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ABSTRACT 

Scheduling of a semiconductor manufacturing facility is 
one of the most complex tasks encountered. Confronted 
with a high technology product market, semiconductor 
manufacturing is increasingly more dynamic and competi-
tive in the introduction of new products in shorter time in-
tervals. Photolithography, being one of the processes re-
peated often, is a fabrication bottleneck. Lot scheduling 
within photolithography is a challenging activity where 
substantial improvements in factory performance can be 
made. The proposed scheduling methodology integrates  
two common approaches, simulation and artificial intelli-
gence. Using detailed simulation modeling within a struc-
tured modeling method, a comprehensive model to charac-
terize the photolithography process was developed. An 
artificial intelligence scheduler was then developed and in-
tegrated with the model with the goal of reducing Work-In-
Process (WIP), setup time, and throughput time. The re-
sults have shown a significant improvement in lot cycle 
time as well as tool utilization, improved the throughput 
time by an average of 15% and is currently in use for 
scheduling the photolithography process. 

1 INTRODUCTION 

Semiconductor manufacturing is one of the most complex 
manufacturing processes in the world. Scheduling of wafer 
fabrication facilities is among the most challenging plan-
ning activities encountered these days due to random yields 
and rework, complex product flow, time-critical opera-
tions, batching, simultaneous resource possession, and rap-
idly changing products and technologies.   
 The competitive operation of modern fabrication 
(FAB) processes requires the development of precise mod-
els and rules for allocating the available resources within 
the FAB so as to optimize the production performance. Al-
though simply stated, such an objective is elusive, primar-
ily due to the size and complexity of modern FABs. The 
determination to have better scheduling policies remains 

 

highly nontrivial, involving the solution of constrained 
problems within bottleneck processes (e.g. photolithogra-
phy) with respect to often-conflicting objectives while any 
admissible policy must posses certain robustness properties 
in the presence of uncertainty. 
 The interdisciplinary research in scheduling of semi-
conductor manufacturing encompasses mathematical mod-
els (Ignizio 2004), stochastic modeling for semiconductor 
manufacturing (Hunter et al. 2002; Collins 2002), and 
simulation modeling (Ignizio 2002; Arisha 2003) for dif-
ferent applications within the wafer fabrication facilities. 
Simulation provides an effective tool for defining the path 
from competitive concept to real world solutions (Nayani 
and Mollaghasemi 1998). The use of simulation within dy-
namic manufacturing systems provides the only method to 
study new and existent complex interactions for which ana-
lytic or static models provide at best a low fidelity model 
with corresponding low accuracy. For example, the tools in 
the photolithography process are extremely expensive and 
hence, the risk attached to perform experimentation within 
the real systems is very high.  
 The hybrid photolithography model presented in this 
paper was developed as a hierarchical simulation model, 
which includes the variabilities arising on the FAB floor, 
with an integrated neural network scheduler. The primary 
objective is to provide the managers and planning staff 
with an intelligent scheduler to improve photolithography 
area performance and to reduce WIP build-ups caused by 
variabilities and other constraints.   
 In this paper a brief description of the photolithogra-
phy process, Section 2, is followed by a detailed review of 
the scheduling problem for photolithography in Section 3. 
Having defined the objectives of the simulation in Section 
4, the development of a modeling approach to address the 
issue is then described in Section 5, which also includes 
the integration of Artificial Intelligence (AI) techniques for 
dynamic lot scheduling. The techniques and results con-
firming the validity of the model are outlined in  Section 6 
before the results of a study carried out in a major semi-
conductor facility are presented in Section 7. 

 



Arisha  and Young 

 
2 PHOTOLITHOGRAPHY PROCESS 

Wafer fabrication is the most technologically complex and 
capital intensive stage of semiconductor manufacture. It 
involves the processing of silicon wafers to create the 
semiconductor devices in the wafer and build up the layers 
of conductors and dielectric on top that provide the com-
plex interconnection between devices. Hundreds of opera-
tions are required to build a complex component such as a 
microprocessor. The main areas in wafer fabrication are 
shown in Figure 1. Photolithography is the most complex 
operation, requiring the greatest precision.  
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Figure 1: Wafer Fabrication Main Processes  

 
 During the process the circuit pattern is transferred 
from a mask onto a photosensitive polymer and finally rep-
licates the pattern in the underlying layer. The object of 
this process is the accurate and precise definition of a 
three-dimensional pattern on a semiconductor substrate. 
The basic photolithographic sequence is shown in Figure 2. 
Wafers move through the FAB in homogenous lots held in 
special containers. Typically, a lot to be processed goes 
through a coating operation, where the wafers are coated 
with a photo-resistant substance. The lot is then moved to 
the exposure operation where the patterns are projected on 
the wafers. The exposed wafers are moved to the develop-
ing operations. Once these steps are completed, the lot 
typically is moved to post-photolithography analytical op-
erations. The amount of metrology is dependent on the 
product and the layer being processed. 

3 PHOTOLITHOGRAPHY SCHEDULING 
PROBLEM 

Photolithography is usually the bottleneck process with the 
most expensive equipment in a wafer FAB (Akcalt et. Al 
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Figure 2: Simplified Diagram of Typical Pho-
tolithography Process Flow 

 
2001). Being one of the processes that is repeated the most 
during fabrication, any improvement in photolithography 
will consequently improve the overall performance. Lot 
scheduling is mainly based on the allocation of available 
tools over time to meet a set of performance criteria. Typi-
cally the scheduling problem involves a set of lots (different 
products/layers) to be processed, where each lot requires a 
particular set of operations/processes to be completed. 

The scheduling of the photolithography area is a very 
difficult activity due to two main issues; complexity and 
variability. The process builds the required layers with such 
critical dimensions that it also needs complex metrology 
procedure to ensure the quality of the outcome. The expense 
of photolithography tooling is such that manufacturers can-
not afford to buy more than the minimum number of tools 
and use the existing ones as long as possible to reduce costs, 
consequently many non-identical parallel tools can be found 
in the floor. The process flow is re-entrant and even more 
dynamic within photolithography area than other areas of the 
production system. In addition, the process is sensitive to 
product/layer changes with associated setup times. There are 
many sources of variability within the process such as high 
product-mix, lot priority issues, lack of formal lot scheduling 
rules within the floor. Maintenance including preventive 
maintenance, random yields, and labor dedication is also a 
crucial issue. Moreover, lack of a prior information about 
future lots for processing mean that scheduling must be real-
time, increasing the complexity. 

These result in a conservative operating policy with;  
 
• low overall performance, 
• low tool utilization/ high cost,  
• more “Work In Process” inventory build,  
• delay in delivery of orders, 
• increase in throughput time per lot, and 
• increase in tool cycle time. 
 

 Two key issues for scheduling had to be established 
before the problem could be addresses, the qualifying ma-
trix (Section 3.1) and the lot selection criteria (Section 3.2). 
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3.1 Qualifying Matrix  

The factory cannot replace older equipment as long it is 
still functioning and the replacement period is not due, 
which means the performance of each tool in the group is 
unique. The manufacturing team uses a qualifying matrix 
(QM), updated periodically based on manufacturing poli-
cies, that defines which tool is capable of processing each 
layer. For example, the manufacturing team always assigns 
the hard/complex layers to new tools as the older tools may 
not be capable of achieving the required quality in a timely 
manner. Table 2 illustrates a sample of the qualifying ma-
trix showing the tools and the layers on which they are able 
to perform. A similar table could also be drawn up with re-
gard to product, but in this work it was assumed that all the 
tools can process a qualified layer on any product. In actual 
production more than 10 layers and over 20 tools are in-
volved in the toolset represented by the model developed. 

 
Table 2: Sample Qualifying Matrix 

Layer Number  
Tool  
No. 1 2 3 4 5 

X01      
X02      
X03      
X04      
X05      
X06      
X07      
X08      
X09      

3.2 Selection Criteria  

The manufacturing team had significant input in assigning 
a short list of the major constraints on the flow of lots 
through photolithography process.  The schedule generated 
for a manufacturing run is highly dependent on the particu-
lar criteria used in the scheduling process.  There are sev-
eral criteria – most are dynamic – that will affect the selec-
tion of a particular tool to process an incoming lot. These 
criteria can be either process-oriented or wafer-oriented: 

 
A. Process oriented criteria relate to the equipment 

itself such as technology, maintenance, .. etc.  
B. Wafer oriented criteria relate to the lot informa-

tion such as product, layer, .. etc.  
 
Figure 3 shows the breakdown of criteria informally used 
by the production engineers to schedule the lots. 

The lot may visit the photolithography process a num-
ber of  times in order to build the required layers, increasing 
the model complexity and the level of variability. In addition 
each photolithography tool uses at least 13 operations to 
complete each layer. Hence, for example, if there are 10  
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Figure 3: Lot Scheduling Criteria 

 
layers for 6 different products to be processed on 5  tools, 
that means there is almost ( )5!60 combinations to consider 
within the schedule. While the number of combination may 
be reduced due to constraints, there is still no possibility of 
performing an exhaustive set of experiments to find the op-
timum schedule. Indeed, explicit enumeration of such a 
problem requires too much time to be considered as an op-
tion (Arisha et al. 2002). Adding more tools is impractical 
on two counts, the capital cost is such that only the mini-
mum number of tools can be installed and more tools in-
crease the size of the scheduling problem. Therefore, there is 
an immense need for a powerful decision support system to 
minimize production cost and increase productivity through-
out the existing toolsets.  

4 MODEL OBJECTIVES 

The intelligent scheduling model developed in this work 
has the following objectives: 

 
• Characterize photolithography tools both indi-

vidually and as a toolset. 
• Examine the impact of various production plans on 

the performance of the photolithography toolset. 
• Provide manufacturing/production engineering 

staff with a robust risk assessment tool for lot 
scheduling. 

• Develop an efficient multi-criteria scheduling 
model. 

• Demonstrate the feasibility of integrating simula-
tion based models and AI techniques to provide 
effective scheduling. 

 
 To do this, the model must provide the user with dif-
ferent performance measures such as average tool utiliza-
tion, throughput time, WIP in front of tools, number of 
mask changes, and tool cycle time.  This output allows the 
production control staff to understand the load distribution 
in the toolset for different production scenarios.  A number 
of parameters are used as inputs to the model to define the 
scenarios and include product mix, output demand, sched-
uled maintenance interval, tool buffer capacity and the 
qualification matrix. 



Arisha  and Young 

 
5 SCHEDULING METHODOLOGY  

The main phases of building a simulation model have been 
discussed in many references (e.g. Law 2003; Banks et. al 
2001). Table 1 shows the main phases of the model devel-
opment including the integration phase for the Neural 
Network (NN) module and the design of experiments. 
 

 Table 1:  The Main Phases in Model Development 
Phase  Activities Functions 

 

I  
Problem Definition 

• Identify the problem  
• system constraints  
• Set assumptions/ approxi-

mations 
 

II  
Objectives 

• Set scheduling objectives 
(with management) 

• Objectives agreement (pro-
duction/manufacturing 
staffs) 

• Performance measures 
 

III  
Model  

Building 

• Data Collection phase  
• Conceptual Model Building 

tools (e.g. IDEF) 
• NN module  
• Planning for experiments  

 

IV  
Model  
Coding 

 
 
 

Data 
Collection 

• Building simulation model  
• Software assumptions and 

constraints are considered  
• Set coordination with the 

intelligent-agent (NN) 
 

V  
Verification/ 
Validation 

• Verifying the model  
• Validate simulation outputs 

(vs. actual data or reliable 
existing models) 

• Verification/Validation for 
the integrated model 

 

VI  
Experimentation 

• Experiments using well de-
signed framework 

• Number of experiments 
• Repetitions  

 

VII  
Results Analysis 

• Results analysis  
• Parameters significance  
• Review results with produc-

tion staff   
 

VIII  
Optimization 

• Optimizing selected pa-
rameters  

• NN used for optimizing the 
scheduling criteria  

 

IX 
 

Sensitivity Analysis • Further experiments for 
sensitivity analysis 

 

X  
Enhancement 

• Improvement of model per-
formance (simulation time, 
model size, coordination) 

• Modifications for enhance-
ment(feedback) 

 
 Data collection is a crucial step and hence time must 
be spent to ensure the validity of data. The required data is 
stored in an associated database rather than hard-coded into 
the model. The information gathered included, but was not 
limited to, equipment run rates, initial setup times, mask 
change setup time, equipment loading and unloading times, 
material handling times, and equipment qualification based 
on layer (see Section 3.1). Maintenance has been classified 
into; preventive maintenance which occurs at constant fre-
quencies and unscheduled breakdowns (common on these 
tools). The model has specified probability distributions for 
mean time to failure as well as the mean time to repair 
based on available historic data. These assumptions were 
documented within the conceptual modeling phase. Prior 
manufacturing experience and lot loading within the floor 
was obtained from production engineers in to order to set 
up the model framework.  
 In order to make effective use of simulation in manu-
facturing systems, it is often helpful to develop a simple, 
intuitive model that describes the subsystem elements and 
the relationships among the elements in the simulation 
model.  This project used the Integrated computer aided 
manufacturing DEFinition (IDEF0) to gain an understand-
ing of the complex systems on a heuristic basis. IDEF0 
was selected as it offers a structured top-down approach, is 
simple to use and provides a good means of describing the 
functional processes within a manufacturing environment. 
The next step involved the ‘art of modeling’ as products, 
process, equipment, constraints, assumptions and objec-
tives together with all the related information were ana-
lyzed and prepared for coding. The simulation model was 
coded from the conceptual model, Figure 4, using com-
mercial event based simulation software (Extend 2003). 

5.1 Selection Criteria Evaluation 

For decision making in the model some weight must be as-
signed to each of the selection criteria, based on their im-
portance, before the scheduler can be run to minimize par-
ticular process measures. The following order of evaluating 
these criteria was established in close consultation with the 
manufacturing team. 
 

• Qualifying Matrix 
• Maintenance (Scheduled & Unscheduled) 
• Tool status 
• Buffer status 
• Lot priority 
• Previous layer & product 
• Previous layer 
• Previous product 
 
This means the selection of the best tool to process a lot 

will be made by evaluating a score for each tool based on 
evaluation of the above criteria in order. First, the selected 
tool must qualify to build the layer required. Second, it 
should not be busy or in maintenance, either preventive or 
unscheduled. Once the tool is identified as available scores 
are determined by the buffer status in front of the tool, the 
priority of the lot and the properties of the previous lot  
processed by the tool to reduce tooling reconfiguration.  
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Figure 4: Schematic Diagram of the Lot Flow in the Model
5.2 Selection Algorithm  

The model uses a weighted-score approach for evaluating 
the possible alternatives in the following manner:  
 
Assume an incoming lot Oij has to process layer ‘j’ for 
product ‘i’, where i = 1, 2,……., ni , and j = 1, 2, 3, ….., nj.  
The scheduling problem is to assign a specific tool to proc-
ess this lot. The tool with highest score is the optimum for 
the selected criteria, as shown in the formula below; 
 

QTNm

mmSMax =

=1  
 
where, Sm is the score of tool ‘m’ and NQT is the number of 
qualified tools for this layer. 

The score of tool ‘m’ can be calculated based on the 
following equations:  

 

∑∑
=

=
n

c

r

rcm KS
1

π
 

 
where, πr is the weight of the selection criterion ‘r’, (e.g. r 
= Maintenance), n is the number of selection criteria, and 
Kc is binary variable (0 -1) to set if the criterion is applied 
(1) or not (0). The neural network is used to set the weights 
assigned to each criteria. 

5.3 Neural Network Module  

A neural network was constructed to map the scheduling 
selection criteria, lot sequence, priority setting, etc. to a 
schedule rule that gives the best performance measure un-
der the imposed constraints.  The NN has been designed 
and trained in conjunction with simulation outputs as 
shown in Figure 5. 

The outputs are the weights of the selection criteria to 
be used in the simulation to provide the best expected per- 
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Figure 5: NN Module Integrated with Simulation Model 
 
formance, when measured by a particular performance 
measure (e.g. throughput time), for the system to process a 
given sequence of lots arriving at the photolithography 
toolset. Hence, the number of output nodes corresponds to 
the number of selection criteria used. The neural network 
was trained using various production scenarios, the training 
goal being to match model throughput time with existing 
experimental data (Figure 6).  
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Figure 6: Neural Network Training Output 
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 The neural network outputs also provide a ranking of 
the relative importance of each selection criterion (Figure 
7). While not shown here, the weights and importance 
were found to vary with the particular optimization meas-
ure used, in line with expectations. 
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Figure 7: NN Module Output 

5.4 Model Constraints  

The developed model is limited by certain assumptions 
which are in line with practical operation of the toolset. 

 
1. The maximum number of steps in any operation 

is 13. 
2. The maximum number of tools is 30. 
3. The maximum number of layers to be processed 

is 13. 
4. An operator is always available. 
5. The qualification matrix is two-dimensional. 
6. The photolithography masks are always available.  
 
The performance measure used here, throughput 

time, is the elapsed time between the lot first entering the 
toolset and completion of the photolithography process 
on the last layer. 

6 VERIFICATION AND VALIDATION  

The strength of decisions made on the basis of simulation is 
a direct function of the validity of the output data. It is evi-
dent that validation must therefore be an integral part of 
building any simulation model, right from input data collec-
tion through model development to output data analysis. The 
goal of the approach undertaken for this model, outlined be-
low, was to verify that the outputs from the model were 
valid and directly useful in the FAB. A number of ap-
proaches were combined to confirm the status of the model.  

The first verification approach could be called, in qual-
ity assurance terms, an ‘internal audit’. The software used 
for simulation produces a trace file, which consists of de-
tailed output representing the step-by-step progress of the 
model over time, allowing detection of subtle errors. The 
trace file showed that some stations had higher utilization 
values than would be expected. These numbers do not ap-
pear directly in the overall model output, but would influ-
ence the results. To ensure that these times were not over-
looked they were checked by people other than the modeler 
to confirm that the correct logic was followed for each step. 
 The overall output from the model was then checked 
for reasonableness, similar to an ‘external audit’, by pro-
duction staff. Finally, the most definitive test established 
that the simulation output data closely resembled the data 
from the actual system. A set of different run parameters 
from the factory floor were provided and simulated to en-
sure that the throughput time and cycle time levels were 
close to the actual values. This confirms the belief that the 
logic and assumptions in the model are correct. Figure 8 
shows the comparison of model output with the actual data 
from the FAB for seven different scenarios and shows a 
maximum deviation of 4.9% (considerably better than 
other models run under the same scenarios). 
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Figure 8: Simulation vs. Actual Data 

7 RESULTS  

Having developed a model which closely simulates the 
performance of the actual system, experiments can be car-
ried out using the model and used to optimize the perform-
ance of the factory without interrupting the production 
flow. In this study, the experiments were conducted based 
on orthogonal design and Taguchi methods (Arisha 2003).  
The input parameters (factors) and their variations (levels) 
as well as the performance measures were determined by 
the manufacturing teams (Table 3).  

 
Table 3: Planning Parameters and Number 
of Levels 

Parameter (Factor) Levels 
Scheduling criteria (SC) 2 
Product-mix (PM) 5 
Wafer starts (WS) 5 
Stepper Buffer Capacity (B) 4 
Dispatching rule (DR) 5 
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 Each level contains a value based on the recommenda-
tions from manufacturing personnel. For example, the 
stepper buffer capacity for a tool is selected as one of the 
following four sizes: 1, 3, 5, or 8. The scheduling criteria 
has only two levels which switch the intelligent-agent on 
or off, allowing an evaluation to be made of the effect of 
operator knowledge/experience on the performance of the 
system. Five different dispatching rules (e.g. First Come 
First Serve (FCFS), Wafer with Highest Layer Number 
First (W-HLNF)) were considered. 
 The Taguchi method allows fewer experiments to be 
conducted while still obtaining the statistical significance 
and the near optimum levels for each factor. The experi-
mental procedure is beyond the scope of this paper but fur-
ther detail can be found in (Arisha et al. 2003). 

Based on the Analysis of Variance (ANOVA) Table 
4, the main control parameters (i.e. SC, PM and DR) have 
a statistically significant impact on the throughput time. 
In contrast, parameters such as wafer starts and stepper 
buffer capacity which are often adjusted on the shop floor 
to improve performance, are not seen to be statistically 
significant. 
 

Table 4: Analysis of Variance Matrix  
Factor DOF SSB SSB/DOF Fcal 

SC 1 0.621 0.621 28.852 
PM 4 0.329 0.082 3.821 
WS 4 0.068 0.017 0.791 
B 3 0.107 0.036 1.654 
DR 4 2.129 0.532 24.714 
Error  15 (0.323) (0.022) 
Total  31 4.47758  

 

 
The results suggest that experimentation should focus 

attention on the alternatives available for the product-mix 
and selection criteria, and only then the other parameters, 
to improve the global shop performance. 

More production scenarios under various production 
demands and product mix have been conducted to compare 
the performance of the system under standard operation 
with the predicted performance using the intelligent sched-
uler. Figure 9 shows a consistent reduction in throughput 
time when using the intelligent lot scheduling. WIP build 
in front of the tools has also been reduced, Figure 10. It is 
worth mentioning that the number of mask changes re-
quired to complete the production is also reduced, saving 
an average of 18% in set-up times for the tools. 

These model results were promising enough for the 
manufacturing staff to implement the model for scheduling 
in the FAB itself. 

8 CONCLUSIONS 

Scheduling within the semiconductor industry is a very 
challenging activity. From manufacturers and researchers’ 
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Figure 9: Comparison of Throughput Times (TPT) with 
and without Intelligent Photolithography Scheduling 
(IPS) for Different Production Scenarios 
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Figure 10: WIP Reduction due to Intelligent Scheduling 

 
observations, the complexity of this activity will increase 
in the future with:  
 

• Increased global competition. 
• Variations in customer demands. 
• Decreasing product life cycle. 
• Rapid changes in technologies. 
• constraints (e.g. technological, quality, and pro-

duction). 
 
The simulation developed here has been effectively 

used in scheduling of these complex processes in the pho-
tolithography area. Developing such effective models in-
corporating all the process details, operating details, and 
manufacturing procedure details for scheduling is ex-
tremely complex. Well-thought out hybrid models based 
on simulation and neural networks can be used to predict 
and examine the performance of the photolithography 
process as well as the impact of various production pa-
rameters on that performance. A good simulation model 
provides not only numerical measures of system perform-
ance, but provides insight into system performance (Carson 
2003). The new model provides a number of interesting in-
sights into the performance benefits from a tacit under-
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standing of system behavior. As one would expect the 
greatest benefit is obtained from improvements at the lot 
throughput time and average WIP reduction.  

Applying Intelligent Scheduling has a significant ef-
fect on improving the lot distribution across the tools tak-
ing into consideration that uniform lot distribution across 
the tools is impossible due to the high variability in the 
system (e.g. qualifying matrix, product-mix, and unsched-
uled maintenance). In addition, the number of mask 
changes required to complete a specific production order is 
also reduced compared to the situation where lots are as-
signed manually on the shop floor. 
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