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ABSTRACT 

Simulation can be an effective way to evaluate alternative 
decisions in Sense-and-Respond systems prior to taking ac-
tions to resolve existing or anticipated business situations.  
In Sense-and-Respond systems, business situations arise 
within predefined contexts that specify what aspects of the 
business need to be monitored and what information is 
needed to make decisions.  We have designed a decision 
support system that dynamically configures simulation mod-
els based on business context and interactively presents 
simulation results to business analysts.  In this paper, our de-
cision support system is applied to the IBM Demand Condi-
tioning process, in which mismatches between supply and 
demand are identified and corrective actions are initiated. 

1 INTRODUCTION 

The term “Sense-and-Respond enterprise” refers to a com-
pany that adaptively evolves to keep up with a rapidly 
changing business environment.  Adaptive enterprises are 
driven by the need to preserve or expand competitive ad-
vantages that are threatened by intense competition and 
changing customer preferences.  Stephan Haeckel (1999) 
of IBM Advanced Business Institute described the concept 
of Sense-and-Respond enterprise.  

A Sense-and-Respond enterprise needs to continu-
ously monitor its business processes, detect existing or an-
ticipated business issues, and resolve these issues in nearly 
real time.  To do so, advanced business process monitoring  
capability and decision-making support are essential.  

This paper describes a Sense-and-Respond system we 
developed for IBM’s Personal Computing Division (PCD) 
to support their Demand Conditioning process.  Demand 
Conditioning is a decision-making process that proactively 
monitors discrepancies between demand and supply and 

 

recommends corrective actions before a potential exception 
becomes a threat to customer service.  

We use simulation techniques to support business users 
to evaluate alternative decisions in our Sense-and-Respond 
system prior to taking any corrective actions to resolve a 
business situation.  Different business situations may require 
different simulation models.  Our Sense-and-Respond sys-
tem deploys a Service Oriented Architecture (SOA) to ac-
commodate different simulation techniques that can be used 
to satisfy different simulation requirements.  

In this paper, we will show the architecture of our 
Sense-and-Respond system.  We tested our system using a 
variety of business scenarios; the results of these  scenarios 
are also presented.  

The rest of the paper is organized as follows: Related 
work is discussed in Section 2.  Section 3 gives a overview 
on the Demand Conditioning process.  Section 4 describes 
the high-level architecture of our Sense-and-Respond sys-
tem, focusing on the decision support subsystem.  Sections 
5 and 6 present simulation results for two different simula-
tion techniques: discrete event simulation and systems dy-
namics simulation.  Section 7 compares these two tech-
niques.  Section 8 concludes the paper. 

2 RELATED WORK  

Stephan Haeckel (1999) of the IBM Advanced Business 
Institute described the concept of a Sense-and-Respond or-
ganization.  Lin et al. (2004) applied Sense-and-Respond 
concepts to supply chain management. 

Systems dynamics simulation has been widely used to 
study causality in real life scenarios.  Angerhofer et al. 
(2000) review the use of systems dynamics modeling in 
supply chain management.  They classify the research and 
development efforts into three main categories – Modeling 
for Theory Building, Modeling for Problem Solving and 
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Improving the Modeling Approach – and go on to review 
the related work and identify future research directions.  
Sterman (2000) discusses a variety of scenarios such that 
can be studied using systems dynamics simulation, not lim-
ited to supply chain management.  An et al. (2004) propose 
a systems dynamics model with real time process control 
for Sense-and-Respond supply chain management. 

3 DEMAND CONDITIONING  

Demand Conditioning is a decision-making process within 
the IBM Personal Computing Division (PCD) that moni-
tors mismatches between demand and supply for each IBM 
PC component and recommends corrective actions before a 
potential exception becomes a threat to customer service. 

The Demand Conditioning process is triggered by an 
imbalance between supply and demand of PC components.  
To effectively detect existing and potential imbalances, a 
Sense-and-Respond monitoring system has been deployed 
in PCD to proactively monitor the supply and demand pro-
file of every component.  When an imbalance is detected, 
the monitoring system raises situations, which are then 
classified and presented to the decision makers through a 
business dashboard.  To resolve an imbalance situation, the 
decision makers need to decide which corrective actions to 
take.  These actions fall into the following three categories: 

 
• Procurement supply conditioning.  Focuses on 

working with suppliers to improve flexibility in 
supply to react to customer demand that is diffi-
cult to predict.  

• Demand conditioning.  Focuses on providing a dy-
namic sales plan in the sense that it can be changed 
in reaction to supply imbalances.  It considers pric-
ing actions and promotions to provide incentives to 
customers to choose alternatives.  

• Offering conditioning. Focuses on identifying al-
ternative products or substituting PC components 
that can be provided to customers in reaction to 
supply imbalances.  It is supported by a proactive 
product definition phase that provides more flexi-
bility to define product configurations. 

 
It is possible for several of these actions to be executed 

simultaneously.  The selected actions form a solution.  The 
decision makers need to consider all potential solutions for 
a given situation and choose the most promising one.  In 
this paper we describe a simulation capability to help 
evaluate different solutions. 

4 SYSTEM ARCHITECTURE 

As shown in Figure 1, our Sense-and-Respond system con-
sists of a Business Dashboard, a Proactive Monitor, a 
Simulation Manager, a Sense-and-Respond Database, 
Simulation Models, Service Mediation, and Simulation 
Engine plug-ins. 

The Sense-and-Respond Database stores the current and 
historical supply and demand data of each PC component. 
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Figure 1: Architecture of a Sense-and-Respond 
System Using Different Simulation Engine Plug-
ins to Evaluate Alternative Decisions 

 
The Proactive Monitor identifies potential gaps be-

tween supply and demand by using information stored in 
the Sense-and-Respond Database and future indicators to 
forecast order trends. 

If a potential mismatch is detected, the Proactive 
Monitor raises a business situation, which is then classified 
and presented to decision makers through the Business 
Dashboard.  At this point, the decision makers invoke the 
Simulation Manager to evaluate alternative decisions. 

The Simulation Manager receives simulation requests 
from the decision makers through the Business Dashboard. 
For each request, the Simulation Manager chooses a simu-
lation model that is suitable for this request from the Simu-
lation Models repository, initializes this model using rele-
vant data from the Sense-and-Respond Database, and sends 
a service request along with the model to the Service Me-
diation, which will then find a proper Simulation Engine to 
execute the model and return the result to the decision 
makers through the Business Dashboard. 

This design follows a Service Oriented Architecture 
(SOA).  Different simulation engines are plugged into the 
Sense-and-Respond system by exposing them as a service 
and registering themselves to the Service Mediation.  For 
the purpose of evaluating the Demand Conditioning deci-
sions, we plugged in two types of simulation engines: WBI 
Modeler (IBM Corporation), a discrete event simulation 
engine, and Vensim® (Ventana Systems Inc.), a systems 
dynamics simulation engine. 

Figure 2 shows the functional components within the 
Simulation Manager and their interactive pattern.  When a 
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discrepancy between demand and supply is detected by the 
Proactive Monitor, the system generates a dataset that de-
scribes the alert situation.  This alert dataset along with a 
simulation request is given as input to the Simulation Man-
ager.  The Simulation Manager does not need to simulate 
the entire business, but needs to focus only on the parts of 
the business that are affected by the particular alert situa-
tion.  The Model Generator will pick up a proper model 
from the Simulation Models repository based on the alert 
situation and simulation request, initialize the model using 
the input alert dataset and other information in the Sense-
and-Respond Database, including all affected finished 
products and components, relevant Bills of Materials 
(BOMs), demand forecasts, supply commits, and on-hand 
inventory of all affected materials.  Depending on the cur-
rent context, different response actions may be simulated 
by several different simulation models. 
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Figure 2: Architecture of Simulation Manager 

 
 When the input dataset is passed to the Simulation 
Manager, one or more simulation models are dynamically 
configured and executed using the simulation engine.  In the 
Simulation Manager, there are several generic simulation 
models, each of which can simulate a class of response ac-
tions.  For all these generic simulation models, simulation 
parameters are all externalized into a well-structured data 
format.  The simulation parameters include a set of end 
products and technology components, Bills of Materials, 
demand forecasts, supply commits, initial inventories, inven-
tory policies, allocation policies and the duration of the 
simulation.  For each response action, an appropriate generic 
simulation model is selected and its simulation parameters 
are configured according to the situation and input dataset. 

After the model is initialized, external simulation en-
gines are called to execute the model.  We first simulate the 
AS-IS scenario, which represents the current alert situation.  
Unless the AS-IS scenario is correctly simulated, the simula-
tion results of the TO-BE scenarios (response actions) are 
not trustworthy.  There is a utility called Model Validation, 
shown in Figure 3, which adjusts simulation parameters until 
the AS-IS scenario is correctly simulated.  Once the simula-
tion model is validated, response actions are simulated.  This 
can be a simulation of one particular action or a sequence of 
several actions.  For each action, simulation runs are repli-
cated to enable statistical output analysis.  
After simulation runs are completed, a Post Processing 
utility is triggered to summarize simulation runs.  This util-
ity generates an output dataset, which typically contains 
inventory profiles, back orders (or lost sales), lead times to 
shipment, etc.  The output dataset is passed to and dis-
played on the Business Dashboard.  Upon review, business 
decision makers can evaluate additional actions through 
the simulation module. 
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Figure 3: Inventory Profiles of Technology Components 
for an Alert Situation 
 

5 DISCRETE EVENT SIMULATION  

In this section, we present several scenarios that are simu-
lated using the WBI Modeler.  The details of the simula-
tion model is described in another paper by Lee (2004). 

5.1 Alert Situation 

In this sample alert situation (Figure 3), a demand surge is 
expected for microprocessor #1 (Micro1).  As a result, 
shortage of Micro1 is expected to appear on around 120th 
day and last until 200th day.  The shortage of Micro1 is 
shown in the Figure 4, the total expected shortage (back or-
der or lost sales) is 3,583 units. 
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Figure 4: Back Orders of Technology Components for an 
Alert Situation 
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5.2 Conditioning Action 1: Shifting Demand to 

Alternative Technology Components 

In this scenario, the conditioning team decides to evaluate 
a demand conditioning action, which is shifting demand to 
alternate technology components, e.g., from Micro1 to Mi-
cro 2 and Micro3 for the duration of the simulation time, 
which is 200 days.  From the SaR system, a relevant in-
formation is gathered as an input dataset and simulation 
module is called to evaluate this action.  After simulating 
this action, the result (Figure 5) indicates that with this par-
ticular action, the majority of the shortage for Micro1 
would be eliminated, but the shortage, although much 
smaller at only 152 units, would still occur at later time, 
between 170th day and 200th day.  (The shortage can be 
seen in Figure 5 as points below zero on the y-axis.)  The 
simulation result also indicates that there are no new con-
straints which occur for the Micro2 and Micro3 as a result 
of this action.  The simulation result is displayed in the 
dashboard, and the response team considers an additional 
action to resolve the remaining shortage of Micro1. 
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Figure 5: Inventory Profiles of Technology Components 
after Conditioning Action 1 (Demand Shifting) 

5.3 Conditioning Action 2: Secure Additional Supply 

In this scenario, the conditioning team concludes that it is 
not possible to further condition the demand, and that a 
proper next step is to secure additional supply from a new 
supplier for Micro1 to remove the expected constraint of 
Micro1.  Also, the conditioning duration is decided to be 
only the first two weeks. 

The model simulates the action and returns the result 
shown in Figure 6 which indicates that the shortage for the 
Micro1 would be completely eliminated as a result of this 
action.  The conditioning team is now confident that the 
sequence of the two actions resolve the alert situation, and 
makes plan to implement the actions. 

6 VENSIM® MODELS 

In this section, the simulation engine used is Vensim®. 
Technology Inventory Profile
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Figure 6: Inventory Profiles of Technology Components 
after Conditioning Action 2 (Secure Additional Supply) 

6.1 Conditioning Action 3: Price Changes and 
Additional Supply  

In this section, we implement price change actions on de-
mand to match supply and demand.  In parallel to the price 
change actions, we also allow additional supply to be ob-
tained within a limited range.  As in the previous section, 
such actions are taken when alerts are produced regarding 
supply-demand gaps.  Though Vensim® is traditionally 
used for performing continuous time systems dynamics 
simulations, we implement discrete time simulation using 
Vensim® by adjusting the time step accordingly.  

We adopt a simple price-demand relation among several 
related technologies and associate the price change actions 
and additional supply procurement with some objective, de-
fined through a payoff function.  The objective of the model 
is to maximize the system profit (defined as revenue – cost).  
We set up the problem so that the price of each technology 
can be changed within a certain range.  A one time addi-
tional supply can be obtained within a given amount at an 
additional cost.  We use the Vensim® optimization mode to 
pick the prices and the amount of additional supply to be 
procured so as to maximize the value of the payoff function.  
In order to minimize the supply-demand gap, we look at the 
difference between excess inventory and backlogs and try to 
get their difference as close to zero as possible. 

6.2 System Dynamics Formulation 

In Figure 7, we show the model setup as a stock-flow dia-
gram using Vensim®.  The stocks, denoted by rectangles, 
represent variables that can accumulate.  We have Backlog, 
Supply and Cum Profit as stocks in our model.  The valves 
along with arrowed double-lines represent flows into or out 
of stocks.  We have Demand Rate, Fulfillment Rate, Re-
plenish Rate, Shipment Rate and Profit Rate as  flow rate in 
or out of stocks in our model.  By connecting variables 
with arrows, the causal relationships are entered.  After en-
tering the formula for each variable using the Equation 
Editor, we can simulate the system and demonstrate its be-
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havior.  The input to the model is the Original Demand, 
Original Price and the Original Supply.  The decision vari-
ables are the Change in Price for each of the related tech-
nologies (components) and the Additional Supply. 
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Additional Supply

<Additional
Supply>

 
Figure 7: System Dynamics Model for Price 
Change Action 

 
Note that we use subscript capabilities of the software 

to represent multiple technologies in the model.  Most of the 
variables are arrays, except for profit, which is aggregated 
from the others by summing over the various technologies. 

6.3 Price Demand Model 

We use price change to influence the change of demand 
rate.  The Demand Rate (DR) is formulated as: 
 

∑
=

==

=+=
n

j
nijiTAjCPDemandFunciNCD

niiNCDiODiDR

1
,,1]),,[*][(][

,,1]),[1]([][
 

 
where i and j refer to the technologies under consideration, 
OD is for the Original Demand, NCD for Net Change in 
Demand, CP for Change in Price, and TA is for Tech Af-
fect.  The TA is defined as: 
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 The DemandFunc is defined as in Figure 8.  This is 
just an initial assumption to begin modeling.  From the 
definition of TA and the DemandFunc, it follows that the 
demand for certain technologies will decrease and the de-
mand for related technologies will increase as the price of 
the technology arises. 

6.4 Test Instance Discussion 

We use an instance in which there are four related tech-
nologies – P0, P1, P2 and P3.  The initial data on Fore 
casted Demand and Supply suggests that the technologies P0 
and P1 are going to be in shortage and P2 and P3 are going    
 
Figure 8: Demand Function – Percentage Change in Price 
vs. Percentage Change in Demand 
 
to have a lot of overage in the next 16 weeks.  This produces 
an alert that is captured and sent to the demand conditioning 
team.  The team decides to use price changes to match sup-
ply to demand.  So, they use the Vensim® model developed 
to find out the required changes to the price to match the 
supply to the demand in a better way. They use a payoff 
function that puts a charge of $150 on Backlogs, and $150 
on Excess Inventory per unit.  The additional procurement 
cost is $50 per unit.  The initial prices for P0, P1, P2 and P3 
are $184, $157, $190 and $145 respectively. α was set to be 
0.4.  We allow a one time procurement of a maximum of 
100 units for any technology in period 8.  Also, the price can 
be changed only within 50% of the current price (increase or 
decrease).  Figure 9 below shows the graph of (Inventory-
Backlog) for the current situation.  We ran the optimization 
using Vensim® and found that by increasing the price of P1 
by 33%, decreasing the price of P3 by 31% and obtaining 79 
additional units of P0 in period 8, we are able to maximize 
our profit and generate a better (Inventory-Backlog) profile 
for the technologies as shown below in Figure 10.  Figure 11 
shows the comparison between the original demand and the 
modified demand. 
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No price action was taken on P0 and P2 but still their 

demand is affected due to the actions taken on the related 
technologies.  Further, it should be noted that the unit costs 
on inventory and backorder play an important part in 
bridging the supply-demand gap and should be set accord-
ingly.  Also, in order to further improve the supply demand 
gap, we could take more actions.  For example, in the case 
of P0, further action would help remove the backlog that 
can be seen at the end.  Also, shifting supply to earlier pe-
riods if possible would help improve the backlog situation 
for P1 and P3.  The effect of such actions along with the 
cost can also be estimated using simulations.  

6.5 Future Extensions to the Vensim® Model 

At this stage, this is a toy problem that was constructed to 
illustrate the use of Vensim® models in examining the ef-
fect of demand conditioning actions.  We have made some 
naïve assumptions about the behavior of the system to 
simplify the model, which can be replaced with more real-
istic assumptions later.  The first extension to the above 
model would be to incorporate realistic system behavior to 
price changes.  This can be done by modifying the change 
in demand relation according to the result of a learning 
component.  Another issue with the model is that demand 
is specified at the component level.  A more realistic model 
would capture the demand at the product level and the sup-
ply at the component level.  The price changes would hap-
pen at the product level which would be translated into 
demand changes at the component level. 

7 COMPARISON OF VENSIM® AND  
DISCRETE EVENT SIMULATION 

In this section we will discuss the use of Vensim® and dis-
crete event simulation in developing models for testing 
demand conditioning actions. 
 The traditional use of Vensim® in business is to model 
strategic behavior using continuous time simulation.  Ven-
sim® does numerical approximations in its calculations 
when performing the continuous time simulations.  By ad-
justing the time step accordingly, we can make Vensim® 
perform discrete time simulations as well.  Though the ac-
tual model may not look like a discrete simulation model, 
the results of the simulation can sometimes be made to 
match those of discrete simulation models.  Some advan-
tages of using Vensim® for modeling the effect of demand 
conditioning actions are given below. 
 

• The effects of various feedbacks and other rela-
tions can be represented and studied with ease us-
ing Vensim®.  Hence control activities can be 
modeled with ease using Vensim®.  This is an im-
portant factor contributing towards the usefulness 
of Vensim® in making strategic decisions. 

• Quick comparisons on the effect of various strate-
gic scenarios/parameter settings can be performed 
using Vensim® by utilizing the SyntheSim mode. 
This enables the user to quickly get the effect of 
changing various parameters instead of restarting 
simulations. 

• The ability to perform quick sensitivity analysis 
and display the results in a clear graphical pattern 
is another strongpoint of Vensim® in terms of us-
ing it to study the effect of various actions on sys-
tem performance. 

 
 Having discussed the advantages of Vensim® it is also 
appropriate to discuss the advantages of discrete event 
simulation. 
 

• Modeling complex business policies for capturing  
operational level details is easier using discrete 
event simulation. 

• Simulation is executed only when events occur 
and not at each and every time step as the event 
calendar drives the simulation.  This may result 
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in significant savings in run time for large simu-
lation models.  

• Tracking of individual entities and their attributes 
can be done easily using discrete event simula-
tion.  This might be a requirement under certain 
conditions, for example, when we want to track 
certain orders and obtain their start and end times 
and so on. 

 
Given these points, it is appropriate to use discrete 

event simulation models for certain conditioning actions 
and Vensim® for certain other actions.  The choice of any 
tool would depend on what the action entails in terms of 
both modeling and in terms of the results. 

8 CONCLUSION 

Simulation is an effective way to evaluate alterative deci-
sions in a Sense-and-Respond system.  We developed a 
Sense-and-Respond system that adopts a SOA to accom-
modate different simulation techniques for business deci-
sion support.  The general architecture of the decision sup-
port system can be applied to integrate other decision 
support services such as optimization, rule-based analysis 
and business intelligence. 
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