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Abstract— We introduce a new way of looking at fuzzy in-
tervals. Instead of considering them as fuzzy sets, we see them
as crisp sets of entities we call gradual (real) numbers. They
are a gradual extension of real numbers, not of intervals. Such
a concept is apparently missing in fuzzy set theory. Gradual
numbers basically have the same algebraic properties as real
numbers, but they are functions. A fuzzy interval is then viewed
as a pair of fuzzy thresholds, which are monotonic gradual
real numbers. This view enable interval analysis to be directly
extended to fuzzy intervals, without resorting to a-cuts, in
agreement with Zadeh’s extension principle. Several results show
that interval analysis methods can be directly adapted to fuzzy
interval computation where end points of intervals are changed
into left and right fuzzy bounds. Our approach is illustrated
on two known problems: computing fuzzy weighted averages,
and determining fuzzy floats and latest starting times in activity
network scheduling.

I. INTRODUCTION

The extension principle of Zadeh [1] has been mainly
applied to computing with so-called “fuzzy numbers” [2].
Fuzzy arithmetic was developed in order to perform addition,
subtraction multiplication and division of fuzzy numbers [3],
[4]1, [51, [6]. This has too often led to consider that functions of
fuzzy interval arguments involving arithmetic operations could
be computed using fuzzy arithmetic operations, thus neglecting
interactions between variables and yielding incorrect results.
However since calculations with fuzzy intervals extend interval
analysis [7], interval analysis methods should be more widely
known and used in this context. Several authors noticed this
fact and proposed to apply interval analysis to all (in practice
a selection of) cuts of the fuzzy intervals, owing to Nguyen [8]
showing that, under mild assumptions, the cut of the resulting
fuzzy set can be computed from the cuts of the fuzzy operands.
Works by Dong et al. (the vertex method) [9], Yang et Al [10],
Antonsson [11], Anile [12], Hanss [13] propose effective
computational methods to this end.

In this area, a fuzzy set of numbers is often called a
“fuzzy number” (for instance a triangular fuzzy number). This
terminology is questionable because it has recurrently led
some authors to try to equip such fuzzy numbers with the same
algebraic structure as the set of numbers (a recent example is
the proposal by Kolesnik et al. [14] and Kosinski et al [15]).
Fuzzy numbers generalize intervals, not numbers, and thus
only inherit the properties of intervals. In particular, there is
no genuine notion of opposite of a fuzzy number such that the
sum of a fuzzy number and its opposite is zero. Beyond the

terminological difficulty (which we can live with), a pending
question remains, namely what is a genuine fuzzy number,
that would be to a number what a fuzzy set is to a set?
This paper offers a response to this question, by proposing
a rigorous definition of a so-called gradual real number (or
gradual number for short). It is a generalization of “fuzzy
real numbers” proposed by fuzzy set mathematicians in the
seventies like Hutton [16], and further actively studied in
fuzzy topology (Rodabaugh, Hohle, Lowen, especially [17],
[18], [19]). Gradual numbers display fuzziness (the property
of being gradual rather than sharp), but they are not sets,
they are rather “fuzzy elements” [20] or “gradual elements”
and do not account for incomplete information (contrary to
intervals). A gradual number is not a fuzzy set, nor does it have
a membership function. Instead, it is defined by a function
from the unit interval to the real line. Interestingly, for such
gradual numbers, genuine opposite exists and the sum of a
gradual number and its opposite is zero. The notion of “gradual
element” did not receive lot af attention in fuzzy set theory,
even if they can be found in the literature other than purely
mathematical (for instance the fuzzy integers of Rocacher [21]
are gradual elements on the sets of natural integers).

Beyond the philosophical attractiveness of this concept, it
has potentially useful properties for simplifying fuzzy interval
analysis. It leads to considering a fuzzy interval as a crisp
interval limited by a pair of (genuine) gradual real numbers.
A fuzzy interval is then an interval of gradual real numbers
bounded by two profiles respectively obtained by the increas-
ing and decreasing parts of the membership function of the
fuzzy interval. Selecting a gradual real number in a fuzzy
interval comes down to picking an element in each alpha-
cut. This view enables interval analysis to be directly applied
to performing fuzzy interval analysis, yielding exact closed
form expressions of the results when functions involved are
locally monotonic. It also suggests a method for evaluating
the potential increase of computational complexity when going
from interval analysis to fuzzy interval analysis, in terms of
number of kinks in the resulting membership functions.

The paper is organized as follows; Section II recalls basic
notions of interval analysis. Section III does the same for
fuzzy intervals and motivates the new approach. Section IV
introduces the notion of gradual real numbers contained in
a fuzzy interval. Section V applies standard interval analysis
to fuzzy interval computation. Since fuzzy bounds of fuzzy
intervals can be formally handled just like crisp bounds of



intervals, the theoretical complexity of fuzzy interval analysis
is the same as standard interval analysis. However the resulting
membership functions may have kinks, due to the fact that the
set of gradual numbers is not totally ordered. Their determi-
nation increases the practical complexity of computing with
gradual real numbers. Section VI-B addresses this issue and
sheds some light on their algebraic structure. These results are
illustrated by several examples in section VII: fuzzy weighted
average, latest starting times and floats of activities in fuzzy
scheduling.

II. A REFRESHER ON CLASSICAL INTERVAL
COMPUTATION

The goal of interval computations is to find the minimum
and the maximum of a function when the different possible
values of its arguments range in intervals. Formally the basic
problem is: given a n-place real function f from R™ to
R, depending on inputs (x1,---,,) and given n intervals
[z, 2 ;"] 1 = 1,...,n, find the range of the variable y =
f(z1,--+ ,zpn) when the z;’s lie in the intervals [z , 2] =] [7].
When the function is continuous this range is an interval.

Given such n intervals [z}, ], we call real configuration
an n—tuple of values in the set ¥ = x;[z; ,x]]. Among con-
figurations of X, the extreme ones, obtained by selecting for
each value one interval end, define the set H = x;{z; ,z] }.
An element w € H has the form w = (z7',--- ,25), with
€; € {+,—}. The notion of configuration was proposed by
Buckley for the fuzzy scheduling problem [22], but extreme
configurations are also called poles in the literature [10].

Under suitable monotonicity assumptions, the maximum of
f over X is attained on an extreme configuration, that is, in
H, or on one of its subset C C H.

Definition 1 (increasing/decreasing function): An n-place
function f is said to be increasing with respect to
z; (respectively decreasing) if for all n — I1-tuples
(a1,a,++ ,a; 1,041, + ,a,) € R*71 the restriction of f
from R to R f(ay,a2, "+ ,a;_1,Ti,@iy1,** ,an) is increas-
ing (respectively decreasing).

Definition 2 (monotonic function): f is said to be mono-
tonic with respect to each z; if for each variable z;, f is
either increasing or decreasing according to z;.

Definition 3 (locally monotonic function): f is said to be
locally monotonic with respect to each z; if for each variable
x;, for each n-tuple (a1, as, - - ,a,) € RP1
the restriction f(ay,as,--- ,Gn) of f is
monotonic.

In the latter definition, we should note that f can be
increasing for one tuple and decreasing for another. Therefore,
a locally monotonic function with respect to each argument
is not monotonic in the usual sense of Definition 2. A
differentiable function is locally monotonic with respect to
z; if the sign of its partial derivative g—; does not depend on
Zj.

We can now state a well-known proposition [7]:

Proposition 1: Let £ = (x1,%2,--- ,&,) be a tuple of n
variables such that z; € [z} ,z]], and y = f(21,-- ,2n) =
[y~,yT]. If f is locally monotonic with respect to each argu-
ment, then ¥y~ = min,ex{f(w)} and y* = max,ex{f(w)}

s Ai—1,Q541," "
y@i—15Tiqy A1, " "

For example, the multiplication function defined by
mult(z,y) = xy is locally monotonic with respect to x
and y: for 3””” (z,y) = y, so for a fixed y, the sign of
Orlt g constant Note that the sign of 2724L depends of the
choice of the fixed y, and so mult is not monotonic. Now
with the help of Proposition 1, we can apply the well-known
vertex method of interval arithmetics [7] (page 12) to product:
[a,b] - [¢,d] = [min(ac, ad, bc, bd), max(ac, ad, b, bd)]

Another known result decreases the number of fuzzy con-
figurations useful for the computation of a function f when
stronger monotony conditions hold:

Proposition 2: Under the assumption of Proposition 1, if
f is locally monotonic with respect to each argument, and
Vj € Ey, f is increasing according to z; and Vj € Ey, f is
decreasing according to z;, then

Vj € El,wj = .’L'J_
Vj € Es, wj = .Z'j_

Vj € E,w; = a:+

= maXy,cH {f( )l V] c Ez,wg _ :L'
This proposition is the basis of the (FWA) Algorlthm [9] which
computes the fuzzy weighted average using cuts of fuzzy inter-
vals. Consider the function fwa(wi, - , Wy, L1, * ,Tpn) =
Xgiliu;f on the domain (RT)™ x R* (Vi € [1..n], w; € RT
and =5:,- € R). This function corresponds to the weighted
average of an n-tuple of values, with positive weights. fwa(.)
is locally monotonic with respect to each variable. Moreover,
on this domain, we know that fwa(.) is increasing according
each z;. Suppose, we must compute the range of fwa(.) when
the z;’s lie in the intervals [z} ,z]] and the w;’s lie in the
intervals [w; ,w;]. Proposition 2 tells us that only the par-
tial conﬁguratlon (T 25, ,x,) (tesp. (zf,2d,--+ ,x}))
need to be considered when minimizing (resp. maximizing)
fwa(.), but this is not enough for the weights. In fact, existing
results about this function show that only a linear complexity
underlies the required search for useful configurations [23].

The range of functions such as the interval-valued average
cannot be obtained by means of interval arithmetic operations
like

« Interval addition:[a, b] + [c,d] = [a + ¢,b + d].

« Interval subtraction: [a,b] — [¢,d] = [a — d,b — ¢].

« Positive interval product: [a,b] - [¢,d] = [a - ¢,b - d] for

a>0,c>0.

« Positive interval quotient : %Z‘IH =[%,% fora>0,c>0.
This is especialy true if the same variable appears several times
in the expression of a function. Indeed, the notation [a, b] —
[a, b], [a,b] - [a,b] can be ambiguous. More specifically, what
does f([a,b],[a,b]) mean? It may mean two things:

D {f(z,z)| € [a, b]}

2) {f(&,y)lz,y € [a,b]}

Indeed if [a, b] restricts the value of both parameters z and y,
it is false that z = y follows. Generally the two results differ.
For instance consider the product of the interval [—1, +1] by
itself:

1) {z-z|z € [-1,+1]} = {2?|z € [-1,+1]} = [0, 1]

2) {z-ylxz € [-1,+1]} =[-1,1]

In order to remain consistent with the above interval artih-
metic, f([a,b],[a,b]) must be interpreted as in the second

Yy~ =mingey {f(w)|

and yT




expression, for the sake of clarity. Then [a,b]? differs from
[a,b] - [a, b], the former being the range of z?, the latter being
the range of z - y.

III. A REFRESHER ON FUZZY INTERVALS

Modeling possible values of quantities by means of real
intervals accounts for some incomplete knowledge in a very
simple way. However the expressive power of intervals is
limited: if an interval is too narrow, the quantity it represents
may lie outside it. If it is too large, the obtained results will
be uninformative. But we can be more refined by modeling
incomplete knowledge about a parameter x; by means of
a fuzzy interval X;. In this paper, we shall generalize the
notion of configuration to fuzzy interval problems, and we
give counterparts to the previous propositions.

Fuzzy intervals are defined as follow [24]:

Definition 4: A fuzzy interval M, defined by its
membership function pp(.) is a fuzzy subset of the
real line such that, if V(z,y,2) € R® 2 € [z,y] then

par (2) > min (e (), par (y))-

M is said to be normal iff 3y € R such that up(y) = 1. In
this paper we only work with normal fuzzy intervals and with
upper semi-continuous (USC) membership functions, in such
a way that the a-cut of a fuzzy interval (M, = {z|urm(z) >
a > 0}) is a closed interval.

A fuzzy interval M is then such that

o its core is a closed interval [m; ,m]], actually the 1-cut
of M;
o its support is an open interval (mg ,md) = {z|um(z) >
0};
e pp is non-decreasing on (—oo, m] ]
e [ps 1S non-increasing on [mi", +00)
According the extension principle of Zadeh [1], [2], given
fuzzy intervals (Xi,---,X,), the fuzzy set f(Xi,---,X,),
image of (X1,---,X,) by f is defined by

y min i, ().

B (X, Xa) (2) = sup
(1, & )iz=Ff (1, 1 Tn
In many cases (for instance, if f is continuous) the de-
composition by a-cuts can be used to compute the function
f(X1,---,X,) by means of standard interval calculations,
due to a result of Nguyen [8]:

[f(X17 T 7Xn)]a = f([Xl]a, T [Xn]a)
' ;izﬁa&(A,B)

‘ X

Fig. 1. Possibility distribution of two triangular fuzzy intervals A and B
and their maximum C

For example, let A and B be the fuzzy intervals on Figure 1.
Let C' be the maximum of A and B (C = max(A, B)).

According the extension principle of Zadeh [1], C' is defined
at level a by C, = max(A,,B,), where max is the
operator maximum on classical intervals (ax([a, b], [¢,d]) =
[max(a, c), max(b, d)]). Most results on fuzzy interval analysis
deal with fuzzy arithmetic operations since Mizumoto and
Tanaka in 1976 [3] (see also Nahmias 1978 [4], Dubois and
Prade 1978 [5] and the books by Kaufmann and Gupta [6],
Mares [25]). Just like for intervals, the use of fuzzy arithmetic
operations to compute polynomial functions, averages, etc.,
with fuzzy intervals does not yield the exact fuzzy range of
f(X1,---,Xy). More recent books move away from fuzzy
arithmetics and use interval analysis optimization methods on
a finite sample of a-cuts (Hanss, 2004 [13]). This is also the
idea behind the fuzzy vertex method [9].

This process has drawbacks: it computes only a discrete
approximation of Y, and for each a-cut, the interval algorithm
has to be completely executed (actually, sometimes only
partially as explained in [13]). This method can be heavy if
the interval analysis step is difficult, and seldom provides a
closed form result.

The second idea is to use arithmetics on L-R fuzzy intervals
(Dubois and Prade 1978 [5]). This method can give a closed
form result for the basic arithmetic operations (addition, sub-
traction, multiplication and division of positive numbers,[26]),
but may be very inaccurate if L-R approximations of the
results are used.

In this paper, we try to envisage fuzzy interval analysis
without resorting to a-cuts, and provide (at least in the
theory) exact results for all possibility degrees. We propose
an approach to the fuzzy interval computation problem, based
on a particular representation of fuzzy intervals, as a crisp
intervals of entities we call gradual real numbers. We represent
a fuzzy interval by two fuzzy bounds just like a classical
interval can be presented as a pair of reals, representing the two
bounds of the interval. This representation enables techniques
of interval analysis, for instance the vertex method, to be
directly extended to computations on fuzzy intervals, under
different monotonicity assumptions on the function, using the
set of what we call fuzzy configurations.

The aim of this paper is to formalize rigorously this ap-
proach for a large class of functions. To proceed, we need
to define a new concept which was apparently overlooked in
fuzzy set theory: the gradual real numbers.

IV. GRADUAL NUMBERS VERSUS FuUzzY INTERVALS

In the literature, fuzzy intervals are often called fuzzy
numbers, especially if their cores reduce to a point (for
instance, triangular fuzzy numbers). But such fuzzy numbers
also generalize intervals, not numbers. So the calculus of fuzzy
triangular numbers is an extension of interval analysis. Fuzzy
arithmetics inherit algebraic properties of interval arithmetics,
not of numbers. For instance the addition of fuzzy numbers
does not lead to a group operation. It even appears impossible
to equip the set of fuzzy intervals under addition with a group
structure, as no inverse exists for intervals. So the term “fuzzy
number” is misleading, even if the core of M is reduced
to a singleton. From this discussion, we see that we should



not call fuzzy sets of the real line whose cuts are intervals
“fuzzy numbers”, but fuzzy intervals. The rest of this section
is devoted to give a precise definition of what could be called a
gradual number, with a view to look at fuzzy intervals as crisp
intervals on the set of gradual real numbers. In fact this notion
has not been studied in fuzzy set theory under a specific name,
even if such entities can be encountered in previous works, as
seen later.

A. Another Kind of Fuzzy Number: Gradual Numbers

The origin of the confusion regarding the term “fuzzy num-
ber” is that since fuzzy numbers usually refer to a generalized
interval, a fuzzy number is not for a number what a fuzzy set
is to a set. The idea of fuzziness is to move from Boolean, all-
or-nothing concepts to gradual ones, introducing intermediate
values. So membership to a fuzzy set is gradual. However
one often reads that the essence of fuzzy sets is to account
for (subjective) uncertainty. The reason why this statement is
correct is however not due to fuzziness, but to the use of sets
as a tool for representing incomplete knowledge. We argue that
in a fuzzy interval, it is the interval that models incomplete
knowledge (we know that some parameter lies between two
bounds), not the fuzziness per se. Intervals model uncertainty
in a Boolean way: a value in the interval is possible; a value
outside is impossible. What fuzziness brings is to make the
boundaries of the interval softer, thus making uncertainty
gradual.

Obviously the boundaries of an interval are simple, precise
real numbers. There is no reason why fuzzy boundaries of
fuzzy intervals should be fuzzy sets. They are gradual, but
they should not convey any idea of incomplete information.
They are examples of what we try to understand as fuzzy
real numbers. Let p}, (resp. uj[,f) be the nondecreasing (non-
increasing) part of the membership function of a fuzzy interval
M. They are functions from the real line to [0, 1] respectively
defined on [my ,m ] and [m], m{]. Suppose these functions
are injective (that is, p}, is increasing, and pj\} is decreasing),
and let (uy,)~', (ul,)~"' be their inverse functions. It is
well-known that for any monotonically increasing continuous
function f(z,y), the fuzzy interval f(M, N) obtained by the
extension principle has a membership function pz(az, ) such
that (Dubois and Prade [27], [26]):

Fuan) ™ (@), (a) (@) (D)
Fui) ™ @), (ui) ™ (@) @

This result extends the interval analysis result
f(a,bl,[c,d]) = [f(a,c), f(b,d)] for increasing functions
to fuzzy intervals: the left (resp. right) fuzzy boundary of
f(M,N) is straightforwardly obtained from the left (resp.
right) fuzzy boundaries of M and N. It is obvious that what
plays the role of the boundaries a and b of the interval [a, b]
are the functions from (0,1] to the real line (uy,) ! and
(ui;)~t. They are the gradual real numbers we are looking
for.

Definition 5 (Gradual real number): A gradual real num-
ber (or gradual number for short) 7 is defined by an assignment

(N;(M,N))71 (a) =
(N}_(M,N))il (@) =

function A; from (0, 1] (the unit interval minus 0) to the reals.!
Functions (py;)~" and (ujf;)~' are special cases of this
definition. A real number r is then viewed as an assignment
function A7 such that A7(a) =7, 1 > a > 0. A gradual real
number can be understood as a real value parametrized by «:
To each value o € (0, 1] it assigns a real number 7o = Az ().
In particular, the values (uy,) " (@) and (u},)~!(a) are the
endpoints of the a-cut of M (hence the exclusion of the
membership value 0). Since (u,) ! is increasing and (u ;)
is decreasing, we do not make any specific monotonicity
assumptions for assignment functions.

Since we consider mappings from (0, 1] to the real line and
no monotonicity is required, an assignment function is not
necessarily one-to-one. It may be that Az(a) = A7(8) when
a # . So, an assignment function may not correspond to the
inverse of any membership function, nor be interpreted as a
fuzzy set. Note that a fuzzy interval M can be interpreted as
an interval made fuzzy in the sense that the a-cut mapping
a — M, is an assignment function from (0, 1] to the set
of intervals. Some simple properties of these gradual numbers
are as follows:

« Using assignment functions, the sum of gradual numbers
7 and § is simply defined by summing their assignment
functions. It is 7 + § such that Vo € (0, 1],

Aiys(a) = Az(a) + A5(a).

e The set of the gradual real numbers with the addition
operation forms a commutative group with identity 0
(Ag(A) =0, VA € (0,1]). Indeed the gradual real number
7 has an inverse —7 under the addition: A _7(a) =
—A;z(a), and 7 + (—7) = 0.

e From the group structure we naturally define the sub-
traction operation by: Az_z(a) = Az(a) + A_z(a) =
Aj(a) — As(a).

e The product and the quotient of fuzzy numbers can
be defined likewise (up to caution when dividing by a
gradual real number 7 such that Az(a) = 0 for some ).

Most algebraic properties of real numbers are preserved for
gradual real numbers, contrary to the case of fuzzy intervals.
For the latter, the lack of inverses is because they inherit
the properties of interval calculations. However gradual real
numbers are not totally ordered. A partial order on gradual
real numbers can be defined as follows

Definition 6: A gradual real number 7 is greater than a
gradual real number § (written 7 > §) if and only if Va €
(07 l]a A;(Oé) > A—§(a)'
When assignment functions are the inverse of probabilistic cu-
mulative distributions, this definition coincides with stochastic
dominance.

B. Related works

Actually, a special case of gradual number called “fuzzy
(real) number” was used by mathematicians in the late 1970s
and the 1980s, starting with Hutton [5].

'We use the term “gradual” number so as to avoid confusions with usual
fuzzy numbers (triangular fuzzy intervals) or fuzzy real numbers, as used in
fuzzy topology.



Definition 7: A fuzzy real number r is a decreasing
membership function g, such that lim,_,_ p.(x) = 1 and

limy s 4 o0 pir(x) = 0.

A real number r is then viewed as a step-function p, with
membership 1 for x < r and 0 for z > r. There is indeed a
one-to-one mapping between such sets and reals”. For fuzzy
real numbers, the transition from one side of r to the other is
made gradual. Often, this notion takes the form of a decreasing
mapping from the reals to the unit interval or a suitable lattice
(Grantner et al. [28]), or a probability distribution function
(Lowen [19]); variants of such a fuzzy reals were also studied
by Rodabaugh [17] and Hohle [18]. The sum of two fuzzy
Hutton real numbers # and § has been defined such that:
pi+s(x + y) = a, for the unique z and y such that pz(z) =
us(y) = a. If monotonic decreasing, the assignment function
Ay is the converse of the membership function of a fuzzy
real number a la Hutton. However, under Definition 7, such
fuzzy real numbers have no inverse for addition, because the
decreasing property of such inverse can not be ensured. Then
the subtraction can not be easily introduced in this setting.
Worse, even if there is a bijection between real numbers and
their associated step-function, results of a subtraction will
differ according to whether this step-function is viewed as
an assignment function or the characteristic function of a set.
Consider a real number r

o If r is equated to the assignment function A,(a) = r Va,
the fact that » — r = 0 is recovered using the difference
of gradual real numbers.

o If r is equated to the characteristic function of the semi-
open interval (—oo,r], then it is clear that (—oo,r] —
(—00,r] = (—00,7] + (-7, 0] is the whole set of reals.
It means that u, is not the encoding of a real number.
In particular —r is encoded by the characteristic function
of (—oc,—r] in the Hutton setting, not by the interval
(—7‘, OO] = —(—OO, T].

Definition 5 is a direct way of defining the set of gradual real
numbers, but we can construct this set differently, using the
classical approach of set theory, starting with integers. Fuzzy
natural integers have been recently defined by Rocacher [29]
as the cardinality of a finite fuzzy subset. In many previous
publications, the fuzzy cardinality of a fuzzy set is itself
viewed as a fuzzy set of natural integers [30], [31], [32].
But this is misleading because cardinality maps finite sets to
natural integers, not to subsets thereof. A fuzzy set (insofar as
it accounts for gradual membership, not uncertain two-valued
membership) is precise, because its membership function is
precisely defined. Hence its cardinality is well-known even if
parameterized by the membership degrees expressing tolerance
levels on membership. Given a fuzzy subset F' of a finite set
S, the fuzzy cardinality of F' is a fuzzy natural integer |F|
with assignment function A|p| defined by Ajpj(a) = |Fal.
It is an injective (and non-increasing) function from (0, 1] to
the natural integers, hence its inverse can be (mis)interpreted
as a membership function. Rocacher [21] then constructs a

2In fact, mathematicians consider equivalence classes of such membership
functions; members of the same class differ only for discontinuity points.

relative fuzzy integer as the difference between two fuzzy
integers and then construct the set of fuzzy rational numbers
just as rationals are constructed from relative integers. Gradual
real numbers can then be viewed as limits of fuzzy rational
numbers.

Similarly one may argue that the fuzzy probability of a
fuzzy event F' is a gradual number in [0,1], assigning to
each membership grade « the probability P(F,). Gradual
numbers naturally appear in the same way when computing
Hausdorff distances between fuzzy intervals M and N (Dubois
and Prade [33]), assigning to each membership grade a the
distance d(My, Ny ). This assignment function is usually non-
monotonic.

Gradual numbers also appear in some defuzzification meth-
ods like the old proposal by Yager [34]: Given a fuzzy interval
M he proposed, for ranking purposes, to substitute a real
number (M) defined by

r(M) = /1 infM, +supMada
0 2

It is clear that the function assigning to each membership

grade « the number m, = M is the assignment

function of a gradual number which can be viewed as the

gradual midpoint of the fuzzy interval M.

With this analysis in mind, it is clear that a notion such
as “defuzzification”, usually understood as changing a fuzzy
interval into a number, is also somewhat misleading. Stripping
a fuzzy set from its fuzziness, a crisp set results, not a single
element. Similarly, defuzzifying a fuzzy interval should give
an interval. The idea of interval-valued defuzzification has
been studied by Dubois and Prade [35] in terms of imprecise
probabilities, and more recently by Ralescu [36], for instance,
as the Aumann integral of the a-cut mapping. If a single
element is to be obtained in the end, it can be so by picking a
default value after the set-valued defuzzification, thus getting
rid of the incompleteness of the information. The two steps
can be exchanged by picking a gradual number in the fuzzy
interval, thus getting an entity that is fuzzy but no longer
incomplete, and defuzzifying it in a second step. This is what
Yager method does.

C. Fuzzy Intervals as Crisp Intervals of Gradual Numbers

Using the notion of gradual number, we can describe a fuzzy
interval M by an ordered pair of gradual numbers (/i ~,m1).
m~ is called the fuzzy lower bound (or left profile) of M and
m™T the fuzzy upper bound (or right profile). To ensure the
well known form of a fuzzy interval in Definition 4, several
properties of M~ and T must hold:

o the domains of Az- and Az+ must be (0,1]

o Aj - need to be increasing

o Aps+ need to be decreasing

e m~ and 7t must be well ordered (A < Ajs+).

Such a pair of gradual numbers intuitively describe a fuzzy

interval with membership function:
sup{A[Az- () <z} if 2 € Az ((0,1])
1 if A (1) <2 < Ape (1)
if z € Az+((0,1])
otherwise

P (@) = Gup{A A4 (A) > 2}
0



'Aﬁ.,— Aﬁ-z+

rpg (@)

Fig. 2. Examples of left and right profiles of a non continuous fuzzy interval

Note that in the case that Az- and A5+ have inverses, the
last equation becomes:
if £ € As-((0,1])

(An-) " (@) i
(z) = 1 if Aym-(1) <z < Az+(1)
PR s (@) i@ € Aqs ((0,1)
0 otherwise
Generally, we will use the words “left (resp. right) profile”, to

speak about the fuzzy lower (resp. higher) bound of a fuzzy
interval, and the expression “gradual number” to deal with
any other kind of gradual element of the real line. However,
we should keep in mind that a fuzzy bound, or a “profile”, is
a gradual number.

An USC fuzzy interval can be entirely defined by its left
profile and its right profile (this is not the case for all fuzzy
sets, since two profiles can only define the membership
function of a fuzzy interval, the a-cut defining bounds of
intervals): a fuzzy interval M with an upper semi continuous
membership function, can be described by the pair of gradual
reals (™~ ,m™) defined by

As-: (0,1 — R
A — Az-(A) =inf{z|lum(z) > A}
3)
-Aﬁﬁ' (071] — R
A — Ag+(A) = sup{z|pm(z) > A}
“4)

So the gradual real m™ represents the left profile of interval
M, and m™ represents the right profile of M. Just as [a, b]
stands for the set {r : a < r < b}, a fuzzy interval M defined
by an ordered pair of gradual numbers (=, mT), with

Am- = (pp-) 1 Asr = () !

It stands for a crisp interval of gradual numbers
{Fllpp-)"" < Ar < (up+)"'} So we can write
7 € M whenever (up-)"t < Ar < (up+)”! to denote
the (crisp) membership of a fuzzy real number in a fuzzy
interval.

Note that the profiles of M (Figure 2) respect Equations (3)
and (4), and therefore, the membership function of M can
be exactly recovered from 7~ and 7. Note that the left
and right profiles of an USC fuzzy interval are both left-
continuous. The left profile is a lower semi-continuous in-
creasing function (in the wide sense), and on the contrary, the
right profile is an USC decreasing function.

The definition of a fuzzy interval as a pair of gradual
numbers is akin to the so-called graded numbers of Herencia
[37]. This author also considers fuzzy numbers as mappings
from the unit interval to the set of real intervals, instead of
the usual USC mapping from the reals to the unit interval.
However, gradual reals are more general here because they

are not necessarily monotonic. Only monotonic gradual reals
are useful to define fuzzy intervals, but, as shown in the sequel,
computations with fuzzy intervals may lead to non-monotonic
gradual reals as intermediary results.

V. APPLYING INTERVAL ANALYSIS TO FUZZY INTERVALS

Now that a fuzzy interval can be viewed as a crisp interval
in the set of gradual numbers, interval analysis can be directly
applied to fuzzy intervals. Given a n-place real function
f, its domain can be straightforwardly extended to gradual
numbers, composing f and assignment functions viewed as
fuzzy configurations. Left and right profiles of fuzzy intervals
can be viewed as inducing fuzzy extreme configurations. On
this basis, most results of interval analysis extend to fuzzy
intervals, and also computation methods like the vertex method
can be used with no increase in complexity in terms of number
of fuzzy configurations. A preliminary version of results in this
section was presented at the 2004 IEEE conference on Fuzzy
Systems [38]. For the sake of simplicity, we will not tell a
gradual number 7 from its assignement function 4z, and we
denote 7(A) the value of the assignement function Az(A).

A. Fuzzy Configurations

In the classical interval computation theory, one way to get
the result of a computation on intervals was to find a small
set of extreme configurations, a set on which we are sure that
the function will reach its lower and upper bounds on the
considered domain. An extreme configuration is a tuple of
reals representing the lower or the upper bound of the interval
containing each input of the function. To extend this notion
to fuzzy interval computation, we need to define the concept
of fuzzy extreme configuration, which is a tuple of gradual
numbers.

Definition 8: Let © = (1,22, - ,Z,) be a tuple of
n independent variables, restricted by the fuzzy intervals
Xi,---,X, viewed as pairs of left and right profiles
(&7 ,3F). A fuzzy configuration Q is a n-tuple of gradual
numbers (71,72, ,7p) such that Vi = 1...n, Z; <7 <
#F. A fuzzy extreme configuration € is an n-tuple of left or
right profiles: Q = (&{',%5°,--- , &), where ¢; € {+,—}.
We denote H the set of all fuzzy extreme configurations:
H=x;{%;,&5 } (H| =2

We denote §); the ith gradual number of configuration Q.
For any Q € H, let Q(A) = (1 (N), Q2 (A),--- ,Q2n(N)) € R
denote the classical configuration obtained at level A. Q(}) is
a vertex of the hyper-rectangle x;[X;]x.

B. Main Results

We have defined notions of profiles and configurations for
fuzzy intervals. We can now extend the range of real functions
to gradual arguments.

Definition 9: Let f be a function of arity n. Let us denote
f the extension of f applicable to gradual numbers: for any
n-tuple of gradual reals Q = (71,7, -- ,7y), f(Q) is the
gradual real defined as follows: VA € [0, 1]
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Now, the computation of a mn-place function f on
fuzzy intervals Xy,---,X, can then be seen as a stan-
dard interval computation of the form f(Xy,---,X,) =
{f(Fh T aFn)Vl € Xy, - ,fp € Xn)}

Let us define a set £ C {—,+}™ such that for all intervals
X = x;[z;, 2], € defines a set of configurations Hx ¢ as

Ajey(N) =

follows: Hye = {(27', - ,z5)|(e1,--- ,€n) € &} If there
are n fuzzy intervals Xy, --- , Xy, £ also defines a set of fuzzy
configurations: H¢ = {(27*,--- , 25 )|(€1,- - ,€r) € &}

With these notations we can state the following theorem:

Theorem 1: Let ¢ = (x1,%2,---,T,) be a tuple of
n independent variables, restricted by the fuzzy inter-
vals Xi,---,X,, defined by their membership functions
px,, - px, all USC. f is a function from R™ to R, and
Y = [§7,§"] is the fuzzy set of the possible values of the
variable y = f(z).
If there is a set & C {(e1, - ,€n)le; € {—,+}}, such
that, for all a-cuts, f attains its maximum and minimum on
Xo = X[ X;]q for a cqnﬁguration in Hx, e,
then g+ = H_l.axﬂeﬁs {f(Q)}
and §~ = mmﬂeﬁe{f(ﬂ)}
Proof: Let a € [0,1] be a possibility degree. By definition of the right
profile, we know that:

gt(a) = max{yluy(y) >Y*}
= max{y‘y:f(mla"'5mn)5zieX?}

And then, under the hypothesis of the theorem, we can write:

g+(0£) :max{y‘y = f(zily ;'Z‘:zn)9(€15"' ,fn) € é};

which exactly means g+ (a) = m‘axgeﬁi (f( ()}
This equation is true for all a € [0, 1], therefore, we can conclude that
gt = maxg gz {f()} O
Note that f(Q) (Q € ﬁg) can be a non monotonic gradual
number. However, the final result (after the max operation)
is a well-formed profile: increasing for y— and decreasing for
gT. This is due the fact that the gradual number approach
provides the same result as the extension principle, and that
a-cuts are nested.
As in the interval case, we can state two corollaries based
on the monotony of f:
Corollary 1: Under the assumption of Theorem 1, if f is
locally monotonic with respect to each argument,
then = = mingeﬁ(f(ﬁ))
and §+ = max, 7 (f(Q))
Proof: This is Theorem 1, where & = {(€1,--- ,en)|e; € {—,+}} O
Corollary 2: Under the assumption of Theorem 1, if f is
locally monotonic with respect to each argument, and Vj € Fy,
f is increasing according to z; and Vj € E,, f is decreasing
according to x;, then
L By Vi€ E,Q=%
Yy _manE'H{f(QN VjGEQ,QjZ.i' }
Vj € El,Qj =i }

&.+b. |

J
Vj € E,, Qj = .’ﬁ;
Proof: Obvious with Theorem 1 and Definition of profiles.

Corollary 1 and 2 are the counterpart of Proposition 1 and 2
for fuzzy intervals. This last corollary was in fact known

for strictly increasing functions [24]. Not all problems of

and §T = maxneﬁ{f(ﬂﬂ

interval computation deal with locally monotonic functions.
For example, a n—place differentiable function f may have
extrema on internal points z* where partial derivatives of f
equal to 0. The proposed configuration enumeration method
can then be adapted by adding such constant profiles z* to
the set of fuzzy configurations. For an example of fuzzy
interval analysis based on a non-locally monotonic function,
see [39] where the computation of a fuzzy empirical variance
is proposed.

In the remainder of this paper, we will not tell f from its
extension f applicable to profiles.

C. Why this Approach is Useful in Practice

The above setting looks elaborate, but many of its appli-
cations are really simple. Let us imagine some computations
on piecewise linear fuzzy intervals (such fuzzy sets are not
hard to implement [40] [41]). The profiles of such fuzzy
sets are obviously piecewise linear and can be implemented
in the same way. Some operations on such profiles preserve
the piecewise linearity property: for example the maximum,
minimum, addition, subtraction. Moreover, for addition and
subtraction, no new break-points are generated, and for the
minimum or maximum of two piecewise linear fuzzy intervals,
the number of break-points may double in the worst case.

Besides our setting enables analytical representations of the
results if the membership functions of the fuzzy intervals are
defined analytically, thus extending the expressive power of
parameterized representations such as L-R fuzzy numbers.
This is because the results of fuzzy interval computations is
much easier to express in closed form in terms of assignment
functions than in terms of membership functions.

Let us see some simple examples illustrating the above
claims.

1) Multiplication: A very simple application of Theorem 1
is the multiplication of two fuzzy intervals overlapping O.
This computation can be done analytically with the usual L-R
representation in the case of non-negative fuzzy intervals of
the same shape (Dubois and Prade [26]), but our result can be
applied to the multiplication of any number of fuzzy intervals
whose left and right profiles are analytically defined.

The multiplication C' = A - B of two fuzzy intervals A
and B can then be done by Corollary 1. Indeed, the function

N
1

0.5 A
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Fig. 3. Possibility distribution of two fuzzy intervals A and B

mult(z,y) = z -y is locally monotonic on R?. Then we can
conclude that the following equations are valid:

¢~ = min(a~ -b:,c”ﬁ b-,a" -b~+,d+ . b~+)

¢t =max(a~ -b~,at-b,a" -bt,at - bh)

It extends a well-known formula of interval arithmetics [7]
pointed out in section III. Note that for any two real functions
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®, U, min(®,¥) = ® or ¥ may not hold. It means that
several extreme fuzzy configurations may be involved in the
final results, depending on the considered membership level.

For example, consider the two fuzzy intervals A and B,
defined by Figure 3.

The profiles of A and B are defined as follows:
a-(\)=3.at()=1-3,
b=\ =2-1Lbt(\)=1-2
Then we get: (@~ -b)(\) = 2

@ )N = (1-2) (3 -1)
@ -5 =3 (-
@ - )N=01-3)-G-N

The computed profile and the result C = A - B are shown
on Figure 4. Note that @~ ¢" is a non monotonic gradual
number, obtained as partial result. The above calculations
are in the style of graded numbers [37] but some profiles
obtained as partial results are not monotonic. They cannot be
interpreted as membership functions. Yet, the resulting right
and left profiles define the membership function of a genuine
fuzzy interval. However, since assignment functions obtained
in the end may intersect, kinks may appear in the resulting
membership functions as patent on Figure 4.

2) Coping with multiple copies of a variable: Let h be
the function defined in the form h(z,y) = max(z,y) — y.
h is locally monotonic with respect to each argument. Let x
and y range in the fuzzy intervals A and B, defined by the
membership functions of Figure 5.

__The set of fuzzy extreme configurations is

Hy = {(&7a 57)a (EL+, 57)7 (&77 B+)7 (a’+7 5+)}

According to Corollary 1, we can apply h on each element of
H, (Figure 6), put all the results of these computations on the
same graph, and compute their fuzzy hull (Figure 7). Note that
we again get a non-monotonic profile on Figure 6 as partial
result: an example of non monotonic profile is max(a~, I~)+).

In the expression, y appears twice. One might be tempted to
compute max (A, B) — B using fuzzy arithmetics. But it would
give a wrong result counting the uncertainty of B twice. In
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Fig. 6. Details of the computation of h applied on Hy

,,,,,,,, C = ma%(A, B) — B

Fig. 7. Superposition of the result of h applied on Hy

fact, the function h is increasing with z, and decreasing with
y since: h(z,y) = max(x — y,0). The right result is thus
max(A — B, 0), more precise than max(A, B) — B. However
computing max(7, §) — § for two fuzzy real numbers 7, § yields
the same result as computing max(7 — §,0), since gradual
numbers convey no uncertainty. So, in the above computation
scheme based on profiles and interval analysis, using max(z —
y,0) or max(z,y) — y is immaterial.

Yet if we notice the simplified form where variables ap-
pear only once, the computation would have been easier:
Corollary 2 recommends to use only configuration on Hy =
{(@t,b™), (a*,b™)}. Therefore only the second and the third
case on Figure 6 would have been useful to determine C'
completely. However, it is not always possible to rewrite the
function in such a way that each variable appears once only.
For instance, consider the function g(x,y,2) = x+y+z—x-
y - z on the real line. It cannot be obviously factorized at all
so as to let , y and 2z appear only once. It is clearly locally,
not globally, monotonic. Hence fuzzy arithmetic cannot be
applied, but the same computation scheme as above for the
multiplication of general fuzzy intervals can provide exact
analytical results.

VI. THE ADDED COMPLEXITY OF WORKING WITH FUzZZY
INTERVALS

In Section IV-C, we (re-)defined what is classically called
a fuzzy interval, using gradual numbers. These fuzzy intervals
are defined by two monotonic gradual numbers, the first
assignement function being increasing, and the second de-
creasing. Now, the monotonicity assumption of this definition
can be relaxed.

From the set of all gradual numbers G, one can define an
interval of gradual numbers, or gradual interval for short, by



an ordered pair of gradual numbers 7~ < 7T, without any
monotonic restriction on them as [f~,71] = {F|f~ < 7 <
7t}. Let us note I(G) the set of all gradual intervals.

I(GQ) = {[r—,FH]|f € G/t € G,r~ <7t}

This set is the natural way to define an interval structure on a
partially ordered set. Of course the obtained interval is then not
a fuzzy interval in the sense used in the literature: the a-cuts
are no longer nested. If one remembers that a fuzzy interval
can be viewed as a nested random set (considering upper
and lower probabilities induced by the a-cutmapping from
the Lebesgue measure on the unit intervals [35]), a gradual
interval can be the basis of of a concise representation of a
random interval.

A. An Algebraic Setting for Fuzzy Intervals

The aim of this subsection is to investigate the status of
gradual numbers in the scope of traditional algebraic theory.
For example, a large class of graph problems, non linear
in the usual sense, may appear linear in the appropriate
algebraic structure [42], [43], [44]. Path of maximal capacity,
shortest path, longest path problems can be treated as linear
problems in an idempotent semi-ring ((R, max,+) for the
longest path problem). These structures justify the use of the
same algorithm for solving several different graph problems
such as algorithms of Jacobi, Gauss-Seidel, Gauss...

We recall that a set S equipped with the algebraic operations
addition (noted @) and multiplication (noted ®) is a semi-ring
if:

o the addition & is closed: Vz,y € S, z®dy € S

o the multiplication ©® is closed: Vz,y € S,z Oy € S

o the addition @ is associative: Vz,y,z € S, z® (y®z) =

(zoy) ®2

o the multiplication ® is associative: Vz,y,z2 € S, 20 (y ®

2)=(z0y) Oz

o the addition is commutative: Vx,y € S, t Py =y D x

« the multiplication ® is distributive with respect to the

addition &: Vz,y,2 € S, 20 (y®2) = (z0y) ® (2 2)
and (z@y)Oz=(202)® (YO 2)
(S, ®,®) is said idempotent if for all z € S, z ® z = x.

We can show that (G,max,+) is an idempotent semi—
ring on gradual numbers. Now, from work of Litvinov et
al. [44], we can directly deduce that (I(G), max,+) form
an idempotent semi—ring on gradual intervals. Which means
that we can use the standard tools to solve the longest path
problems in graph with arcs weigthed by gradual intervals,
without requesting further study. Since the traditional set of
fuzzy intervals is a subset of gradual intervals I(G), the
method is still valid to deal with classical fuzzy intervals,
so we can solve longest path problems with fuzzy weigthed
arcs with the traditional forward recursion for example, which
correspond to the Jacobi Algorithm (this result was already
proved by Prade in [45], but not in an algebraic way). Note
that from our study, we know that we can also use Gauss
or Gauss—Seidel Algorithm to obtain the same result with
a better theoretical time complexity. The same reasoning is
still valid for the maximal capacity path problem in the

semi-ring (I(G), max, min), and the shortest path problem in
(I(G), min, +).

Of course, we can prove that fuzzy intervals with operations
max and + is an idempotent semi-ring, without resorting to
gradual numbers. However, our approach sheds new light on
the nature of fuzzy intervals.

There is one crucial difference between the semi-ring
structure of gradual numbers and the semi-ring structure of
((R,max, +): the former is not totally ordered. The ordering
of gradual numbers induced by the semi-ring addition is partial
(it is the one in Definition 6). So even if we can use standard
algorithms allowed by the algebraic structure, we need more
effort to store the result of calculation of max(7,3) as it can
be neither 7 nor §. We must store levels A in [0, 1] for which
Amax(i,5)(A) = Az(A) and levels for which A a5 (A) =
A;z(A). In the simplest situation there may be a threshold A
above which one result obtains and under which the other
result obtains. This is materialized by the presence of a kink
in the resulting assignment function.

B. Handling the Kinks

In theory, one gets the impression that the computational
complexity of moving from interval analysis to fuzzy interval
analysis does not increase for locally monotonic functions,
since we are substituting fuzzy extreme configurations to
extreme configurations, and there is the same number of each.
Yet a computational limitation of this fuzzy interval analysis
method is due to the kinks that appear during the computation.
The fact that kinks appear in the result does not come from
the method, but from the nature of the exact result of the
problem. However, the complexity of the representation of
a fuzzy interval (or a gradual number) depends for a large
part of the number of kinks in their membership (assignment)
function: Suppose only piecewise linear fuzzy intervals are
used. Any fuzzy bound of such an interval can be easily
modeled by the list of its kinks, and so the size of the data
structure is proportional to the number of kinks of the profile.
We may obtain some very complex gradual numbers as
intermediary results of a computation even if the final result
is simple. Let us see these problems on small examples.

Let A; be a triangular fuzzy interval defined by: A; = (n—
i,m + 24, n + 2%) where i € (N) and I = (a,b,c) represents
the fuzzy triangular interval with core b and support [a,c|.
Figure 8 shows the representation of fuzzy intervals A; for
n=3,1=1,2,3.
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Possibility distribution of the triangular fuzzy intervals A1, As and

Now let M,, be the minimum of the n fuzzy intervals A;:
M, = min(Ay,---,A;). M, has n — 1 kinks on its left
profile. So we can state that the maximal number of kinks that
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Fig. 9. fi(A, B) and g;(A, B) for i =1,2

can appear in the computation of the minimum of n triangular
fuzzy intervals is in O(n) (we can show that it is not possible
to have more than n — 1 kinks).

Now, suppose that we want to compute the minimum of
B = (—1,0,0) and the n intervals A;. The result is of course
min(B, Ay,---,A,) = B, but the profile method may lead to
compute many different gradual numbers, left profile of M,
included. So the execution of the computation may be very
long for certain kind of functions or arguments, even if the
result is trivial.

For more complex functions, the number of kinks can be
really huge: Suppose the sequence of functions defined by?
fi(z,y) = min(z,y — 277)

91(z,y) = max(z,y — 27°) ,

fi(z,y) = min(fi—1(z,y), gi-1(z,y) —27°)

9i(z,y) = max(fi—1(z,y), gi-1(z,y) —27°)

and the two triangular fuzzy intervals A = (0,2,3) and B =
(1,2, 4). Figure 9 shows f;(A, B) fori = 1, 2. In this example
left and right profiles of f;(A,B) and g;(A, B) have 2! —
1 kinks, which in fact corresponds to 2¢ — 1 min or max
operations (f2(A, B) = min(min(4, B — 2~ '), max(4, B —
271) —272)).

So we can see on this example that it is very difficult to
provide an upper bound of the number of kinks that can appear
in the final result. However, such kinks are intrinsic to the
problem when they belong to the result. Managing kinks is
more problematic when they only appear in partial results of
the computation and thus should be avoided.

In fact beyond the artificial character of the above examples,
and the issue of kinks proper, the added complexity of working
with fuzzy intervals stems from the situation when the useful
configurations depend on a comparison test between gradual
numbers. As they are not totally ordered, the result of such a
comparison is that several configurations must be tried, each in
a different subrange of the unit interval. This is what happens
when computing the fuzzy variance of a set of fuzzy intervals
[39].

3We thank Przemyslaw Kobylanski from the Institute of Mathematics and
Computer Science (Wroclaw University of Technology, Poland) who gives us
this example.
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VII. SOME APPLICATIONS

The previous computation method can be easily applied to
classical problems, like the fuzzy weighted average. Besides
the motivation for developing the above framework first came
from the scheduling problem under uncertainty, in the form
first posed by Buckley [22]. These applications are briefly
discussed below. Other problems like the computation of a
fuzzy variance are also more difficult because the underlying
function is not locally monotonic.

A. Fuzzy Weighted Average

The fuzzy weighted average (FWA) problem is as fol-
lows: how to obtain the fuzzy range of the function
fwa(wy, - Wy, &1, ,Ty) = Z"?Ll wwf, given n fuzzy
intervals X; restricting ill-known evaluations x;, and n positive
fuzzy intervals W; restricting weights w;. This kind of problem
is typical of some decision-making procedures under multiple
criteria.

The (FWA) Algorithm [9] decomposes the problem into
M interval problems (corresponding to M a-cuts). Then
for each a-cut, it computes fwa(wy, -+ , Wy, X1, ,Ly) ON
each vertex of the hyper-rectangle [W1]q % . . . [Wy]a X [X1]a X
[Xn]a» where [Z], is the a-cut of Z at level . The maximal
(respectively minimal) possible value of z at possibility level
a is then the greatest (respectively the lowest) computed value.
This is due the following result:

Proposition 3: The function fwa(.) is locally monotonic
with respect to each argument (according to Definition 3) and

increasing with respect to the z}s.

dfwa wj

Proof : axj (wla"'7wn)wl7"';$n): T w; >0
i=
. 8 T "L wiz;

Besides: afqu}j (W1, yWn,yT1, ", Tp) = = ]1“)1' - (ZZI-"_II w’i);

: i= i=

I wi(mj =)+ X0y wi(ej—a;
_ Zei=1 J i=j+1 J

(i wi)?
It follows that the sign of agf_a does not depend on wj, and so fwa(.) is
J

locally monotonic with respect to w;. O

Applying Corollary 1 to the fuzzy weighted average yields
to a closed form representation of the exact FWA, with a time
complexity in O(2™). On the contrary, the classical (FWA)
Algorithm gives the exact value of the average only for a
restricted number (say M) of possibility degrees (the rest of
the result is approximated) with complexity O(M * 2™).

Polynomial algorithms have been later on developed for the
real interval problem based on fractional linear programming
[46], [47]. But a fuzzy configuration-based approach with
linear complexity can be used to extend the interval-valued
one of Lee and Park [23]. Since fwa(.) is increasing with
respect to the z}s, the case where all z; are precisely defined
suffices to solve the problem. The sign of % depends on
the relative magnitude of the xs. Suppose the Zcz are ordered
such that for all j < 4, z; < z;. With this order, there
exists £k € [1,n — 1] such that for all ¢ < k, fwa(.) is
decreasing with respect to w;, and for all i > k, fwa(.)
is increasing with respect to w;. So we can apply Theorem
1 to the set of n fuzzy configurations obtained by letting
E = {(_J+a"' a+)a(_a_a+7"' 7+)a"' 5(_5"' 7_a+)},
and compute the analytical closed form of the fuzzy weighted
average as



(fwa(Wla e 5Wn;xla e
mini:L...,n_l
(fwa(Wla e 5Wn;$15 e

max;=1,... ,n—1

) mn))_ =

i (W)t ea+37 (W)
i (W) T35 (W5) ™

axn,))+ =

i (W) "+ 35 (W) Tz
Z;‘=1 (Wj)_+zjn'=i+1 (W;)+

B. Project Scheduling Problem

A project scheduling problem can be defined by a set of
tasks (or activities) which represents the different parts of a
project, and a set of precedence constraints expressing that
some tasks cannot start before others are completed. When
there are no resource constraints, we can represent an activity
network as a directed acyclic graph where n nodes represent
tasks, and arcs represent precedence constraints. In this con-
text, the goal of a project manager is generally to minimize the
makespan of the project. For a general description of project
scheduling problems, the reader should refer to [48].

Three quantities are computed for each task of the project
(they allow to identify the critical tasks):

« the earliest starting date e; of a task 7 is the date before
which we cannot start the task without violation of a
precedence constraint.

o The latest starting date [; is the date after which we
cannot start the task without delaying the end of the
project.

o The float f; = I; —e; is the difference between the latest
starting date and the earliest starting date.

A task is then critical iff its float is null.

We note P; ; the set of all paths from task ¢ to task j, and
W (pi,;) the length of path p;; € P ;. The earliest starting
date e; is actually the length of the longest path from the
starting task (noted 1) to task ¢:

e; = max{W(p)|p € P.,;}. 5)

The latest starting date /; is the length of the longest path from
the starting task to the ending task (noted n) minus the longest
path from task ¢ to the ending task.

l; =max{W(p)|p € P n} —max{W(p)|p € Pin}. (6)

These two quantities are computed by the PERT Algorithm
based on recursion equations which only use min, max, +
and — operators:

e’i: =
l’i: =

max{e; + d;|j € pred(i)} @)
min{l; — d;|j € succ(i)} (8)

where d; is the duration of the task j, pred(i) is the set of
tasks preceding 4, succ(i) is the set of tasks following 1.

In project scheduling problems under uncertainty (on fuzzy
PERT) a task duration can be modeled by an interval, crisp or
fuzzy.

Let D; be the fuzzy interval representing the possible
valuations of the duration of task ¢. F;, L; and F; are
respectively the fuzzy earliest starting date, latest starting date,
and float of 7, to be computed.

11

For each task i, the three functions e;(.), [;(.) and f;(.)
depend on n variables representing ill-known durations (if
there are n tasks in the problem).

First, the earliest starting date e;(.) is increasing according
to each argument. So applying Corollary 2, we directly get two
recursive expressions that compute the fuzzy earlier starting
date: ~
é; =max{€; +d;|j € pred(i)}
éf = max{e] +df|j € pred(i)}.

This result has been known and used for a long time (see for
instance Prade [45]). Nevertheless the recursive approach can
no longer be used for latest starting times [49].

For obtaining the fuzzy intervals L; and F; containing the
latest starting date and the float of a task ¢, it is easy to
see that the functions /;(.) and f;(.) are locally monotonic
with respect to each argument. In the pure interval case, a
set of configurations can be pointed out where the bounds of
the quantities are attained. Namely, we can find a subset of
variables according to which /;(.) and f;(.) are increasing [50]:
li(x1,--- ,2y) is increasing with respect to all x; such that j
is not a successor of task 4, and f;(x1,--- ,%,) is increasing
with respect to all z; such that ¢ is neither a successor nor a
predecessor of i. Therefore we can apply Corollary 2. No more
fuzzy configurations are necessary in the fuzzy case than in
the interval case. It yields an exponential brute force method
to come up with fuzzy latest starting times of operations.

The fuzzy interval containing the float F;; of task ¢ can no
longer be obtained by subtracting the fuzzy earliest starting
time from the fuzzy latest starting time, as the corresponding
quantities are interactive. Fuzzy floats must be computed
separately from a suitable enumeration of fuzzy configurations
applying Corollary 2 again, on the formal expressions of f; in
terms of W (p). Building on the results in [50], a more efficient
algorithm was recently developed (the Path-Algorithm) for the
interval-valued problem [51], in which, the computations of
1;(.) and f;(.) can be done on a small set of configurations.
This set is the basis of the application of Theorem 1 in the
fuzzy version of the problem. The minimum of /;(.) is attained
on a configuration w = (x7*,--- ,z5) where the set of task
assigned to their maximum ({ile; = +}) is exactly a path
from task i to the ending task n. The maximum of /;(.) and
fi(.) and the minimum of f;(.) is attained on a configuration
w = (xf',--- ,zt) where the set of tasks assigned to their
maximum ({i|le; = +}) is exactly a path from the starting
task 1 to the ending task n. With Theorem 1, we obtain the
exact fuzzy profiles of the latest starting dates and floats with
the same time complexity as in the interval case. Actually as
shown in the case of pure intervals [52], [53], this complexity
is polynomial for the latest starting dates and is exponential for
the floats. The path algorithm is generally exponential, even if
more efficient than a brute force configuration enumeration. It
can be adapted to fuzzy intervals in a natural way. Adapting the
less computationally demanding techniques proposed in [53]
is left for further research.

VIII. CONCLUSION

In many situations involving computations with fuzzy in-
tervals, fuzzy arithmetics cannot be legitimately used. A new



approach for computing with fuzzy quantities is proposed,
based on a careful distinction between gradual numbers that
are precise parameterized values, and fuzzy intervals, that
express incomplete knowledge about an ill-known value. This
paper lays bare the possibility of viewing fuzzy intervals as
crisp intervals of gradual numbers, bounded by two monotonic
gradual numbers acting as fuzzy bounds. In such a setting,
standard interval analysis techniques can be directly extended
to fuzzy intervals, and the obtained results are in agreement
with the extension principle. They are more precise than what
is obtained via fuzzy arithmetics. The proposed approach
handles the presence of multiple copies of the same variable
in the expression of a function. It is especially interesting
in the case of locally monotonic functions (functions which
reach their maximum and minimum values on the bounds
of input intervals). Analytical closed form expressions can
then often be obtained when fuzzy inputs are represented by
suitable parameterized membership functions, thus extending
L-R fuzzy interval arithmetics. Many potential applications to
aggregation operations in decision-making, handling imprecise
data in operations research, and statistics (like extracting useful
information from of random fuzzy data) can be envisaged.
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