ileal chyme samples, UA – uric 
acid, AUC – area under the curve; formulations F0–F4 – see Table 1. Data was analysed using an ordinary one-way ANOVA test. Data on uric 
acid content is presented as mean ± SD, data on AUCs is presented as mean ± SEM. Small letters given with result bars describe significant 
differences between groups when P < 0.05 
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Discussion

The ex vivo system described above enables the 
use of less animals during drug development and re-
sults achieved are closely mimic the ‘fate’ of the drug 
of interest in the GIT. The use of such a system sig-

nificantly reduces the number of animals used in drug 
testing experiments, eliminating their potential suf-
fering during the study. Thus, animal studies used in 
conjunction with the ex vivo system described in the 
current study would allow us to run the studies on di-
gestion according the 3 R principle (Diaz et al., 2020).
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Figure 3.  Performance of urate oxidase formulations in different test systems

SIF – simulated intestinal fluid samples, DUO – duodenal chyme samples, JEJ – jejunal chyme samples, ILE – ileal chyme samples, UA – uric 
acid, AUC – area under the curve; formulations F0–F4 – see Table 1. Data was analysed using an ordinary one-way ANOVA test. Data is pre-
sented as mean ± SEM. Small letters given with result bars describe significant differences between groups when P < 0.05
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There are many aspects of digestive physiology 
which are not represented in the currently available in 
vitro models of digestion. Majority of digestive mod-
els, even the most relevant and complicated, do not 
reflect diet-dependent changes in intestinal gland se-
cretion, changes in viscosity of intestinal content and 
the duration of its processing in all separate GIT com-
partments, nutrient-dependent absorption in the small 
intestine, etc. (Lex et al., 2022; Staniszewska et al., 
2023). It is possible however, to take into account 
and measure all of the above-mentioned parameters 
in vivo, but these studies require large numbers of 
experimental animals, which could be an ethical is-
sue. In vitro studies, in turn, introduce a number of 
simplifications e.g., composition of gut chyme vs. 
media used in in vitro experiment and approxima-
tions which undoubtedly influence the relevance of 
the data obtained (Lex et al., 2022).

The present study demonstrated a  simple, but 
relevant ex vivo GIT compartment, sensitive enough 
to study enzymatic effectiveness, using the example 
of urate oxidase in chyme from fed and fasted, young, 
healthy pigs, which reflects the properties of the 
stomach and intestinal tract, includes the major and 
minor factors involved in digestion and allows for 
the fast and efficient estimation of dissolution, bio-
logical activity, and release profile of drug substances 
in different formulations. This model not only gives 
an understanding of the environmental surrounds in 
the case of the ingestion of the drug urate oxidase, 
but fully represents this environment and at the same 
time makes it possible to perform a  huge range of 
modifications (meal composition, dietary additives, 
time of fasting and after meal conditions, etc.). 

Considering the above-mentioned environmen-
tal influences in the gut lumen, one should mention 
that pH values measured in the presented test sys-
tem have been shown to be a very representative and 
sensitive parameter. There are a lot of investigations 
and publications on pH values of different GIT com-
partments and one of most recent studies (Henze 
et al., 2021) shows a gradual pH change in the por-
cine small intestine, from 6.7–7.5 in the duodenum 
to 7.6–8.0 in the ileum. pH values in the present 
study were generally lower (5.9  ±  0.08 (duodenal 
chyme), 6.28 ± 0.08 (jejunal chyme) and 5.14 ± 0.08 
(ileal chyme)), which could be explained by both 
dietary influence (meal composition) and cecoileal 
reflux, both of which could significantly reduce pH 
(Cuche et  al., 1998; Hăbeanu et  al., 2022). Thus, 
drug formulations for various diseases could be 
tested together with meals recommended for each 
particular sickness (macro- and micronutrients, fiber 

content, etc.), which undoubtedly could bring more 
relevance to the test outcome.

The observation of various patterns of drug for-
mulation activity between the incubation systems 
with intestinal content reflect the physiological dif-
ferences between GIT compartments and provides 
sufficient and important information on the stability 
of formulations, not only in the gut compartment of 
interest (e.g., substrate digestion, site of absorption), 
but in other parts of the GIT as well. For example, 
it was clearly shown that the activity of the enzyme 
responsible for urate degradation is very dependent 
on the milieu of the different gut compartments  
(Figures 2A–H), thus enabling researchers to choose 
an optimal drug formulation, as well as indicating 
that the stability and activity is dependent on the 
GIT compartment. 

At the same time, comparison of the same drug 
formulation activity in the diverse experimental 
systems (Figures 3A–E) confirms that the artificial 
incubation system (SIF) often does not reflect con-
ditions created in the compartment of interest (duo-
denal compartment), but rather creates an environ-
ment similar to the one observed in jejunal and ileal 
compartments.

Of course, the described model of digestion 
has its limitations and confines. The most sensitive 
and most important, however usually neglected 
limitation of the present study, as well as all other  
in vitro models, is the lack of product elimination 
from the reaction environment, e.g., central 
absorption. However, it looks like the products of 
urate oxidase, CO2 and H2O, are more effectively 
neutralized in the gut chyme than in any other 
artificial buffer. Unfortunately, the pH values of 
chyme at the end of the reaction cannot be reported, 
but the relatively high temperature of incubation 
(37 °C) decreased the dissolution ability of CO2 and 
in this way pH levels should be stabilized.

Currently, this system has only been tested 
for microbial urate oxidase, which is not intend-
ed to enter the circulation (Szczurek et  al., 2017;  
Pierzynowska et al., 2020), thus, the measurement 
of absorption of a  drug substance could be chal-
lenging. Moreover, any facility willing to introduce 
this technique should have allowance for work with 
large laboratory animals, which are close to humans 
in terms of metabolism e.g., pigs, and for the pro-
cessing of biological samples and all protocols in-
volving animals should be approved by local ethical 
authorities. However, obtaining gut digesta from lo-
cal small slaughterhouses could also be considered, 
providing that the facility possesses such a license.



8	 Ex vivo system for investigation of drug formulations

Conclusions
Even though there are many artificial models 

of digestion available to date, both dynamic and 
static, there is still an increasing demand in simple 
and apt tools which can be easily operated, are reli-
able and provide fast and relevant data. None of the 
currently available models, even the most advanced 
ones, depict the entire process of digestion which 
begins in the oral cavity and ends in the colon. The 
lack of food-related and within-compartmental 
regulation specificity in the artificial models of di-
gestion necessitates the need for animal studies to 
be performed. The present study describes the use 
of isolated porcine digesta which appeared to be 
a simple, efficient, and relevant ex vivo model. The 
artificial model of digestion based on the isolated 
porcine chyme could be used to estimate the dis-
solution and release profile of enzymatic drugs and 
compare their stability and biological activity when 
active substances are used in different formulations 
and in doing so substantially decrease the number 
of animals required for the testing of oral drug for-
mulations.
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