
High-Order Entropy-Compressed Text Indexes

Roberto Grossi� Ankur Guptay Je�rey Scott Vitterz

Abstract

We present a novel implementation of compressed suÆx

arrays exhibiting new tradeo�s between search time and

space occupancy for a given text (or sequence) of n sym-

bols over an alphabet �, where each symbol is encoded by

lg j�j bits. We show that compressed suÆx arrays use just

nHh + O(n lg lg n= lgj�j n) bits, while retaining full text in-

dexing functionalities, such as searching any pattern se-

quence of length m in O(m lg j�j+ polylog(n)) time. The

term Hh � lg j�j denotes the hth-order empirical entropy

of the text, which means that our index is nearly optimal in

space apart from lower-order terms, achieving asymptotically

the empirical entropy of the text (with a multiplicative con-

stant 1). If the text is highly compressible so that Hh = o(1)

and the alphabet size is small, we obtain a text index with

o(m) search time that requires only o(n) bits. Further results

and tradeo�s are reported in the paper.

1 Introduction

The online proliferation of text documents and sequence

data has made �nding information diÆcult. Exhaustive

search through very large collections is too slow. As

a result, eÆcient indexing of massive documents is

critical. Good indexes for textual and sequence data

can be constructed quickly and o�er a powerful tool set

that allows fast access and queries on the text. However,

storage cost can be signi�cant because of the sheer

volume of data; hence, we also want our text indexes

to be a compact and space-eÆcient representation of

the text.

We consider the text as a sequence T of n symbols,

each drawn from the alphabet � = f0; 1; : : : ; �g. The

raw text T occupies n lg j�j bits of storage.1 Without

�Dipartimento di Informatica, Universit�a di Pisa, via Filippo

Buonarroti 2, 56127 Pisa (grossi@di.unipi.it). Support was

provided in part by the University of Pisa.
yCenter for Geometric and Biological Computing, Department

of Computer Science, Duke University, Durham, NC 27708{0129

(agupta@cs.duke.edu). Support was provided in part by the ARO

through MURI grant DAAH04{96{1{0013.
zSchool of Science, Purdue University, West Lafayette, IN

47907{2068 (jsv@purdue.edu). Work was done in part while at

Duke University. Support was provided in part by the Army

Research OÆce through grant DAAD19{01{1{0725 and by the

National Science Foundation through grant CCR{9877133.
1We use the notation lgc

b
n = (lg n= lg b)c to denote the cth

loss of generality, we can assume that j�j � n, since

we only need to consider those symbols that actually

occur in T . In practice, text is often compressible by

a factor of 3 or 4, and sequence data may be more

highly compressible. The text T is compressible if each

symbol in the text can be represented, on average, in

fewer than lg j�j bits. The empirical entropy H is the

average number of bits per symbol needed to encode the

text T . We trivially have H � lg j�j.
For any integer h � 0, we can approximate the em-

pirical entropy H of the text by the hth-order empirical

entropy Hh, de�ned as

Hh =
1

n

X
x2�h

lg

�
nx

nx;1nx;2 : : : nx;j�j

�

�
X
x2�h

X
y2�

�
nx;y

n
� lg

nx;y

nx

=
X
x2�h

X
y2�

�Prob[y; x] � lg Prob[yjx] � lg j�j;

where nx is the number of occurrences in the text

of the h-symbol sequence x, for 0 � x � j�jh � 1,

and nx;y represents the number of occurrences in the

text of the concatenated sequence yx (y immediately

preceding x), for 0 � y � j�j � 1. Moreover,

Prob[y; x] represents the empirical joint probability

that the symbol y occurs in the text immediately

before the sequence x of h symbols, and Prob[yjx]
represents the empirical conditional probability that

the symbol y occurs immediately before x, given that

x occurs in the text.2 High-order empirical entropy

captures the dependence of symbols upon their context,

and Hh converges to H for large h. In practice, once h

gets larger than 4 or 5, the hth-order empirical entropy

is close to the actual empirical entropy. Lempel and Ziv

have provided an encoding such that h � � lgn (where

0 < � < 1) is suÆciently good for approximating H

with Hh; Luczak and Szpankowski prove a suÆcient

approximation when h = O(lgn) in [8].

In order to support fast searching, an index can

be formed by preprocessing the text T . For any query

power of the base-b logarithm of n. Unless speci�ed, we use b = 2.
2The standard de�nition considers the symbol y immediately

after the sequence x, though it makes no di�erence.

pattern P of m symbols, the search task is to �nd P

in T quickly. When the text is compressible, a natural

question to ask is whether the index can be compressed

by a similar amount and still support fast searching.

Ideally, we would like to achieve nH bits, but all we can

quantitatively analyze is nHh, con�ning our algorithmic

investigation to the hth-order empirical entropy. Since

we want the text index to be as space-eÆcient as

possible, our goal is nHh bits and we want any amount

over that to be as small as possible, preferably o(n) bits.

Note that we do not simply compress the text; we also

support fast decompression and search of a portion of

the text, without scanning the entire compressed text,

which is unusual in classical compression schemes.

1.1 Related Work A new trend in the design of ad-

vanced indexes for full-text searching of documents is

represented by compressed suÆx arrays [6, 18, 19, 20]

and opportunistic FM-indexes [2, 3], in that they sup-

port the functionalities of suÆx arrays and suÆx trees,

which are more powerful than classical inverted �les [4].

(An eÆcient combination of inverted �le compression,

block addressing and sequential search on word-based

Hu�man compressed text is described in [15].) They

overcome the well-known space limitations by exploit-

ing, in a novel way, the notion of text compressibility

and the techniques developed for succinct data struc-

tures and bounded-universe dictionaries.

Grossi and Vitter [6] developed the compressed

suÆx array, a space-eÆcient incarnation of the standard

suÆx array. Using this structure, they implement

compressed suÆx trees in 2n lg j�j bits in the worst case,
with o(m) searching time. If we index a 4-gigabyte ascii
�le of Associated Press news in this manner, it requires

12 gigabytes, which includes explicit storage of the text.

The crucial notion of self-indexing text comes into

play at this point. If the index is able to search for

and retrieve any portion of the text without accessing

the text itself, we no longer have to maintain the text

in raw form|which can translate into a huge space

savings. We refer to this type of index as a \self-

index" to emphasize the fact that, as in standard text

compression, it can replace the text. A self-index has

the additional feature of avoiding a full scan of the

compressed text for each search query.

Sadakane [19, 20] extended the functionalities in [6]

to show that compressed suÆx arrays are self-indexing,

and he related the space bound to the order-0 empir-

ical entropy H0, getting the space bound ��1nH0 +

O(n lg lg j�j) bits, where 0 < � � 1 and � � lgO(1) n.

Searching takes O(m lg n) time. If we index the Associ-

ated Press �le using Sadakane's index, we need roughly

1.6 gigabytes of storage, since we no longer have to store

the text. However, the index is not as compressible as

the text, even though it is still sublinear in the text size.

The FM-index [2, 3] is a self-indexing data structure

using 5nHh +O
�
n
j�j+lg lgn

lgn
+ n�j�j2j�j lg j�j

�
bits, while

supporting searching in O(m + lg1+� n) time, where

j�j = O(1). It is based on the Burrows-Wheeler

transform and is the �rst to encode the index size with

respect to the high-order empirical entropy. In its space

complexity, the second-order term may be o(n) bits for

small alphabet size j�j. Indexing the Associated Press

�le with the FM-index would require roughly 1 gigabyte

according to the experiments in [3].

The above self-indexes are so powerful that the text

is implicitly encoded in them and is not needed explic-

itly. Searching needs to decompress a negligible portion

of the text and is competitive with previous solutions.

In practical implementation, these new indexes occupy

around 25{40% of the text size and do not need to keep

the text itself. However, for moderately large alphabets,

these schemes lose sublinear space complexity even if

the text is compressible. Large alphabets are typical of

phrase searching [5, 21], for example, in which the al-

phabet is made up of single words and its size cannot

be considered a small constant.

1.2 Our Results In this paper, we develop self-

indexing data structures that retain fast, full search

functionality of suÆx trees and suÆx arrays, require

roughly the same space as the optimally compressed

version of the text to lower-order terms, and have

less dependency on the alphabet size than previous

methods [2, 3, 19, 20]. One of the contributions of

this paper is that we shed light on the signi�cance of

the lower-order terms in the space complexity of self-

indexes; these terms can dominate the empirical entropy

cost when the alphabet grows moderately large. We also

relate the issue of compressing a full-text index with

high-order entropy to the succinct dictionary problem,

in which t keys over a bounded universe n are stored

in the information theoretically minimum space, lg
�
n

t

�
bits, plus lower-order terms (e.g., see [16, 17]).

Our main result is a new implementation of com-

pressed suÆx arrays that exhibits several tradeo�s be-

tween occupied space and search/decompression time.

In one tradeo�, we can implement the compressed suÆx

array as a self-index requiring nHh+O(n lg lgn= lgj�j n)

bits of space and allowing searches of patterns of

length m in O(m lg j�j+polylog(n)) time. Our method

is the �rst self-index reaching asymptotically the high-

order entropy, nHh, of the text. The index is nearly op-

timal in space apart from lower-order terms, as the mul-

tiplicative constant in front of the high-order entropy

term is 1. In some sense, we are in a similar situation to

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T : a b b a b b a b b a b b a b a a a b a b a b b a b b b a b b a #

SA0: 15 16 13 17 19 10 7 4 1 21 28 24 31 14 12 18 9 6 3 20 27 23 30 11 8 5 2 26 22 29 25 32

B0: 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1

rank (B0; i): 0 1 1 1 1 2 2 3 3 3 4 5 5 6 7 8 8 9 9 10 10 10 11 11 12 12 13 14 15 15 15 16

�0: 2 4 14 16 20 24 25 26 27 29 30 31 32 1 3 5 6 7 8 10 11 12 13 15 17 18 19 21 22 23 28 9

list a: h2; 4; 14; 16; 20; 24; 25; 26; 27; 29; 30; 31; 32i; jlist aj = 13

list b: h1; 3; 5; 6; 7; 8; 10; 11; 12; 13; 15; 17; 18; 19; 21; 22; 23; 28i; jlist bj = 18

list #: h9i; jlist #j = 1

Figure 1: Level k = 0 in the recursion for the compressed suÆx array.

that of succinct dictionaries, achieving asymptotically

the information theoretically minimum space.

In another tradeo�, we describe a di�erent imple-

mentation of the compressed suÆx array, occupying

��1nHh+O(n lg lgn= lg�j�j n) bits (0 < � < 1=3), so that

searching a pattern of length m takes O(m= lgj�j n +

lg! n lg1�� j�j) time (1 > ! > 2�=(1� �) > 0). By �xing

� = 1=4, for example, we improve previous work both

in terms of space and search time. When nHh = o(n)

and alphabet size is small, we obtain the �rst self-index

that simultaneously exhibits sublinear size o(n) in bits

and sublinear query time o(m). More results are stated

throughout the paper.

1.3 Preliminaries We use constant-time rank and

select data structures [7, 13, 16]. For a bitvector B

of size n, function rank1(B; i) returns the number of

1s in B up to (but not including) position i; the data

structure requires O(n lg lgn= lgn) additional bits. The

function select1(B; i) returns the position of the ith 1

in B; the data structure requires O(n= lg lgn) additional

bits. We can also support rank0 and select0 using

the same number of additional bits. Letting t be the

number of elements stored (the number of 1s in the

bitvector), we can replace the bitvector supporting rank

and select with the constant-time indexable dictionaries

developed by Raman, Raman, and Rao [17], requiring�
lg
�
n

t

��
+O(t lg lg t= lg t) +O(lg lg n) bits. If we also

wish to support rank0 and select0, we can use the

fully-indexable version of their structure, called an fid,
requiring

�
lg
�
n

t

��
+O(n lg lgn= lgn) bits.

2 Compressed SuÆx Arrays

A standard suÆx array [4, 10] is an array containing

the position of each of the n suÆxes of text T in

lexicographical order. In particular, SA[i] is the starting

position in T of the ith suÆx in lexicographical order.

The size of a suÆx array is �(n lgn) bits, as each of

the positions stored uses lgn bits. A suÆx array allows

constant time lookup to SA[i] for any i.

The compressed suÆx array [6] contains the same

information as a standard suÆx array. The data

structure is recursive in nature, where each of the ` =

lg lgn levels indexes half the elements of the previous

level. Hence, the kth level indexes nk = n=2k elements:

1. Start with SA0 = SA, the suÆx array for text T .

2. For each 0 � k < lg lgn, transform SAk into a

more succinct representation through the use of a

bitvector Bk, rank function rank(Bk; i), neighbor

function �k, and SAk+1 (i.e, the recursion).

3. The �nal level, k = lg lgn is written explicitly,

using n bits.

SAk is not actually stored (except at the last level `),

but we refer to it for the sake of explanation. Bk is

a bitvector such that Bk[i] = 1 if and only if SAk[i]

is even. Even-positioned suÆxes are represented in

SAk+1, whereas odd-positioned suÆxes are not. In

order to retrieve odd-positioned suÆxes, we employ

the neighbor function �k, which maps a position i in

SAk containing the value p into the position j in SAk

containing the value p+ 1:

�k(i) =
�
j such that SAk[j] = (SAk[i] mod n) + 1

	
:

A lookup for SAk[i] can be answered as follows:

SAk[i] =

�
2 � SAk+1

�
rankk(Bk ; i)

�
if Bk[i] = 1

SAk

�
�k(i)

�
� 1 if Bk[i] = 0.

An example of the recursion for text T is given

in Figure 1 for level k = 0, where a < b < # and

is a special end-of-text symbol. Here, �0(4) = 16,

since SA0[4] = 17 and SA0[16] = 17 + 1 = 18. To

retrieve SA0[16], since B0[16] = 1, we compute 2 �
SA1[rank(B0; 16)] = 2 �SA1[12] = 2 �9 = 18. To retrieve

SA0[4], since B0[4] = 0, we compute SA0[�0(4)] � 1 =

SA0[16]� 1 = 18� 1 = 17.

The representation of Bk and rank(Bk; i) uses the

methods of [7, 13, 16]. The major hurdle remains in the

representation of �k, which is at the heart of compressed

suÆx arrays. In fact, �0 is the inverse of the LF

mapping in the Burrows-Wheeler transform employed

in the FM-index [2, 3]. Grossi and Vitter developed an

approach based on the notion of � lists. At level k,

they partition the suÆx pointers indexed (nk = n=2k

of them) by equal pre�xes in the text of length 2k.

For k = 0 (level 0), the pre�x length is 20 = 1; thus

they group the suÆx pointers together according to the

single symbol immediately preceding each suÆx. For

example, some position p is in list a if the suÆx pointed

to by SA0[p] in T is preceded by an a. For the text T

in our example, the � lists for level k = 0 needed to

represent �k are shown in the bottom of Figure 1.

The fundamental property of these � lists is that

each list is an increasing sequence of positions from

the text. Compression is achieved since we can simply

encode, for each list, the lengths of the gaps in the

increasing sequence. By concatenating the lists together

(called Lk in [6]), adding some header and directory

information, and encoding the gaps of Lk, we can

achieve constant time access to �k(i) by looking at the

ith entry in the concatenated list Lk (see [6]).

Sadakane [19, 20] has proposed an alternative

method to represent the � lists that can be bounded

in terms of the zero-order empirical entropy H0. In or-

der to achieve self-indexing, he also de�nes the notion of

the inverse suÆx array SA�1, such that SA�1[j] = i if

and only if SA[i] = j. To compress SA�1 along with SA,

it suÆces to keep SA�1
`

in the last level `. The cost of

a lookup for SA�1 is the same as that for SA. Sadakane

describes a substring algorithm that, given an index i of

the compressed suÆx array, decompresses c consecutive

symbols from the text starting from position SA[i] by

incrementally applying �0 each time, for a total cost of

O(c) time. It is not diÆcult to extend his method to �k

for any k, such that each application of �k decompresses

�(2k) symbols, for a total cost of O(c=2k + lg� n) time.

We use the inverse compressed suÆx array and this ex-

tended version of decompression in Section 5. In future

sections, we assume the following set of operations.

Definition 2.1. ([6, 19, 20]) Given a text T of

length n, a compressed suÆx array for T supports the

following operations without requiring explicit storage

of T or its (inverse) suÆx array:

� compress produces a compressed representation that

encodes (i) text T , (ii) its suÆx array SA, and

(iii) its inverse suÆx array SA�1;

� lookup in SA returns the value of SA[i], the position

of the ith suÆx in lexicographical order, for 1 � i �
n; lookup in SA�1 returns the value of SA�1[j], the

rank of the jth suÆx in T , for 1 � j � n;

� substring decompresses the portion of T corre-

sponding to the �rst c symbols (a pre�x) of the suÆx

in SA[i], for 1 � i � n and 1 � c � n� SA[i] + 1.

3 Higher-Order Entropy Representation of

Compressed SuÆx Array

In this section, we further reduce the space in the

compressed suÆx array to the size of the text in

compressed form, replacing the lg j�j factor in the space
bound to Hh, for any h � � lgj�j n with 0 < � < 1.

(Luczak and Szpankowski [8] show that the average

phrase length of the Lempel-Ziv encoding is O(lgn)

bits.) We get this reduction by restructuring in a novel

way �k, which contributes the bulk of the space that

compressed suÆx arrays use.

Our basic idea is to partition each � list y further

into sublists hx; yi, using an h-symbol pre�x x (hereafter
known as context) of each of the suÆxes. (The j�j2

k

-

symbol sequence y precedes the context x in the text.)

For example, for context length h = 2 and level k = 0,

if we continue the above example, we break the � lists

by context (in lexicographical order aa, ab, a#, ba, bb,

and # and numbered from 0 to j�jh�1) as shown below.

We use # to represent #j for all j < h. (Only level k = 0

is shown here.) Each sublist hx; yi we have created is

also increasing. The lists are stored in the nonempty

entries of the columns in the table below, partitioned

by row according to contexts x of length 2:

x list a list b list #

aa h2i h1i ;

ab h4i h3; 5; 6; 7; 8; 10; 11; 12i h9i

a# ; h13i ;

ba h14; 16; 20i h15; 17; 18; 19; 21; 22; 23i ;

bb h24; 25; 26; 27; 29; 30; 31i h28i ;

h32i ; ;

The crucial observation to make is that all entries

in the row corresponding to a given context x create a

contiguous sequence of positions from the suÆx array.

For instance, along the fourth row of the table above

for x = ba, there are 10 entries that are contiguous and

in the range [14; 23]. The conditional probability that a

precedes context ba is 3/10, that b precedes context ba

is 7/10, while that of # preceding context ba is 0. As

a result, we show in Section 3.5 that encoding each of

these sublists eÆciently using context statistics results

in a code length related to Hh, the hth-order entropy.

In exchange, we must store more complicated context

information. Below, we give some intuition about the

information needed and how our method represents it

in a compact way.

x nx
0

#x list a list b list #

aa 2 0 h2i h1i ;

ab 10 2 h2i h1; 3; 4; 5; 6; 8; 9; 10i h7i

a# 1 12 ; h1i ;

ba 10 13 h1; 3; 7i h2; 4; 5; 6; 8; 9; 10i ;

bb 8 23 h1; 2; 3; 4; 6; 7; 8i h5i ;

1 31 h1i ; ;

For level k = 0 above, nx0 is the number of

elements in each context (row) x, and #x represents the

partial sum of all prior entries; that is, #x =
P

x0<x
nx

0

0 .

Using these arrays, we transform the standard lists by

renumbering each element based on its order within its

context. For example, the �nal entry in list b, 28, is

written as 5 in the new list b, as it is the �fth element in

context bb. We can recreate b's �nal entry 28 from this

information since we also store the number of elements

in all prior contexts (in lexicographical order). For

instance, we can recreate �0(31) = 28 by accessing 5

from the new list b and adding #x = 23, the number of

elements in all contexts prior to x = bb.

3.1 Preliminary Notions As we saw before, nx
k
is

the number of elements at level k that are in context x.

Similarly, we can de�ne n
y

k
as the number of elements

at level k in list y; and n
x;y

k
as the number of elements

at level k that are in both context x and list y, that is,

the size of sublist hx; yi. For instance, in the example,

nb0 = 18 and n
ab;b

0 = 8. (Note that
P

x
nx
k

= nk,P
y
n
y

k
= nk, and

P
x;y

n
x;y

k
= nk.) Notice that Hh �P

x2�h

P
y2��(n

x;y

0 =n0)lg(n
x;y

0 =nx0), where n0 = n.

In what follows, we de�ne sk to be the number

of nonempty sublists hx; yi at level k. We bound

sk � minfj�j2
k+h; nkg as follows. The �rst inequal-

ity sk � j�j2
k+h is true since there are at most j�jh

contexts x and at most j�j2
k

lists y at level k. The

second inequality sk � nk comes from the worst case

where each sublist contains only a single element.

We de�ne ` = lg lgn to be the last level in the

compressed suÆx array, as in Section 2. We introduce

a special level `0 < `, such that 2`
0

= O(lgj�j n) and

2`�`
0

= O(lg j�j). Rather than storing all of the `

levels as discussed in Section 2, we only maintain the

recursion explicitly until level `0, where 2`
0

= O(lgj�j n)

and 2`�`
0

= O(lg j�j). In this section, we prove:

Lemma 3.1. We can implement compressed suÆx ar-

rays using nHh lg lgj�j n+2(lg e+1)n+O(n lg lgn= lgn)

bits and O(n lg j�j) preprocessing time for compress, so

lookup takes O(lg lgj�j n+lg j�j) time and substring for

c symbols takes the cost of lookup plus O(c= lgj�j n) time.

Lemma 3.2. For any �xed value of 0 < � < 1=2, we

can implement compressed suÆx arrays using ��1nHh+

2(lg e+ 1)n+O(n lg lgn= lgn) bits and O(n lg j�j) pre-
processing time for compress, so that lookup takes

O
�
(lgj�j n)

�=(1��)+lg j�j
�
time and substring for c sym-

bols takes the cost of lookup plus O(c= lgj�j n) time.

3.2 Overview of the Method for Represent-

ing �k In order to support a query for �k(i), we

need the following basic information: the list y con-

taining �k(i), the context x containing �k(i), the el-

ement z stored explicitly in list y, and the number of

elements #x in all contexts prior to x. In the example

from Section 2, for �0(31) = 28, we have y = b, x = bb,

#x = 23, and z = 5. The value for �k(i) is then #x+z,

as shown in the example. We execute �ve main steps to

answer a query for �k(i) in constant time:

1. Consult a directory Gk to determine �k(i)'s list y

and the number of elements in all prior lists, #y.

(We now know that �k(i) is the (i�#y)th element

in list y.) In the example above, we consult G0 to

�nd y = b and #y = 13.

2. Consult a list L
y

k
to determine the context x of

the (i �#y)th element in list y. For example, we

consult Lb

0 to determine x = bb.

3. Look up the appropriate entry in list y to �nd z.

In particular, we look in the sublist of list y having

context x, which we call the hx; yi sublist and

encode eÆciently. In the example, we look for

the appropriate element in the hbb; bi sublist and
determine z = 5.

4. Consult a directory Fk to determine #x, the num-

ber of elements in all prior contexts. In the exam-

ple, after looking at F0, we determine #x = 23.

5. Return #x + z as the solution to �k(i). The

example code would then return �k(i) = #x+ z =

23 + 5 = 28.

We now detail each step given above.

3.3 Directories Gk and Fk We describe the details

of the directory Gk (and the analogous structure Fk)

de�ned in Section 3.2, which determines �k(i)'s list y

and the number of elements in all prior lists #y. We can

think of Gk conceptually as a bitvector of length nk,

the number of items indexed at level k. For each

nonempty list y at level k (considered in lexicographical

order) containing n
y

k
elements, we write (n

y

k
� 1) 0s,

followed by a 1. Intuitively, each 1 represents the last

element of a list. Since there are as many 1s in Gk as

nonempty lists at level k, Gk cannot have more than

minfj�j2
k

; nkg 1s. To retrieve the desired information

in constant time, we compute y = rank(Gk ; i) and

#y = select(Gk; y). The Fk directory is similar, where

each 1 denotes the end of a context (considered in

lexicographical order), rather than the end of a list.

Since there are at most minfj�jh; nkg possible contexts,
we have at most that many 1s. We use the indexable

dictionary method [17] for this purpose.

Lemma 3.3. Let M(r) denote minfj�jr; nkg. We can

store Gk using O(M(2k) lg n

M(2k)
) bits of space, and Fk

using space O(M(h) lg n

M(h)
).

3.4 List-Speci�c Directory L
y

k Once we know

which list our query �k(i) is in, we must �nd its con-

text x. We create a directory L
y

k
for each list y at

level k, exploiting the fact that the entries are grouped

into hx; yi sublists as follows. We can think of L
y

k
con-

ceptually as a bitvector of length n
y

k
, the number of

items indexed in list y at level k. For each nonempty

hx; yi sublist (considered in lexicographical order) con-

taining n
x;y

k
elements (where

P
x
n
x;y

k
= n

y

k
), we write

(n
x;y

k
� 1) 0s, followed by a 1. Intuitively, each 1 rep-

resents the last element of a sublist. Since there are

as many 1s in Ly

k
as nonempty sublists in list y, that

directory cannot have more than minfj�jh; ny
k
g 1s. Di-

rectory L
y

k
is made up of two distinct components:

The �rst component is an indexable dictionary [17]

in the style of Section 3.3 that produces a nonempty

context number p � 0. In the example given in

Section 2, context ba has p = 2 in list a and p = 3

in list b. It also produces the number #p of items

in all prior sublists, which is needed in Section 3.5.

In the example given above, context ba has #p =

2 in list a, and #p = 10 in list b. To retrieve

the desired information in constant time, we compute

p = rank(L
y

k
; i�#y) and #p = select(L

y

k
; p).

In order to save space, for each level k, we ac-

tually store a single directory shared by all lists y.

For each list y, it can retrieve the list's p and #p

values. Conceptually, we represent this global direc-

tory Lk as a simple concatenation of the list-speci�c

bitvectors described above. The only additional infor-

mation we need is the starting position of each of the

above bitvectors, which is easily obtained by computing

start = #y. We compute p = rank(i)� rank(start) and

#p = select(p + rank(start)). Lk is implemented by a

single indexable dictionary [17] storing sk entries in a

universe of size nk.

Lemma 3.4. We can compute p and #p at level k in

constant time using O(sk lg
nk

sk
) bits.

The second component maps p, the local con-

text number for list y, into the global one x (for

level k). Since there are at most minfj�jh; nkg di�er-

ent contexts x for nonempty sublists hx; yi and at most

minfj�j2
k

; nkg nonempty lists y at level k, we use the

concatenation of j�j2
k

bitvectors of j�jh bits each, where
bitvector b

y

k
corresponds to list y and its 1s correspond

to the nonempty sublists of list y. We represent the con-

catenation of bitvectors by
k
in lexicographical order by y

using a single indexable dictionary. Mapping a value p

to a context x for a particular list y is equivalent to

identifying the position of the pth 1 in b
y

k
. This can be

done by a constant number of rank and select queries.

Lemma 3.5. We can map p to x at level k in constant

time and O(sk lg
j�j2

k+h

sk
) bits.

3.5 Encoding Sublist Gaps Armed with x, y, #y,

and #p, we can now retrieve z, the encoded element we

want from the hx; yi sublist. We compute z by �nding

the (i�#y�#p)th element in the hx; yi sublist. We now

show how to get constant time access to any element in

the sublist as well as relate the encoding size to Hh.

We use the indexable dictionary [17] to encode each

hx; yi sublist, storing n
x;y

k
items (the number of items

in the hx; yi sublist at level k) out of nx
k
(the number of

items in context x at level k). The resulting bound is

�
lg

�
nx
k

n
x;y

k

��
+O

�
nx;y
k

lg lgnx;y
k

lgn
x;y

k

�
+O (lg lgnxk) ;

where
l
lg
�
n
x
k

n
x;y

k

�m
� n

x;y

k
lg
�
e

n
x
k

n
x;y

k

�
= n

x;y

k
lg
�

n
x
k

n
x;y

k

�
+

n
x;y

k
lg e, which encodes precisely the hth-order entropy,

representing the ratio of elements in context x to those

in both context x and list y, plus an additive term

of n
x;y

k
lg e. Said another way, we are encoding the

probability of being in list y given the knowledge that

we are in context x, which again, precisely represents

the hth-order entropy term.

Lemma 3.6. We can encode all sublists at level k using

at most nHh + nk lg e+ O(nk lg lg(nk=sk)= lg(nk=sk) +

O(sk lg lg(nk=sk)) bits per level.

3.6 Resulting Bounds for the Compressed Suf-

�x Array We have almost all the pieces we need to

prove Lemma 3.1 and Lemma 3.2. We store all levels

k = 0; 1; : : : ; `0 � 1; `0; ` of the recursion in the com-

pressed suÆx array (notice the gap between `0 and `).

For each of the levels up to `0, we store a bitvector Bk

and a neighbor function �k as described in Section 2,

with their space detailed below.

� Bitvector Bk stores nk=2 (or n` � nk=2 when

k = `0) entries out of nk. It is implemented

with an indexable dictionary [17] in nk=2 +

O(nk lg lgnk= lgnk) bits.

� Neighbor function �k is implemented as described

in Sections 3.2{3.5, with the space bounds stated

in Lemmas 3.3{3.6.

Similar to what we described in Section 2, level k = `

stores the suÆx array SA`, inverted suÆx array SA�1
`
,

and an array LCP ` storing the longest common pre�x

information [10] to allow fast searching in SA`. Each

array contains n= lgn entries, which implies that they

occupy 3n bits in total; however, this can be reduced to

less than n bits with minor modi�cations. In particular,

we can simply increase the last level from ` to ` + 2

without changing the overall space complexity. In

sum, we obtain the following upper bound on the total

number of bits: of space required for the compressed

suÆx array: nHh lg lgj�j n+ 2(lg e+ 1)n+O(n lg lgn

lgn
):

Building the above data structures is simply a vari-

ation of what was done in [6]; thus it takes O(n lg j�j)
time to compress (as given in De�nition 2.1). Since

accessing any of the data structures in any level re-

quires constant time, lookup requires O(`0 + 2`�`
0

) =

O(lg lgj�j n + lg j�j) time, and a substring query for

c symbols requires O(c + lg lgj�j n+ lg j�j) time. How-
ever, we can improve substring by noting that �`0 de-

compresses 2`
0

= �(lgj�j n) symbols at a time, thus we

can replace the c term above by c= lgj�j n as we remarked

in Section 2. This completes the proof of Lemma 3.1.

In order to prove Lemma 3.2, we just store a

constant number 1=� of the `0 levels as in [6], where

0 < � � 1=2. In particular, we store level 0, level `0, and

then one level every other
`0 levels; in sum, 1 + 1=
 =

1=� levels, where
 = �=(1 � �) with 0 <
 < 1. Each

such level k � `0 stores

� a directory Dk (analogous to Bk) storing the

nk+
`0 < nk=2 (or nl < nk=2 when k � `0) entries

of the next sampled level. It is similarly imple-

mented with an indexable dictionary [17] in less

than nk=2 +O(nk lg lgnk= lgnk) bits; and

� a neighbor function �k implemented as before.

The last level ` stores the arrays SA`, SA
�1
`
, and LCP `

as previously described in less than n bits. (Recall that

we actually store them at level ` + 2.) We can bound

the total number of bits required by the compressed suf-

�x array as ��1nHh + 2(lg e + 1)n + O(n lg lgn= lgn).

Thus, we are able to save space at a small cost to

lookup, namely, O(��12
`
0

+ 2`�`
0

) = O(lg

j�j
n+ lg j�j)

time, while substring for c symbols requires an addi-

tional O(c= lgj�j) time. Building the above data struc-

tures is again a variation of what was done in [6], so

compress requires O(n lg j�j) time, proving Lemma 3.2.

4 Compressed SuÆx Arrays in Sublinear Space

We can further reduce the space in the implementation

of compressed suÆx arrays described in Section 3 to

get a sublinear space bound by applying an even more

succinct encoding of the � lists.

Theorem 4.1. Compressed suÆx arrays can be im-

plemented using ��1nHh + O(n lg lg n= lg�j�j n) bits and

O(n lg j�j) preprocessing time for compress, so lookup

takes O
�
(lgj�j n)

�=1�� lg j�j
�
time and substring for c

symbols takes the cost of lookup plus O(c= lgj�j n) time.

By a simple modi�cation, we obtain an interesting

special case:

Theorem 4.2. Compressed suÆx arrays can be im-

plemented using nHh + O(n lg lgn= lgj�j n) bits and

O(n lg j�j) preprocessing time for compress, so that

lookup takes O(lg2 n= lg lgn) time and substring for c

symbols takes the cost of lookup plus O(c lg j�j) time.

Remark 4.1. The compressed suÆx array in Theo-

rem 4.2 is a nearly space-optimal self-index in that it

uses nearly the same space as the compressed text|

nHh bits|plus lower-order terms. For example, when

� is of constant size, we get nHh+O(n lg lgn= lgn) bits.

4.1 Space Redundancy of Multiple Directories

In previous results, we encoded each sublist containing

k items as a separate dictionary using roughly lg
�
n

k

�
�

k lg(en=k) bits. In total among all the sublists at level k,

the total space bound was more than the entropy term

nHh by an additive term of nk lg e. However, in some

sense, a dictionary (or sublist) is an optimal encoding

of the locations of a particular symbol (or list) in the

text T , so it should not require more space per symbol

than the entropy representation, which is the optimal

encoding size. This apparent paradox can be resolved

by noting that each dictionary only represented the

locations of one particular symbol in a sequence; that

is, there was a separate dictionary for each symbol. In

entropy encoding, we encode the locations of all the

symbols together. Thus, it is more expensive to have a

dictionary for the locations of each symbol individually

rather than having a single encoding for the entire

sequence of symbols.

Let's de�ne tx
k

to be the number of nonempty

sublists contained in context x at level k. We de�ne

tk = maxft1
k
; t2
k
; : : : ; t

j�jh

k
g to be the maximum number

of sublists that appear in a single context at level k. For

a given context x at level k, let the number of entries in

the nonempty sublists be n
x;1

k
, n

x;2

k
, . . . , n

x;t
x
k

k
. Given x,

the entropy of encoding the preceding 2k symbols y is

1

nx
k

lg

�
nx
k

n
x;1

k
; n

x;2

k
; : : : ; n

x;tx
k

k

�
�

1

nx
k

X
1�y�tx

k

n
x;y

k
lg

nx
k

n
x;y

k

:

(4.1)

On the other hand, if for context x we store a dictionary

of the locations of the entries in each sublist, then the

dictionary for a given sublist y in context x must encode

1. each of the n
x;y

k
occurrences of y, which happen

with probability n
x;y

k
=nx

k
.

2. each of the nx
k
� n

x;y

k
non-occurrences of y, which

happen with probability 1� n
x;y

k
=nx

k
.

The resulting entropy of encoding the preceding 2k

symbols y in context x is 1
nx
k

P
1�y�tx

k
lg
�
n
x
k

n
x;y

k

�
< lg e+

1
nx
k

P
1�y�tx

k
n
x;y

k
lg

n
x
k

n
x;y

k

: The lg e additive term in the

number of bits per sublist occurrence is the extra cost

incurred by encoding all positions where the sublist

does not occur. When summed over all nk entries

in all sublists and all contexts, this gives an nk lg e

contribution to the total space bound. Note that the

lg e term does not appear in (4.1). We can remove this

undesired space term at the cost of a more expensive

lookup by encoding each of our sublists in terms of the

locations not occupied by prior sublists within the same

context. For example, at level k = 0, the hx; ai sublist
occupies various locations among the items in context x.

When we encode the hx; bi sublist, we only encode the

positions that the hx; bi sublist occupies in terms of

positions not used by the hx; ai sublist. For instance, a
1 in the hx; bi sublist would represent the �rst position

not used by an a within context x. Similarly, when we

encode later sublists, we encode only those positions not

used by the hx; ai and hx; bi sublists, and so on.

The rami�cations of our approach in terms of search

time is that the search would be sequential in terms

of the number of sublists within a context, in order to

decompose the relative positions that are stored. For

instance, at level k = 0, to lookup the ith position in

the hx; ci sublist, we have to �nd the position j of the

ith non-position in the hx; bi sublist. Then we have to

�nd the position of the jth non-position in the hx; ai
sublist. Thus, the cost of a search goes up by a factor

of tx
k
for queries on context x, since we potentially have

to backtrack through each sublist to resolve the query.

Lemma 4.1. We can remove the O(nk lg e) space re-

quirement at each level from the compressed suÆx array,

increasing the search times by a factor of at most tk.

4.2 The Wavelet Tree The main diÆculty with the

approach of Lemma 4.1 is the large sequential time cost

associated with reconstructing a query to a sublist. We

present instead a wavelet tree data structure, which

is of independent interest, to reduce the query time

to lg tx
k
� 2k lg j�j, while still encoding in the desired

space of nHh + o(nk) bits per level. In order to prove

Theorems 4.1 and 4.2, we require this technique only

for level k = 0 (since nk = o(n) for all other k); the

slowdown is at most lg t0 � lg j�j.

Lemma 4.2. (Wavelet Tree Compression) Using

a wavelet tree for each context x at level k, we

can resolve a query on a sublist in lg tx
k

� lg tk
time, while replacing the O(nk lg e) term with

O(nk lg lgnk lg tk= lgnk) bits of space for each level k.

Proof. It suÆces to consider the representation for a

single context x at some level k. All other wavelet trees

are constructed similarly. For ease of presentation, let

si be the hx; ii sublist. Let n
x;i

k
= jsij.

We implicitly consider each left branch to be asso-

ciated with a 0 and each right branch to be associated

with a 1. Each internal node is a fully-indexable dictio-

nary [17] with the elements in its left subtree stored as

0, and the elements in its right subtree stored as 1. For

instance, the root node of the tree in Figure 2 represents

each of the positions of s1; : : : ; s4 as a 0, and each of the

positions of s5; : : : ; s8 as a 1.

The major point here is that each internal node rep-

resents elements relative to its subtrees. Rather than

the linear relative encoding of sublists we had before,

we use a tree structure to exploit exponential relativity,

thus reducing the length of the chain of querying signif-

icantly. In some sense, the earlier approach corresponds

to a completely skewed wavelet tree, as opposed to the

balanced structure now. To resolve a query for the dth

entry in sublist si, we follow these steps:

1. Set s = si.

2. If i is odd, search for the dth 0 in s's parent.

3. If i is even, search for the dth 1 in s's parent.

4. Set d = the position found in s's parent.

5. Set i = b(i+ 1)=2c. Set s = parent(s).

6. Recurse to step 2, unless s = root.

7. Return d as the answer to the query in sublist si.

This query trivially requires lg tx
k
time for context x

and at most lg tk time at level k. We analyze the space

required in terms of the contribution of each internal

node's fully-indexable dictionary. We prove that this

cost is exactly the entropy encoding. (In some sense,

we are calculating the space requirements for each si,

propagated over the entire tree. For instance, si is

implicitly stored in each node of its root-to-leaf path.)

By induction, we can prove that the space required

among all internal nodes is

lg

�
n
x;1

k
+ n

x;2

k

n
x;2

k

�
+ : : :+ lg

�
n
x;t

x
k�1

k
+ n

x;t
x
k

k

n
x;tx

k

k

�

+ lg
�nx;1

k
+:::+n

x;4

k

n
x;3

k
+n

x;4

k

�
+ : : :+ lg

�nx;txk�3
k

+:::+n
x;tx

k
k

n
x;tx

k
�1

k
+n

x;tx
k

k

�
...

+ lg
� n

x;1

k
+:::+n

x;tx
k

k

n
x;1

k
+:::+n

x;tx
k
=2

k

�
= lg

� n
x
k

n
x;1

k
;n

x;2

k
;:::;n

x;tx
k

k

�

Hence, each wavelet tree encodes a particular con-

text in precisely the empirical entropy, which is what

we wanted. Summing over all contexts, we use nHh

bits per level by the de�nition of nHh.

However, the sum of the O(nx;y
k

lg lgnx;y
k

= lgnx;y
k

)

terms at each of the lg tx
k

levels of the wavelet

tree for some context x at level k sum to

O(nx
k
lg lgnx

k
= lgnx

k
). Thus, we end up paying, for each

context x, O(nx
k
lg lgnx

k
lg tx

k
= lgnx

k
) bits, which becomes

S
s1; : : : ; s8PPPPP
�����S

s1; : : : ; s4
b
bb

"
""

s1
S
s2
ee%%

s1 s2

s3
S
s4
ee%%

s3 s4

S
s5; : : : ; s8
b
bb

"
""

s5
S
s6
ee%%

s5 s6

s7
S
s8
ee%%

s7 s8

Figure 2: A wavelet tree

O(nk lg lgnk lg tk= lgnk) when summed over all con-

texts x at level k. Thus we prove Lemma 4.2.

5 Applications to Text Indexing

In this section, we show that compressed suÆx arrays

are high-order entropy-compressed text indexes sup-

porting searching of a sequence pattern P of length m

in O(m + polylog(n)) time with only nHh + o(n) bits,

where nHh is the information theoretical upper bound

on the number of bits required to encode the text T of

length n. We also describe a text index that takes o(m)

search time and uses o(n) bits on highly compressible

texts with small alphabet size. To our knowledge, these

are the �rst such results in text indexing.

5.1 A Pattern Matching Tool We need a search

tool for a list of r sequences S1 � � � � � Sr in

lexicographical order, so that we can identify the least

sequence Si having P as a pre�x in O(m + r) time.

(Identifying the greatest such sequence is analogous.)

Our method examines the sequences S1; : : : ; Sr in left-

to-right order. The steps are detailed below, where we

denote the kth symbol of a sequence S by S[k]:

1. Set i = 1 and k = 1.

2. Find the smallest j � i such that Sj [k] = P [k].

3. If j > r, declare that P is not the pre�x of any

sequence and quit with a failure. Otherwise, assign

the value of j to i, and increment k.

4. If k � m then go to step 2. Otherwise, check

whether Si has P as a pre�x, returning Si as the

least sequence in case of success or declaring a

failure otherwise.

Denoting the positions assigned to i in step 3 with

ik � � � � � i2 � i1, we observe that we do not access the

�rst k � 1 symbols of Sik�1+1, . . . , Sik when ik > ik�1,

which could be potential mismatches. In general, we

compare only a total of O(ik+k) symbols of Si1 ; : : : ; Sik
against those in P , where ik � r. Only when we have

reached the end of the pattern P (i.e., when k = m),

do we increment k, set i = im, and perform a full

comparison of P against Si. This results in a correct

method notwithstanding potential mismatches.

Lemma 5.1. Given a list of r sequences S1 � � � � � Sr
in lexicographical order, let Si be sequence identi�ed by

our search tool. If P is a pre�x of Si, then Si is the least

sequence with this property. Otherwise, no sequence in

S1; : : : ; Sr has P as a pre�x. The cost of the search is

O(m+ r) time, where m is the length of P .

What if S1; : : : ; Sr are implicitly stored in our

compressed suÆx array, say at consecutive positions

x + 1; : : : ; x + r for a suitable value of x? To achieve

this goal, we need to decompress each suÆx Sj on the

y by knowing its position x+j in the compressed suÆx

array (recall that SA[x+j] contains the starting position

of Sj in the text). Decompressing one text symbol of Sj
at a time is inherently sequential as in [2] and [19, 20].

But steps 2{3 of our search tool require us to start

decompressing from the kth symbol of suÆx Sj , rather

than the �rst, which could cost us O(mr) time!

Fortunately, we can overcome this problem by using

the inverse compressed suÆx array. In order to incre-

mentally decompress symbols from position k of suf-

�x Sj (having position x + i), we decompress the �rst

symbols in the suÆx at position SA�1
�
SA[x+ i]+k�1

�
in the compressed suÆx array, where SA and SA�1 de-

note the suÆx array and its inverse as mentioned in

Section 2. Equivalently, the latter suÆx can be seen as

obtained by removing the �rst k � 1 symbols from Sj .

All this requires a constant number of lookup operations

and a single substring operation, with a cost that is in-

dependent of the value of k.

Lemma 5.2. Given a sequence of r consecutive suÆxes

S1 � � � � � Sr in the compressed suÆx array, our search

tool �nds the leftmost and the rightmost suÆx having P

as a pre�x, in O(m + r) symbol comparisons plus O(r)

lookup and substring operations, where m = jP j.

5.2 High-Order Entropy-Compressed Text In-

dexing We now have all the tools to describe our search

of P in the compressed suÆx array. We �rst perform

a search of P in SA`+lg t(n), which is stored explicitly

along with LCP `+lg t(n), the longest common pre�x in-

formation required in [10]. (The term t(n) depends on

which implementation of compressed suÆx arrays we

use.) We requireO(m) symbol comparisons plus O(lgn)

lookup and substring operations. At that point, we lo-

cate a portion of the (compressed) suÆx array storing

r = 2`+lg t(n) = O(t(n) lg n) suÆxes. We run our search

tool on these r suÆxes, at the cost of O(m + t(n) lgn)

symbol comparisons and O(t(n) lg n) calls to lookup and

substring , which is also the asymptotical cost of the

whole search.

Theorem 5.1. Given a text of n symbols over the

alphabet �, we can replace it by a compressed suÆx

array occupying ��1nHh + O(n lg lgn= lg�j�j n) bits, so

that searching a pattern of length m takes O(m= lgj�j n+

(lgn)(1+�)=(1��)(lg j�j)(1�3�)=(1��)) time, for any �xed

value of 0 < � < 1=2.

For example, �xing � = 1=3 in Theorem 5.1, we

obtain a search time of O(m= lgj�j n+lg2 n) with a self-

index occupying 3nHh +O(n lg lg n= lg
1=3

j�j
n) bits. We

can reduce the space to nHh bits plus a lower-order

term, obtaining a nearly space-optimal self-index.

Theorem 5.2. Given a text of n symbols over the

alphabet �, we can replace it by a compressed suf-

�x array occupying nearly optimal space, i.e., nHh +

O(n lg lgn= lgj�j n) bits, so that searching a pattern

of length m takes O(m lg j�j + lg4 n= lg2 lg n lg j�j) =

O(m lg j�j+ polylog(n)) time.

If we augment the compressed suÆx array to obtain

the hybrid multilevel data structure in [6], we can im-

prove the lower-order terms in the search time of Theo-

rem 5.1, where t(n) = lg

j�j
n and
 = �=(1� �) > �. We

use a sparse suÆx tree storing every other (t(n) lgn)th

suÆx using O(n=t(n)) = O(n= lg�j�j n) bits to lo-

cate a portion of the (compressed) suÆx array stor-

ing O(t(n) lg n) suÆxes. However, we do not imme-

diately run our search tool in Lemma 5.2; instead, we

employ a nested sequence of space-eÆcient Patricias [12]

of size lg!�
 n until we are left with segments of r = t(n)

adjacent suÆxes in the compressed suÆx array, for any

�xed value of 1 > ! � 2
 > 0. This scheme adds

O(n=r) = O(n= lg�j�j n) bits to the self-index, allowing

us to restrict the search of pattern P to a segment of r

consecutive suÆxes in the compressed suÆx array. At

this point, we run our search tool in Lemma 5.2 on these

r suÆxes to identify the leftmost occurrence of the pat-

tern.

Theorem 5.3. Given a text of n symbols over the al-

phabet �, we can replace it by a hybrid compressed suf-

�x array occupying ��1nHh+O(n lg lg n= lg
�

j�j n) bits, so

that searching a pattern of length m takes O(m= lgj�j n+

lg! n log1�� j�j) time, for any �xed value of 1 > ! �
2�=(1� �) > 0 and 0 < � < 1=3.

We provide the �rst self-index with small alphabets

that is sublinear both in space and in search time.

Corollary 5.1. For any text where nHh = o(n) and

the alphabet is small, the self-index in Theorem 5.3

occupies just o(n) bits and requires o(m) search time.

Acknowledgments

We would like to thank Rajeev Raman, Venkatesh

Raman, S. Srinivasa Rao, and Kunihiko Sadakane for

sending us a copy of the full journal version of their

papers, and Rajeev Raman and S. Srinivasa Rao for

clarifying some details on succinct data structures.

References

[1] D. E. Ferguson. Bit-Tree: a data structure for fast �le

processing. C. ACM, 35(6):114{120, 1992.

[2] P. Ferragina, G. Manzini. Opportunistic data struc-

tures with applications. In FOCS, 390{398, 2000.

[3] P. Ferragina, G. Manzini. An experimental study of an

opportunistic index. In SODA, 269{278, 2001.

[4] G. H. Gonnet, R. A. Baeza-Yates, T. Snider. New

indices for text: PAT trees and PAT arrays. In

Information Retrieval: Data Struct. Algs., 66{82, 1992.

[5] http://www.google.com/help/refinesearch.html.

[6] R. Grossi, J. S. Vitter. Compressed suÆx arrays and

suÆx trees with applications to text indexing and string

matching. In STOC, 397{406, 2000.

[7] G. Jacobson. Space-eÆcient static trees and graphs. In

FOCS, 549{554, 1989.

[8] T. Luczak, W. Szpankowski. A Suboptimal Lossy Data

Compression Based in Approximate Pattern Matching.

IEEE Trans. Inform. Theory, 43, 1439{1451, 1997.

[9] E. M. McCreight. A space-economical suÆx tree

construction algorithm. J. ACM, 23(2):262{272, 1976.

[10] U. Manber, G. Myers. SuÆx arrays: a new method for

on-line string searches. SIAM J. Comput., 22:935{948,

1993.

[11] D. R. Morrison. PATRICIA - Practical Algorithm To

Retrieve Information Coded In Alphanumeric. J. ACM,

15(4):514{534, 1968.

[12] J. I. Munro, V. Raman, S. S. Rao. Space eÆcient suÆx

trees. J. Algorithms, 39:205{222, 2001.

[13] J. I. Munro. Tables. FSTTCS, 16:37{42, 1996.

[14] A. Mo�at, J. Zobel. Self-indexing inverted �les for

fast text retrieval. ACM Trans. Informat. Systems,

14(4):349{379, 1996.

[15] G. Navarro, E. Silva de Moura, M. Neubert, N. Ziviani,

R. Baeza-Yates. Adding compression to block address-

ing inverted indexes. Inform. Retrieval, 3:49{77, 2000.

[16] R. Pagh. Low redundancy in static dictionaries with

constant query time. SIAM J.Comput., 31:353{363,

2001.

[17] R. Raman, V. Raman, and S. S. Rao. Succinct

indexable dictionaries with applications to encoding k-

ary trees and multisets. In SODA, 233{242, 2002.

[18] S. S. Rao. Time-space trade-o�s for compressed suÆx

arrays. IPL, 82(6):307{311, 2002.

[19] K. Sadakane. Compressed text databases with eÆcient

query algorithms based on the compressed suÆx array.

In ISAAC, 410{421, 2000.

[20] K. Sadakane. Succinct representations of lcp informa-

tion and improvements in the compressed suÆx arrays.

In SODA, 2002.

[21] I. H. Witten, A. Mo�at, T. C. Bell. Managing Giga-

bytes: Compressing and Indexing Documents and Im-

ages. Morgan Kaufmann, second edition, 1999.

