
Image denoising: Can plain Neural Networks compete with BM3D?

Harold C. Burger, Christian J. Schuler, and Stefan Harmeling
Max Planck Institute for Intelligent Systems, Tübingen, Germany

http://people.tuebingen.mpg.de/burger/neural_denoising/

Abstract

Image denoising can be described as the problem of
mapping from a noisy image to a noise-free image. The
best currently available denoising methods approximate
this mapping with cleverly engineered algorithms. In this
work we attempt to learn this mapping directly with a plain
multi layer perceptron (MLP) applied to image patches.
While this has been done before, we will show that by train-
ing on large image databases we are able to compete with
the current state-of-the-art image denoising methods. Fur-
thermore, our approach is easily adapted to less extensively
studied types of noise (by merely exchanging the training
data), for which we achieve excellent results as well.

1. Introduction
An image denoising procedure takes a noisy image as

input and outputs an image where the noise has been re-
duced. Numerous and diverse approaches exists: Some se-
lectively smooth parts of a noisy image [25, 26]. Other
methods rely on the careful shrinkage of wavelet coeffi-
cients [24, 18]. A conceptually similar approach is to de-
noise image patches by trying to approximate noisy patches
using a sparse linear combination of elements of a learned
dictionary [1, 4]. Learning a dictionary is sometimes ac-
complished through learning on a noise-free dataset. Other
methods also learn a global image prior on a noise-free
dataset, for instance [20, 27, 9]. More recent approaches ex-
ploit the “non-local” statistics of images: Different patches
in the same image are often similar in appearance [3, 13, 2].
This last class of algorithms and in particular BM3D [3]
represent the current state-of-the-art in natural image de-
noising.

While BM3D is a well-engineered algorithm, could we
also automatically learn an image denoising procedure
purely from training examples consisting of pairs of noisy
and noise-free patches? This paper will show that it is in-
deed possible to achieve state-of-the-art denoising perfor-
mance with a plain multi layer perceptron (MLP) that maps
noisy patches onto noise-free ones.

This is possible because the following factors are combined:

• The capacity of the MLP is chosen large enough,
i.e. it consists of enough hidden layers with sufficiently
many hidden units.

• The patch size is chosen large enough, i.e. a patch con-
tains enough information to recover a noise-free ver-
sion. This is in agreement with previous findings [12].

• The chosen training set is large enough. Training ex-
amples are generated on the fly by corrupting noise-
free patches with noise.

Training high capacity MLPs with large training sets is fea-
sible using modern Graphics Processing Units (GPUs).

Contributions: We present a patch-based denoising algo-
rithm that is learned on a large dataset with a plain neural
network. Results on additive white Gaussian (AWG) noise
are competitive with the current state of the art. The ap-
proach is equally valid for other types of noise that have not
been as extensively studied as AWG noise.

2. Related work
Neural networks have already been used to denoise im-

ages [9]. The networks commonly used are of a special
type, known as convolutional neural networks (CNNs) [10],
which have been shown to be effective for various tasks
such as hand-written digit and traffic sign recognition [23].
CNNs exhibit a structure (local receptive fields) specifically
designed for image data. This allows for a reduction of the
number of parameters compared to plain multi layer per-
ceptrons while still providing good results. This is useful
when the amount of training data is small. On the other
hand, multi layer perceptrons are potentially more powerful
than CNNs: MLPs can be thought of as universal function
approximators [8], whereas CNNs restrict the class of pos-
sible learned functions.

A different kind of neural network with a special archi-
tecture (i.e. containing a sparsifying logistic) is used in [19]
to denoise image patches. A small training set is used. Re-
sults are reported for strong levels of noise. It has also been

4321



attempted to denoise images by applying multi layer per-
ceptrons on wavelet coefficients [28]. The use of wavelet
bases can be seen as an attempt to incorporate prior knowl-
edge about images.

Differences to this work: Most methods we have described
make assumptions about natural images. Instead we do not
explicitly impose such assumptions, but rather propose a
pure learning approach.

3. Multi layer perceptrons (MLPs)
A multi layer perceptron (MLP) is a nonlinear function

that maps vector-valued input via several hidden layers to
vector-valued output. For instance, an MLP with two hid-
den layers can be written as,

f(x) = b3 +W3 tanh(b2 +W2 tanh(b1 +W1x)). (1)

The weight matrices W1,W2,W3 and vector-valued biases
b1, b2, b3 parameterize the MLP, the function tanh operates
component-wise. The architecture of an MLP is defined
by the number of hidden layers and by the layer sizes. For
instance, a (256,2000,1000,10)-MLP has two hidden layers.
The input layer is 256-dimensional, i.e. x ∈ <256. The
vector v1 = tanh(b1 + W1x) of the first hidden layer is
2000-dimensional, the vector v2 = tanh(b2 + W2v1) of
the second hidden layer is 1000-dimensional, and the vector
f(x) of the output layer is 10-dimensional. Commonly, an
MLP is also called feed-forward neural network.

3.1. Training MLPs for image denoising

The idea is to learn an MLP that maps noisy image
patches onto clean image patches where the noise is reduced
or even removed. The parameters of the MLP are estimated
by training on pairs of noisy and clean image patches using
stochastic gradient descent [11].

More precisely, we randomly pick a clean patch y from
an image dataset and generate a corresponding noisy patch
x by corrupting y with noise, for instance with additive
white Gaussian (AWG) noise. The MLP parameters are
then updated by the backpropagation algorithm [21] mini-
mizing the quadratic error between the mapped noisy patch
f(x) and the clean patch y, i.e. minimizing (f(x)− y)2.

To make backpropagation more efficient, we apply vari-
ous common neural network tricks [11]:

1. Data normalization: The pixel values are transformed
to have approximately mean zero and variance close to
one. More precisely, assuming pixel values between 0
and 1, we subtract 0.5 and divide by 0.2.

2. Weight initialization: The weights are sampled from
a normal distribution with mean 0 and standard devia-
tion σ =

√
N , whereN is the number of input units of

the corresponding layer. Combined with the first trick,
this ensures that both the linear and the non-linear parts
of the sigmoid function are reached.

3. Learning rate division: In each layer, we divide the
learning rate by N , the number of input units of that
layer. This allows us to change the number of hidden
units without modifying the learning rate.

The basic learning rate was set to 0.1 for all experiments.
No regularization was applied on the weights.

3.2. Applying MLPs for image denoising

To denoise images, we decompose a given noisy image
into overlapping patches and denoise each patch x sepa-
rately. The denoised image is obtained by placing the de-
noised patches f(x) at the locations of their noisy coun-
terparts, then averaging on the overlapping regions. We
found that we could improve results slightly by weighting
the denoised patches with a Gaussian window. Also, in-
stead of using all possible overlapping patches (stride size
1, i.e. patch offset 1), we found that results were almost
equally good by using every third sliding-window patch
(stride size 3), while decreasing computation time by a fac-
tor of 9. Using a stride size of 3, we were able to denoise
images of size 512×512 pixels in approximately one minute
on a modern CPU, which is slower than BM3D [3], but
much faster than KSVD [1].

3.3. Implementation

The computationally most intensive operations in an
MLP are the matrix-vector multiplications. Graphics Pro-
cessing Units (GPUs) are better suited for these operations
than Central Processing Units (CPUs). For this reason we
implemented our MLP on a GPU. We used nVidia’s C2050
GPU and achieved a speed-up factor of more than one order
of magnitude compared to an implementation on a quad-
core CPU. This speed-up is a crucial factor, allowing us to
run much larger-scale experiments.

4. Experimental setup
We performed all our experiments on gray-scale images.

These were obtained from color images with MATLAB’s
rbg2gray function. Since it is unlikely that two noise
samples are identical, the amount of training data is effec-
tively infinite, no matter which dataset is used. However,
the number of uncorrupted patches is restricted by the size
of the dataset.

Training data: For our experiments, we define two training
sets:

Small training set: The Berkeley segmentation dataset
[15], containing 200 images, and

4322



2 4 6 8 10 12

x 10
7

26

27

28

29

30

number of training samples

a
v
e

ra
g

e
 P

S
N

R
 [

d
B

]

progress during training (AWG noise, σ=25)

 

 

L−17−4x2047

L−13−4x2047

L−13−2x2047

L−17−2x2047

L−13−2x511

S−17−4x2047

S−13−2x511

Figure 1. Improving average PSNR on the images “Barbara” and
“Lena” while training.

Large training set: The union of the LabelMe dataset [22]
(containing approximately 150, 000 images) and the
Berkeley segmentation dataset.

Some images in the LabelMe dataset appeared a little noisy
or a little blurry, so we downscaled the images in that dataset
by a factor of 2 using MATLAB’s imresize function with
default parameters.

Test data: We define three different test sets to evaluate our
approach:

Standard test images: This set of 11 images contains stan-
dard images, such as “Lena” and “Barbara”, that have
been used to evaluate other denoising algorithms [3],

Pascal VOC 2007: We randomly selected 500 images from
the Pascal VOC 2007 test set [5], and

McGill: We randomly selected 500 images from the
McGill dataset [17].

5. Results
We first study how denoising performance depends on

the MLP architecture and the number of training examples.
Then we compare against BM3D and other existing algo-
rithms, and finally we show how MLPs perform on other
types of noise.

5.1. More training data and more capacity is better

We train networks with different architectures and patch
sizes. We write for instance L–17–4x2047 for a network
that is trained on the large training set with patch size 17×
17 and 4 hidden layers of size 2047; similarly S–13–2x511
for a network that is trained on the small training set with
patch size 13 × 13 and 2 hidden layers of size 511. Other
architectures are denoted in the legend of Figure 1. All these
MLPs are trained on image patches that have been corrupted
with Gaussian noise with σ = 25.

0 100 200 300 400 500

−1

−0.5

0

0.5

sorted image index

im
p
ro

v
e
m

e
n
t 
in

 P
S

N
R

 o
v
e
r 

B
M

3
D

 [
d
B

]

results compared to BM3D (AWG noise, σ=25)

 

 

McGill

VOC2007

Figure 3. Performance profile of our method on two datasets of
500 test images compared to BM3D.

To monitor the performance of the network we test the
different networks after every two million training examples
on two test images “Barbara” and “Lena” that have been
corrupted with Gaussian noise with standard deviation σ =
25. Figure 1 shows the improving PSNR of the networks on
the two test images.
Observations: Many training examples are needed to
achieve good results. Progress is steady for the first 40 mil-
lion training samples. After that, the PSNR on the test im-
ages still improves, albeit more slowly. Overfitting never
seems to be an issue. Better results can be achieved with
patches of size 17×17 compared to patches of size 13×13.
Also, more complex networks lead to better results. Switch-
ing from the small training set (Berkeley) to the large train-
ing set (LabeleMe + Berkeley) improves the results enor-
mously. We note that most attempts to learn image statis-
tics using a training dataset have used only the Berkeley
segmentation dataset [20, 9, 19].

5.2. Can MLPs compete with BM3D?

In the previous section, the MLP L–17–4x2047 with four
hidden layers of size 2047 and a patch size of 17 × 17
trained on the large training set achieved the best results.
We trained this MLP on a total of 362 million training sam-
ples, requiring approximately one month of computation
time on a GPU. In the following, we compare its results
achieved on the test data with other denoising methods, in-
cluding BM3D [3].

Pascal VOC 2007, McGill: Figure 3 compares our method
with BM3D on PASCAL VOC 2007 and McGill. To reduce
computation time during denoising, we used a patch offset
(stride size) of 3. On average, our results are equally good
on the PASCAL VOC 2007 (better by 0.03dB) and on the
McGill dataset (better by 0.08dB).

More precisely, our MLP outperforms BM3D on exactly
300 of the 500 images of the PASCAL VOC 2007 images,
see Figure 3. Similarly, our MLP is better on 347 of the

4323



clean (name: 008934) noisy (σ = 25)PSNR:20.16dB BM3D: PSNR:29.65dB ours: PSNR:30.03dB

clean (name: barbara) noisy (σ = 25)PSNR:20.19dB BM3D: PSNR:30.67dB ours: PSNR:29.21dB

Figure 2. Our results compared to BM3D. Our method outperforms BM3D on some images (top row). On other images however, BM3D
achieves much better results than our approach. The images on which BM3D is much better than our approach usually contain some kind
of regular structure, such as the stripes on Barbara’s pants (bottom row).

image GSM [18] KSVD [1] BM3D [3] us
Barbara 27.83dB 29.49dB 30.67dB 29.21dB
Boat 29.29dB 29.24dB 29.86dB 29.89dB
C.man 28.64dB 28.64dB 29.40dB 29.32dB
Couple 28.94dB 28.87dB 29.68dB 29.70dB
F.print 27.13dB 27.24dB 27.72dB 27.50dB
Hill 29.26dB 29.20dB 29.81dB 29.82dB
House 31.60dB 32.08dB 32.92dB 32.50dB
Lena 31.25dB 31.30dB 32.04dB 32.12dB
Man 29.16dB 29.08dB 29.58dB 29.81dB
Montage 30.73dB 30.91dB 32.24dB 31.85dB
Peppers 29.49dB 29.69dB 30.18dB 30.25dB

Table 1. PSNRs (in dB) on standard test images, σ = 25.

500 images of the McGill images. Our best improvement
over BM3D is 0.81dB on image “pippin0120”; BM3D is
better by 1.32dB on image “merry mexico0152”, both in

the McGill dataset.

Standard test images: We also compare our MLP (with a
stride size of 1) to BM3D on the set of standard test images,
see Table 1. For BM3D, we report the average results for
105 different noisy instances of the same test image. Due
to longer running times, we used only 17 different noisy in-
stances for our approach. We outperform BM3D on 6 of the
11 test images. BM3D has a clear advantage on images with
regular structures, such as the pants of Barbara. We do out-
perform KSVD [1] on every image except Barbara. KSVD
is a dictionary-based denoising algorithm that learns a dic-
tionary that is adapted to the noisy image at hand. Images
with a lot of repeating structure are ideal for both BM3D
and KSVD. We see that the neural network is able to com-
pete with BM3D.

4324



10 20 30 40 50 60 70 80 90 100

15

20

25

30

35

σ noise

a
v
e

ra
g

e
 P

S
N

R
 [

d
B

]

behavior at different noise levels

 

 
BM3D

us, trained on several noise levels

GSM

KSVD

BM3D, assuming σ = 25

us, trained on σ = 25

Figure 4. Comparison on images with various noise levels: the
MLP trained for σ = 25 is competitive for σ = 25. The MLP
trained on several noise levels is also competitive on higher noise
levels.

5.3. Robustness at other noise levels

The MLP from the previous section was trained solely
on image patches that were corrupted with AWG noise with
σ = 25. Is it able to handle other noise levels (σ smaller
or larger than 25) as well? To answer this question, we ap-
plied it to the 11 standard test images that were corrupted
with AWG noise with different values of σ. Figure 4 shows
a comparison against results achieved by GSM, KSVD and
BM3D. We see that for σ = 25 our MLP (brown line) is
competitive, but deteriorates for other noise levels. While
our MLP does not know that the level of the noise has
changed, the other methods were provided with that infor-
mation. To study this effect we also run BM3D for the dif-
ferent noise levels but fixing its input parameter to σ = 25
(red curve). We see a similar behavior to our method. Our
MLP generalizes even slightly better to higher noise levels
(brown above red).

5.4. MLPs trained on several noise levels

To overcome the limitations of an MLP trained on ex-
amples from a single noise level, we attempted to train a
network on image patches corrupted by noise with different
noise levels. We used the same architecture as our network
trained on σ = 25. The amount of noise of a given training
patch (i.e. the value of σ) was given as additional input to
the network. This was done in two ways: One additional
input unit provided the value of σ directly; 15 additional in-
put units worked as switches with all units set to −1 except
for the one unit coding the corresponding value of σ. Train-
ing proceeded as previously and σ was chosen randomly in
steps of 5 between 0 and 105. We tested this network on 11
standard test images for different values of σ, see green line
in Figure 4.

Even though we outperform BM3D on none of the noise
levels, we do perform better than both GSM and KSVD at
high noise levels. At low noise levels (σ = 5) our denoising
results are worse than the noisy input. We draw the follow-
ing conclusions: Denoising at several noise levels is more
difficult than denoising at a single noise level. Hence, a net-
work with more capacity (i.e. parameters) should be used.
The fact that the network performs better at high noise lev-
els is presumable due to the fact that noisier patches provide
stronger gradients. The higher noise levels therefore dom-
inate the training procedure. A potential solution might be
to adapt the learning rate to the value of σ.

5.5. Learning to remove arbitrary noise types

Virtually all denoising algorithms assume the noise to be
AWG. However, images are not always corrupted by AWG
noise. Noise is not necessarily additive, white, Gaussian
and signal independent. For instance in some situations, the
imaging process is corrupted by Poisson noise (such as pho-
ton shot noise). Denoising algorithms which assume AWG
noise might be applied to such images using some image
transform [14]. Similarly, Rice-distributed noise, which oc-
curs in magnetic resonance imaging, can be handled [6].

In most cases however, it is more difficult or even im-
possible to find Gaussianizing transforms. In such cases, a
possible solution is to create a denoising algorithm specif-
ically designed for that noise type. MLPs allow us to ef-
fectively learn a denoising algorithm for a given noise type,
provided that noise can be simulated. In the following , we
present results on three noise types that are different from
AWG noise.We make no effort to adapt our architecture or
procedure in general to the specific noise type but rather use
the architecture that yielded the best results for AWG noise
(four hidden layers of size 2047 and patches of size 17×17).

Stripe noise: It is often assumed that image data contains
structure, whereas the noise is uncorrelated and therefore
unstructured. In cases where the noise also exhibits struc-
ture, this assumption is violated and denoising results be-
come poor. We here show an example where the noise is
additive and Gaussian, but where 8 horizontally adjacent
noise values have the same value.

Since there is no canonical denoising algorithm for this
noise, we choose BM3D as the competitor. An MLP trained
on 58 million training examples outperformed BM3D for
this type of noise, see left column of Figure 5.

Salt and pepper noise: When the noise is additive Gaus-
sian, the noisy image value is still correlated to the original
image value. With salt and pepper noise, noisy values are
not correlated with the original image data. Each pixel has
a probability p of being corrupted. A corrupted pixel has
probability 0.5 of being set to 0; otherwise, it is set to high-

4325



“stripe” noise: 20.23 dB salt and pepper noise: 12.39 dB JPEG quantization: 27.33 dB

BM3D [3]: 27.61 dB 5× 5 median filtering: 30.26 dB Re-application of JPEG [16]: 28.42 dB

our result: 30.09 dB our result: 34.50 dB our result: 28.97 dB

Figure 5. Comparison of our method to others on different kinds of noise. The comparison with BM3D is unfair.

est possible value (255 for 8-bit images). We show results
with p = 0.2.

A common algorithm for removing salt and pepper noise
is median filtering. We achieved the best results with a filter
size of 5×5 and symmetrically extended image boundaries.
We also experimented with BM3D (by varying the value
of σ) and achieved a PSNR of 25.55dB. An MLP trained
on 50 million training examples outperforms both methods,
see middle column of Figure 5.

JPEG quantization artifacts: Such artifacts occur due to
the JPEG image compression algorithm. The quantization
process removes information, therefore introducing noise.
Characteristics of JPEG noise are blocky images and loss
of edge clarity. This kind of noise is not random, but rather
completely determined by the input image. In our experi-
ments we use JPEG’s quality settingQ = 5, creating visible

artifacts.
A common method to enhance JPEG-compressed im-

ages is to shift the images, re-apply JPEG compression,
shift back and average [16] which we choose for compar-
ison. BM3D achieves similar results on this task after pa-
rameter tweaking. An MLP trained on 12 million training
examples with that noise, outperforms both methods, see
right column of Figure 5.

6. Discussion
The learned weights applied to the input layer and the

weights that calculate the output layer can be visualized as
patches, see Figures. 7 and 6.

The latter patches in Figure 6 form a dictionary of the
denoised patch since they are linearly combined with the
scalars in the last hidden layers as weighting coefficients.

4326



Figure 6. Random selection of weights in the output layer. Each
patch represents the weights from one hidden neuron to the output
pixels.

Figure 7. Random selection of weights in the input layer. Each
patch represents the weights from the input pixels to one hidden
neuron.

0 50 100 150
0.8

1

1.2

1.4

1.6

iteration

l1
−

n
o

rm
 /

 i
n

it
ia

l 
l1

−
n

o
rm

Weight norm evolution during training

 

 

layer 1

layer 2

layer 3

layer 4

layer 5

Figure 8. The `1-norm of the weights of some layers decreases
during training (without any explicit regularization).

They can be categorized coarsely into four categories: 1)
patches resembling Gabor filters, 2) blobs, 3) larger scale
structures, and 4) “noisy” patches. The Gabor filters occur
at different scales, shifts and orientations. Similar dictionar-
ies have also been learned by other denoising approaches. It
should be noted that MLPs are not shift-invariant, which ex-
plains why some patches are shifted versions of each other.

The weights connecting the noisy input pixels to one hid-
den neuron in the first hidden layer can also be represented
as an image patch, see Figure 7. The patches can be in-

terpreted as filters, with the activity of the hidden neuron
connected to a patch corresponding to the filter’s response
to the input. These patches can be classified into three main
categories: 1) patches that focus on just a small number of
pixels, 2) patches focusing on larger regions and resembling
Gabor filters, and 3) patches that look like random noise.
These filters are able to extract useful features from noisy
input data, but are more difficult to interpret than the output
layer patches.

It is also interesting to observe the evolution of the `1-
norm of the weights in the different layers during training,
see Figure 8. One might be tempted to think of the evolution
of the weights as following a random walk. In that case, the
`1-norm should increase over time. However, we observe
that in all layers but the first, the `1-norm decreases over
time (after a short initial period where it increases). This
happens in the absence of any explicit regularization on the
weights and is an indication that such regularization is not
necessary.

MLPs vs. Support Vector Regression: We use MLPs to
solve a regression problem to learn a denoising method. An
equally valid approach would have been to use a kernel ap-
proach such as support vector regression (SVR). For prac-
tical (rather than fundamental) reasons we preferred MLPs
over SVR: (i) MLPs are easy to implement on a GPU since
they are based on matrix-vector-multiplications. (ii) MLPs
can easily be trained on very large datasets using stochastic
gradient descent. However, we make no claim regarding the
quality of results potentially achievable with SVR: It is en-
tirely possible that SVR would yield still better results than
our MLPs.

Is deep learning necessary? Training MLPs with many
hidden layers can lead to problems such as vanishing gradi-
ents and over-fitting. To avoid these problems, new training
procedures called deep learning that start with an unsuper-
vised learning phase have been proposed [7]. Such an ap-
proach makes the most sense when labeled data is scarce
but unlabeled data is plentiful and when the networks are
too deep to be trained effectively with back-propagation. In
our case, labeled data is plentiful and the networks con-
tain no more than four hidden layers. We found back-
propagation to work well and therefore concluded that deep
learning techniques are not necessary, though it is possible
that still better results are achievable with an unsupervised
pre-training technique.

7. Conclusion
Neural networks can achieve state-of-art image denois-

ing performance. For this, it is important that (i) the ca-
pacity of the network is large enough, (ii) the patch size
is large enough, and (iii) the training set is large enough.
These requirements can be fulfilled by implementing MLPs

4327



on GPUs that are ideally suited for the computations neces-
sary to train and apply neural networks. Without the use of
GPUs our computations could have easily taken a year of
running time.

However, our most competitive MLP is tailored to a sin-
gle level of noise and does not generalize well to other noise
levels compared to other denoising methods. This is a se-
rious limitation which we already tried to overcome with
an MLP trained on several noise levels. However, the latter
does not yet achieve the same performance for σ = 25 as
the specialized MLP. Nonetheless, we believe that this will
also be possible with a network with even higher capacity
and sufficient training time.

References
[1] M. Aharon, M. Elad, and A. Bruckstein. K-svd: An al-

gorithm for designing overcomplete dictionaries for sparse
representation. IEEE Transactions on Signal Processing,
54(11):4311–4322, 2006.

[2] A. Buades, C. Coll, and J. Morel. A review of image denois-
ing algorithms, with a new one. Multiscale Modeling and
Simulation, 4(2):490–530, 2005.

[3] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Im-
age denoising by sparse 3-D transform-domain collabora-
tive filtering. IEEE Transactions on Image Processing,
16(8):2080–2095, 2007.

[4] M. Elad and M. Aharon. Image denoising via sparse
and redundant representations over learned dictionaries.
IEEE Transactions on Image Processing, 15(12):3736–3745,
2006.

[5] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

[6] A. Foi. Noise estimation and removal in mr imaging: The
variance-stabilization approach. In 2011 IEEE International
Symposium on Biomedical Imaging: From Nano to Macro,
pages 1809–1814, 2011.

[7] G. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm
for deep belief nets. Neural Computation, 18(7):1527–1554,
2006.

[8] K. Hornik, M. Stinchcombe, and H. White. Multilayer feed-
forward networks are universal approximators. Neural Net-
works, 2(5):359–366, 1989.

[9] V. Jain and H. Seung. Natural image denoising with convolu-
tional networks. Advances in Neural Information Processing
Systems (NIPS), 21:769–776, 2008.

[10] Y. LeCun, L. Bottou, Y. Bengio, and H. P. Gradient-based
learning applied to document recognition. Proceedings of
the IEEE, 86(11):2278–2324, 1998.

[11] Y. LeCun, L. Bottou, G. Orr, and K. Müller. Efficient back-
prop. Neural networks: Tricks of the trade, pages 546–546,
1998.

[12] A. Levin and B. Nadler. Natural Image Denoising: Optimal-
ity and Inherent Bounds. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2011.

[13] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman.
Non-local sparse models for image restoration. In Computer
Vision, 2009 IEEE 12th International Conference on, pages
2272–2279, 2010.

[14] M. Mäkitalo and A. Foi. Optimal inversion of the anscombe
transformation in low-count poisson image denoising. IEEE
Transactions on Image Processing, 20:99–109, 2011.

[15] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. In Proc. 8th International Conference on Com-
puter Vision (ICCV), volume 2, pages 416–423, July 2001.

[16] A. Nosratinia. Enhancement of jpeg-compressed images by
re-application of jpeg. The Journal of VLSI Signal Process-
ing, 27(1):69–79, 2001.

[17] A. Olmos et al. A biologically inspired algorithm for the
recovery of shading and reflectance images. Perception,
33(12):1463, 2004.

[18] J. Portilla, V. Strela, M. Wainwright, and E. Simoncelli.
Image denoising using scale mixtures of Gaussians in the
wavelet domain. IEEE Transactions on Image Processing,
12(11):1338–1351, 2003.

[19] M. Ranzato, Y.-L. Boureau, S. Chopra, and Y. LeCun. A
unified energy-based framework for unsupervised learning.
In Proc. Conference on AI and Statistics (AI-Stats), 2007.

[20] S. Roth and M. Black. Fields of experts. International Jour-
nal of Computer Vision, 82(2):205–229, 2009.

[21] D. Rumelhart, G. Hinton, and R. Williams. Learn-
ing representations by back-propagating errors. Nature,
323(6088):533–536, 1986.

[22] B. Russell, A. Torralba, K. Murphy, and W. Freeman. La-
belme: a database and web-based tool for image annotation.
International Journal of Computer Vision, 2007.

[23] P. Sermanet and Y. LeCun. Traffic Sign Recognition with
Multi-Scale Convolutional Networks. In Proceedings of In-
ternational Joint Conference on Neural Networks (IJCNN),
2011.

[24] E. Simoncelli and E. Adelson. Noise removal via Bayesian
wavelet coring. In Proceedings of the International Confer-
ence on Image Processing, pages 379–382, 1996.

[25] C. Tomasi and R. Manduchi. Bilateral filtering for gray and
color images. In Proceedings of the Sixth International Con-
ference on Computer Vision, pages 839–846, 1998.

[26] J. Weickert. Anisotropic diffusion in image processing.
ECMI Series, Teubner-Verlag, Stuttgart, Germany, 1998.

[27] Y. Weiss and W. Freeman. What makes a good model of
natural images? In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1–
8, 2007.

[28] S. Zhang and E. Salari. Image denoising using a neural net-
work based non-linear filter in wavelet domain. In IEEE
International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), volume 2, pages ii–989, 2005.

4328


