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ABSTRACT

Traditional approaches to security evaluation have been
based on penetration testing of real systems, or analysis of
formal models of such systems. The former suffer from the
problem that the security metrics are based on only a few
of the possible paths through the system. The latter suffer
from the inability to analyze detailed system descriptions
due to the rapid explosion of state space sizes, which render
the models intractable for tools such as model checkers. We
propose an approach to obtain statistically valid estimates of
security metrics by performing repeated penetration testing
of detailed system models. We make use of importance
sampling techniques to help reduce the variance of our
estimates, and achieve relative error bounds quickly. We
validate our approach by estimating security metrics of a
large model with more than 21700 possible states.

1 INTRODUCTION

Security threats are an ever increasing problem to modern
computing infrastructures. Attempts to characterize the se-
curity of a large networked system are the focus of several
ongoing research efforts. On one end of the spectrum are
approaches that perform penetration testing of an actual
system implementation manually by Red Teams. Such an
approach, while useful, generates only one of what may be
many attack paths through a system. At the other end of
the spectrum are approaches that try to build a model of the
system, and then obtain comprehensive security metrics by
analyzing the models. However, those approaches, which
include formal model checking and attack languages, suffer
from the degree to which state space explosion limits the
amount of detail that the models can support. We propose
an approach that we call Model-Based Penetration Test-
ing (MBPT), which takes detailed information of the host
configurations, attacks, vulnerabilities, critical assets, and
connectivity to build complex models of the system that
allow for automatic generation of repeated, independent
attack paths.

Formal models for system security have been proposed
to try to capture such properties with respect to networked
system security. Model-checking tools then try to match
the capabilities of the attacker with the current state to
determine what transitions to apply to generate next states.
The transitions usually result in increased access for the
attacker in some portion of the system (Sheyner et al. 2002,
Phillips and Swiller 1998).

One of the major difficulties of such model-checking
approaches is that the state spaces of such models explode
quite rapidly as the number of hosts, exploits available to the
attacker, and vulnerabilities present on the hosts increase.
For example, Sheyner et al. (2002) report handling a model
with 229 bits of state. While a very large model from a
state space perspective, the system that it represents is still
quite small.

Such very large state spaces lend themselves to analysis
via simulation techniques to estimate security metrics of the
corresponding large systems. By generating paths through
the state space, we are able to estimate metrics on the basis
of observed paths.

An interesting metric associated with a path through
such a state space is the number of steps used in reaching
the goal. This is a measure of the level of hardness of an
attack. Similarly, the total number of paths that exist could
correlate with how easy or hard it is for an attacker to find
one such path.

In this paper, we present a mechanism for building
repeated random paths through the state space from which
we can estimate metrics such as the total number of paths
or the total number of paths of a particular length or less.
The mechanism involves application of importance sampling
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techniques similar to those presented in (Heidelberger 1995,
Shahabuddin 1994) to rapidly estimate metrics of interest.

Some background on formal models of security systems
is presented in Section 2. Section 3 discusses in detail the
sampling approach that was applied. Section 4 discusses
details of the model-based penetration testing approach im-
plemented here. Section 5 presents a sample model with
slightly over 1700 bits of state and the results of using our
estimation technique as compared to exact calculation of
the same metrics. We conclude in Section 6 and discuss
potential extensions to this work.

2 FORMAL MODELS OF NETWORKED
SYSTEMS FOR SECURITY

Formal models for security of networked systems try to
capture the relevant properties of a system by maintaining
information about several different system aspects. In order
to give the reader an understanding of security models,
we present a quick description of how such models are
constructed. As presented in (Sheyner 2004) the necessary
information includes the set of hosts H , a connectivity
relationship among hosts C, a trust relationship T among
hosts, a model of the intruder I , a set of actions the intruder
can take A, and a model of the intrusion detection system
IDS. In addition to those, the state also includes the
identifier of the attack to be attempted next, and the source
and target hosts of that attempt.

Each host is modeled as having a list of services, a
unique ID, a list of software running, and a list of host-
specific vulnerabilities. The network connectivity is mod-
eled as a ternary relation C ⊆ H × H × P where P is the
set of ports. Therefore C(hi, hj , p) → hi can connect to
hj on port p. This relation allows the model to capture
firewall rules in addition to physical network separations.
R(hi, hj ) is used to specify that a network route exists from
hi to hj . Trust is a binary relation T ⊆ H × H where
T (hi, hj ) says that a user may log in to hi from hj without
authentication or that “hi trusts hj .” Services are a listing
of all service names of every service present on the network.
Every service name in a host definition comes from this
list, and also allows specific ports to be assigned to specific
services. The IDS maintains a list of the elements of the set
H ×H ×A that it can detect. Therefore ids(hi, hj , a) says
that attack a executed from hi on hj is detectable. Actions
are specified by rules about how the system state is modified
when actions are taken. They are then parameterized by
the hosts they affect. Actions are taken between pairs of
hosts. An action has preconditions in addition to rules that
specify under what model state the action may be taken.
The intruder maintains a store of information about the state
of the system that has been uncovered so far. Specifically,
the information includes the privilege level attained on each
host, and perhaps other information such as the result of
port scans or passwords. The privilege level on a host can
take one of three values: None, User , or Root .

A model of this form is used throughout this paper.

3 RARE EVENT SIMULATION AND
IMPORTANCE SAMPLING

The basic problem of rare event simulation is illustrated
by the following example. (Some of the description below
follows the discussion in Heidelberger (1995).) Let X be a
random variable with probability density function p. Con-
sider estimating the probability, γ , that X is in some subset
A of R is γ = Ep[1{X∈A}], where the subscript p denotes
the probability density assigned to the random variable X

and 1{x∈A} is the indicator of the set A. The standard ap-
proach for estimating γ by simulation would be to generate
N samples, X1, X2, . . . , XN , using the density p, and then
use γ̂N = 1

N

∑N
i=1 1{Xi∈A} as an unbiased estimator of γ

(Ep[γN ] = γ ). The variance of γ̂N is γ (1 − γ )/N . If A

corresponds to a rare event, i.e., γ is very small, the relative
error of the estimate, defined as the standard deviation of
the estimate divided by its mean, REγ̂N

, is approximately
1/

√
γN . It is unbounded as γ → 0. In order to minimize

relative error, the sample size (N ) must be large, and the
probability γ should be large. Another view is that for a
given γ and target relative error, one must increase N to
achieve that relative error.

Importance sampling is a way of achieving small rel-
ative error using significantly smaller N than this standard
approach calls for. We define another probability density
function p′(x), with p′(x) > 0 for all x ∈ A such that
p(x) > 0. Then, γ = Ep′ [1{X∈A}Lp′(X)], where Lp′ is
the likelihood ratio, i.e., Lp′(x) = p(x)/p′(x), and the
subscript in the expectation denotes sampling using density
p′. We use p′ to generate N samples X1, X2, . . . , XN , and
ˆ̂γ N = 1

N

∑N
i=1 1{Xi∈A}Lp′(Xi) is an unbiased estimator of

γ . Thus, it is possible to estimate γ by simulating using a
different probability density and then unbiasing the output
by multiplying it by the likelihood ratio. The sampling with
a different density is usually referred to as a “change of
measure” and p′ is called the “importance sampling den-
sity.” It can be shown (Heidelberger 1995) that to reduce
the variance of the estimator ˆ̂γ N , we need to make the
likelihood ratio p(x)/p′(x) small on the set A. Since p is
a given, this means that we should choose a p′ such that
p′(x) is large on A, i.e., the change of measure makes A

likely to occur. Another factor in the choice of the ap-
propriate change of measure, especially with regard to the
feasibility of simulation using the new estimator, is the cost
of generating the samples.

Note that the above discussion on importance sampling
also applies easily to the construction of estimators, which
do not need a very large sample sizes for low variance, of
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α = Ep[W(X)1{X∈A}] where W is some function on the
co-domain of X.

4 FAST MBPT FOR ESTIMATING SECURITY

We now describe our methodology for performing pene-
tration testing of formal models of networked systems for
estimating security metrics for those systems.

Our approach broadly consists of constructing formal
state/transition models of the networked system, as described
in Section 2.

We build randomly constructed paths through the state-
space of the model and estimate global security-related
metrics as a function of the observed paths. Hence, the
stochastic structure is not inherent in the semantics of secu-
rity, but only in the selection of transitions. This approach
can be viewed as a repeated penetration testing on a model
of the system. We use importance sampling techniques to
reduce the variance of our estimates by biasing transitions
according to some heuristic and then taking the bias into
account when building the estimate. We now provide a
formal description of our methodology, where the security
metric to be estimated is the total number of attack paths
in the model that end up compromising a given asset H .

4.1 Problem Formulation

Let S denote the (finite) set of all possible states, i.e., the
entire state space of the model. Note that this includes
“illegal” states in which the attack to be attempted next is
not enabled for the given source and target hosts, and the
state of the network. Hence, if the encoding for the state
requires n bits, then |S| is 2n. For any s ∈ S, s.att denotes
the variable in s that specifies the identifier of the next attack
to be tried, s.s and s.t denote the variables in s that specify
the source and target hosts of the attack respectively, and
s.rem denotes the rest of the fields contained in s, such as
access privileges gained by the attacker and connectivity
information.

Let G denote the set of goal states, i.e., s ∈ G iff
executing s.att with source s.s and target s.t would change
s.rem in a way that results in the compromise of asset H .

Let S0 denote the set of valid initial states, i.e., s ∈ S0
iff fields in s.rem are set as specified according to the initial
state of the system being modeled, and <s.att, s.s, s.t>
corresponds to an enabled attack under those conditions.

The term sample path is used to denote any infinite
sequence {si, i > 0}, where each si ∈ S.

A finite sequence {si}li=1, si ∈ S, is a valid prefix of
length l iff all of the following are true:

1. s1 ∈ S0, sl ∈ G, si /∈ G for i < l,
2. for 1 ≤ i ≤ l, <si .att, si .s, si .t> corresponds to

an enabled attack, and
3. for 2 ≤ i ≤ l, si .rem are the fields that result when
si−1.att is applied, to si−1.rem with si−1.s as the
source, and si−1.t as the target.

In other words, a valid prefix corresponds to a sequence of
actual attacks that the attacker may execute, with the end
result being the compromise of the asset H . Note that the
length of a valid prefix is always finite, at least for the general
class of models we consider. The execution of an enabled
attack in state s in a valid prefix changes the state such that
<s.att , s.s, s.t> would not correspond to an enabled attack
again if we continue making valid transitions, with each one
acting on the changed state produced by the previous one.
Hence, there is an underlying strict monotonicity property
of valid transitions; which together with the finite size of
the state space, that implies that l is finite.

Let V denote the set of all valid prefixes, i.e., the set
of all actual attack paths.

A sample path is a valid path if the first l states in it
form a valid prefix for some l > 0.

Let the sample space, �, be the set of all sample paths.
We define a probability measure P on �, such that all
of the sample paths in � are equally likely. Now, we
can assign each element in S a unique identifier from the
set {0, 1, . . . , |S| − 1}. Hence, each state can be uniquely
identified by a digit in the number system with base |S|.
We define a random variable X on � such that the image
of the sample path {si, i > 0} under X is the real number
(0.D1D2D3 . . .)|S|, where the subscript indicates that the
number is expressed in the base |S|, and Di is the digit in base
|S| associated with the state si . Henceforth, we suppress
the subscript on real numbers in [0, 1], and unless otherwise
specified, the numbers are in base |S|. It is easy to see that
X describes a one-to-one correspondence between � and
the set [0, 1]. Hence, under P , X is uniformly distributed
over [0, 1], i.e., it has a probability density function p(x),
defined as p(x) = 1 if x ∈ [0, 1] and p(x) = 0 otherwise.

Let R ⊆ � be the set of all valid paths in �, and
equivalently, let A be the corresponding subset of [0, 1].
Now consider an actual attack path of length l beginning
in a valid initial state and ending with the compromise
of asset H , in other words, consider a valid prefix. Here
we use the term “valid prefix” to refer to the sequence
(of length l) of states as described above, as well as the
finite precision (l) real number corresponding to it, with
the meaning clear from the context. Let the valid prefix
be (0.D1D2 . . . Dl) for some Di’s in base |S|. Now, the
set of all valid paths with this prefix is simply the interval
[0.D1 . . . Dl00 . . . , 0.D1 . . . (Dl + 1)00 . . . ]. The size of
the interval is |S|−l . Henceforth, we use Iv to denote the
interval associated with a valid prefix v, and lv to denote
the length of the valid prefix.

It is clear that the intervals corresponding to different
valid prefixes are disjoint, since a number cannot have two
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different prefixes simultaneously. It was already argued
above that the length of a valid prefix is finite, which in
turn implies that the total number of valid prefixes is finite.
Thus, A (and equivalently, R) is a finite union of disjoint
intervals corresponding to the different valid prefixes, i.e.,
A = ⋃

v∈V Iv . Therefore, the total probability of A is the
sum of the probability masses associated with all of the
constituent intervals. Since the default probability density
function p(x) is 1 on [0, 1], the probability mass associated
with an interval is the size of the interval. For a model of
any reasonably sized system, the number of states |S| is
huge, so the sizes of the intervals (and hence the probability
mass) associated with valid prefixes decrease very rapidly
with their lengths. In general, the mass of each interval
would be much smaller than the number of such intervals
(i.e., the number of valid prefixes). As a result, the total
probability mass associated with A would be very small,
and A represents a rare event under p(x).

4.2 Estimation of Total Number of Attack Paths

Now, we show how to construct an estimator for T , the
total number of attack paths leading to compromise of the
asset H , which is the same as the total number of valid
prefixes (= |V|).

We define the function W : [0, 1] → Z+ that takes the
value |S|l for all points in an interval corresponding to a
valid prefix of length l, and is zero for a sample path that
is not valid. Therefore, we have

Ep[W(X)] ≡ Ep[W(X)1{X∈A}]
=

∫ ∞

−∞
W(x)1{x∈A}p(x) dx =

∫
x∈A

W(x)p(x) dx

=
∑
v∈V

(∫
x∈Iv

W(x)p(x) dx

)
=

∑
v∈V

(∫
x∈Iv

|S|lv dx

)

=
∑
v∈V

(
|S|lv

∫
x∈Iv

dx

)
=

∑
v∈V

|S|lv |S|−lv

= |V| = T , (1)

where the introduction of summation is possible because A
is a finite union of disjoint Iv’s. Hence, we estimate T by
estimating Ep[W(X)].

As described in Section 3, a standard unbiased es-
timator for T would be T̂N = 1

N

∑N
i=1 W(Xi), where

X1, X2, . . . , XN are N random samples drawn from [0, 1]
(or, equivalently, from �) with density p(x). However,
since W(X) is non-zero only on the rare set A, the variance
of the estimator would be very large. Using analysis very
similar to that used above, we can show that

V ar(T̂N ) = 1

N

( ∑
v∈V

|S|lv − T 2
)

, (2)
which would be very large because |S|, the size of the
state space, is a very large number for a model of any
reasonably sized system. For instance, in the example
system considered in Section 5.1, |S| is slightly more than
21700. Therefore this estimator would clearly require a
prohibitively large N for the relative error to be small
enough, and as a result cannot practically be used for
determining T by simulation. The problem is well-suited
for the application of importance sampling techniques.

The following is the algorithm we use for generation
of a sample point in [0, 1].

X-SAMPLING-ALGORITHM

1. INITIALIZATION
Create a variable s of type state and initialize s.rem
to the initial setup for the system being modeled.
Initialize pcurr to 1, and lcurr to 0.

2. PICK A TRANSITION
Generate the list L of enabled attacks (each repre-
sented by an <attack, source, target> tuple) given
the system state as represented by s.rem.

a. IF L IS NOT EMPTY

i. Assign a non-zero probability to each en-
abled attack using some heuristic, while
ensuring that the probabilities sum up to
1.

ii. Pick one of the enabled attacks based on
the probabilities assigned above. This
choice determines the current digit of the
sample. Let q be the probability that was
assigned to the chosen attack.

iii. Update the s.rem according to the effects
of the chosen attack.

iv. Update pcurr by multiplying its current
value by q.

v. Increment lcurr by 1.
v. Check s.rem to see if the attacker objective

was satisfied. If yes, then we have reached
a goal state, and exit with an indication
of success, along with the current value
of pcurr and lcurr ; otherwise, we go back
to the beginning of step 2.

b. ELSE
Exit with an indication of failure because the
current sample is not in A.

The above algorithm either returns a valid prefix v

(actually, it returns lv and the probability mass associated
with Iv under the new density), or announces that the current
sample is not in A. If a valid prefix is returned, we consider
the remaining digits to have been chosen such that all of
the |S| digits are equally likely to be chosen at each stage.
Similarly, if we are informed that the sample is not in A,
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we consider the first lcurr digits to have been chosen with
probability pcurr , and the remaining digits to have been
chosen such that all of the |S| digits are equally likely to
be chosen at each stage. These considerations result in a
new probability density function p′(x). It is clear from the
description of the algorithm and assumptions regarding the
subsequent choices that p′(x) is a valid probability density
function, i.e.,

∫ ∞
−∞ p′(x)dx = ∫ 1

0 p′(x)dx = 1. The reason
is that we start with a probability mass of 1, and at each
step divide the available mass completely among the choices
available at that step. Also, if V is not empty (which implies
that A is not empty), the entire probability mass is assigned
to A. In other words, if Pr[X ∈ A] 	= 0 then we always
generate a valid path (corresponding to a point in A).

Now, according to the description above, the probability
mass associated with the interval Iv , for a given valid prefix
v, is the product of probabilities of the transitions chosen
by the sampling algorithm at each stage when it generated
v. Let us call this mass pv

∏lv
i=1 qv

i . The mass is divided
uniformly in the interval. Hence, the probability density at
x ∈ Iv

p′(x) = pv

sizeof Iv

= pv

|S|−lv
=

( lv∏
i=1

qv
i

)
|S|lv . (3)

Hence, p′(x) is a valid probability density function,
and p′(x) > 0 for all x ∈ A. Therefore, p′(x) is a valid
change of measure.

Now, as described in Section 3 and in Equation (1), T =
Ep[W(X)1{X∈A}] = Ep′ [W(Xi)1{X∈A}Lp′(X). Hence, we
build the following unbiased estimator for T :

ˆ̂
T N = 1

N

N∑
i=1

W(Xi)1{Xi∈A}Lp′(Xi)

where X1, X2, . . . , XN are N random sample points drawn
from [0, 1] with density p′(x). Those points are generated
using the X-SAMPLING-ALGORITHM described above.
If Xi is not in A, we do not need the actual value of Xi ,
since the function W(Xi)1{Xi∈A} is zero at such points. For
a point Xi ∈ A, we see from Equation (3) that Lp′(Xi) =
p(Xi)/p

′(Xi) = 1/(|S|lv ∏lv
i=1 qv

i ), where v is the valid
prefix of Xi . Therefore, for such a point,

W(Xi)1{Xi∈A}Lp′(Xi) = |S|lv 1

|S|lv ∏lv
i=1 qv

i

= 1∏lv
i=1 qv

i

.

(4)

Hence, for a point in A generated by X-SAMPLE-
ALGORITHM, we generate the value of W(x)1{x∈A}Lp′(x)

using Equation (4), avoiding any calculation that involves
|S|, which might have caused precision problems in the
implementation. As already noted, the value is 0 if x /∈ A.

Using techniques similar to the ones in Equation (1)
and Equation (2), it can be shown that

V ar(
ˆ̂
T N) = 1

N

( ∑
v∈V

1∏lv
i=1 qv

i

− T 2
)

. (5)

It is obvious from Equation (5) that V ar(
ˆ̂
T N) varies

greatly with the heuristic used to decide the qv
i ’s, i.e.,

the heuristic that chooses the attack from among the set
of enabled attacks at any stage of the X-SIMULATION-
ALGORITHM. For example, a heuristic designed such that it
ends up assigning equal probability masses to all of the valid

prefixes results in V ar(
ˆ̂
T N) being zero, and only one sample

would be needed to obtain the exact answer. However, the
catch is that it is practically impossible to set the appropriate
qv
i ’s for that heuristic without prior knowledge about all the

valid prefixes. Nevertheless, comparing Equation (5) with
Equation (2), we see that even the very simple heuristic that
chooses all of the enabled attacks at each stage with equal
likelihood would produce a drastic reduction in variance.
For this heuristic, qv

i is 1/(number of attacks enabled at
the ith stage of the attack path). Since the number of
enabled attacks at any point would be a much smaller
number than |S|, ∏lv

i=1 qv
i 
 |S|lv , which implies that

V ar(
ˆ̂
T N) 
 V ar(T̂N ). More intelligent heuristics that

approximate the perfect one more closely would result in
even better accuracy. We have experimentally evaluated
some of those heuristics in Section 5.

5 METHODOLOGY EVALUATION

To evaluate the efficacy of the previously outlined approach,
we tested the method on a sample model. The results,
described in more detail in Section 5.2, were then compared
to measures for which the exact values could be calculated to
evaluate the approache’s accuracy. In addition the execution-
time for both the exact answer calculations and our estimates
were also made.

5.1 Example Models Used

In order to evaluate the approach, we had to create a network
model to study. Our goal in this work was to study a model
significantly larger in total state space than model-checking
techniques would allow. Using the model presented in
(Sheyner et al. 2002) as a starting point, we combined the
models presented in (Sheyner 2004) and further extended
them to generate a model with a state space of over 1700
bits. A state space of that size is well in excess of what
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12: IDS

9: SSH 0: 1: W3SVC

2: FTP

3: SCRIPTING

5: SQUID

6: LICQ, XTERM

7: FTP, WDIR, FSHELL, 
VUL-AT

11: Data

Proxy Cluster

Lab 2

Lab 1

Database Server

Intrusion Detection

Web ServerIntruder

8: SSH 

10: SSH 
4: SCRIPTING

Figure 1: Network Configuration Used for Sample Model

state of the art model checkers are capable of handling. A
summary of the model follows.

We modeled a network as a collection of hosts,
h0...h(NumHost−1). Each host has associated with it a privi-
lege level, plvl, and an array of Boolean attributes and ser-
vices, si . The services that were included in the model are the
conjunction of the services outlined in (Sheyner et al. 2002,
Sheyner 2004) and an additional service that indicates which
hosts the intrusion detection system (IDS) is running. The
services are briefly outlined in Table 1, and are used in
Figure 1. Our model used a total of 13 hosts, each with
a different configuration of the services. As shown in the
figure, the network studied in the model consists of a web
server separated from a small corporate network consisting
of two different and separated labs. Each lab can communi-
cate with a load-balancing proxy cluster for communications
with the database server. The database server only allows
connections from machines in the proxy cluster, and the
machines of the proxy cluster all require that ssh connec-
tions be utilized. The IDS system is deployed to monitor
all connections to and from the proxy cluster, including the
database server. The overall goal for the attacker is to gain
root privilege on the database server without being detected
by the IDS.

The network connectivity is expressed as a connectivity
matrix consisting of 7 boolean entries for each pair (hi, hj ).
The first entry indicates whether hi is physically connected to
hj . The rest indicate whether host hi can open a connection
to hj on a particular port. That does not mean that a server
is listening on that port, but rather that a TCP connection
can be prevented without interference from a firewall (for
example). The connection types for our sample model
are Physical, Port80, PortICQ, PortSQL, PortSSH ,
PortFT P , and PortIDS. This connectivity information
is invariant and does not change throughout the course of
the model execution. Our approach does not require that
invariance. It was merely a by-product of the attack set
used.
Table 1: Host State Attribute Descriptions
Attribute Description

w3svc IIS web service is running
squid Squid proxy is running
licq LICQ running on host
scripting HTML scripting is enabled on this host
vul-at at executable vulnerable to overflow
ssh ssh service is running
ftp ftp service is running
data database server running
wdir ftp directory is writeable
fshell ftp user has executable shell
xterm xterm executable is vulnerable to overflow
IDS Intrusion detection process running

The intruder in our model initially begins with root

privilege on host 0 and none on any other host. The intruder
may execute any attack from a source to a target provided that
the attack’s preconditions are met. An attacker’s privilege
level can only increase, no event can cause the attacker
to lose any newly attained privilege. Thus the attacker is
assured of finding a path to the target eventually, if one
exists.

11 attacks are possible in this model. Each attack has
its own set of preconditions based on the source and target of
the attack and the state of the model. When satisfied, those
preconditions enable the attack. The effects of an attack
alter model state when the attack is used by the intruder.
We refer the reader to (Sheyner 2004, Sheyner et al. 2002)
for specifications of 9 of the 11 attacks in our system, and
only present the preconditions and postconditions for our
2 new attacks.

The first attack is used to model the case in which
there is an exploitable vulnerability in the IDS system
that can cause it to fail or crash in such a way that the
IDS is at least temporarily disabled. The other possible
attack that is captured here is an attack that spoofs the
IDS in such a way that it fails to detect further actions.

Attack IDS CIRCUMVENT
intruder preconditions

plvl(src) = user User privilege on source

plvl(trg) = none No privilege on target

network preconditions
IDStrg IDS is running on target

R(src, trg, PortIDS) Src and trg are connected on

portIDS

intruder effects
∅ No privilege changes

network effects
IDStrg = f alse IDS no longer working

end
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The second attack is an exploit on the database server
itself. The attacker can send a carefully and maliciously
crafted packet to the database server causing the server to
fail in a manner that grants root privilege on the target host.

Attack SQL MALFORMED PACKET
intruder preconditions

plvl(src) ≥ user User or greater privilege on

source

plvl(trg) = none No privilege on target

network preconditions
Datatrg Database is running on tar-

get

R(src, trg, PortSQL) Src and trg are connected on

portSQL

intruder effects
plvl(trg) = root Root privilege acquired

network effects
∅ No network changes

end

In our model, the intruder’s goal is to achieve root
privilege on host 11, which contains the database server,
without being detected by the Intrusion Detection System.

The IDS system can detect and sound alarms for all
versions of the sshd buffer overflow and the remote login
attacks (defined in (Sheyner 2004)). The IDS also main-
tains information about which links in the network graph
it monitors. In our example, as shown in Figure 1, the
IDS monitors all the links to the proxy cluster and database
server.

5.2 Experimental Evaluation

In order to evaluate the sampling approach outlined in
previous sections, we implemented a simulator to analyze the
model from Section 5.1. Tools such as NuSMV, which were
used in the analysis of similar models by (Sheyner 2004),
have simulation functions; however, they still generate the
full state space prior to the simulator execution. Significant
effort would have been required to make our sampling
approach work within the framework of such a tool. Instead,
we implemented our own simulator in C++ to collect the
measures we were interested in on the example model.
To obtain exact answers to compare to the results of our
estimations, we implemented a depth-first search algorithm
in addition to our sampling strategies. The experiments were
conducted on an AthlonXP 2400+ with 256MB of RAM.
The metrics estimated were the total number of unique
attack paths in the model of length less than or equal to
a given number. For each simulation experiment, samples
were repeatedly generated until either a 5% relative error
(95% confidence) was obtained or 400,000 samples were
collected. Note that the error bound was achieved for all
path lengths except infinity.
The depth-first search works by traversing all paths
available to the attacker. As the number of total paths
increases the depth-first strategy becomes increasingly use-
less. For example in Table 3 one can see that the running
time of DFS increases significantly as the maximum path
length increases. By contrast, the time taken to obtain an
estimate for the value grows much slower.

To do the sampling as outlined above, we needed a
way to weight transitions that would drive the simulation
towards the rare set of paths more often. We used a total of
three different heuristic functions to guide our simulation.
The first was attack severity, in which we did an ad hoc
weighting of the attacks based on our opinion of which
attacks were more likely to bring the simulation closer
to the goal state. The second was a distance function that
compared the distance from the goal machine to the target of
the attack and tried to guide the simulation towards attacks
that were topologically closer to the goal machine. The
third was a combination of both functions to determine the
weights to assign transitions at every step of the simulation.
Results for all three heuristic functions are presented in the
tables.

We wanted to estimate the total number of paths in the
model from the initial state to the goal state. The number
of such paths however is quite large and our DFS algorithm
was unable to calculate an exact answer in a reasonable time
(we stopped it after 60 hours). We therefore also included
results for smaller path lengths so that a comparison could
be made. Limiting the length of paths is also useful in the
sense that, an attacker would try to compromise the system
using a smaller number of attacks, rather than compromising
all elements of the system prior to reaching the goal. We
therefore ran both the simulator and the DFS for maximum
path lengths up to 10.

The results show two things that are worthy of note.
Fairly accurate estimates were obtained in reasonably short
simulation times. The second is that none of the fixed
heuristic functions that we utilized was best for all path
lengths. As the maximum path length increased heuristics
that were more aggressive at driving the simulation towards
the goal state faster took longer to converge on a 5% error
bound. The reason stems from the results from Section
4, where we showed that the ideal heuristic would assign
roughly equal weights to all valid paths. Clearly, a heuristic
that tends to generate shorter paths will not always be of that
form for varrying maximum path lengths. This explains the
exceptionally rapid degradation in the performance of the
combined heuristic with the increase in allowed path length;
the combined heuristic is very heavily biased towards short
path lengths.
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Table 2: Number of Attack Paths Calculated by Simulator and DFS on Example Model
Simulator

Path Distance- 95% Conf. Attack Severity- 95% Conf. Combination- 95% Conf. DFS
Length based Interval based Interval based Interval (Exact)

≤6 203.915 ±10.193 217.296 ±10.863 210.58 ±10.52 210
≤8 81729 ±4086 83906.8 ±4195.12 79199.6 ±3959.87 82704
≤10 1.6699x107 ±859289 1.65733x107 ±828592 1.6874x107 ±843586 1.65101x107

< ∞ 1.4657x1010 ±2.062x109 1.4953x1010 ±1.354x109 2.978x1010 ±3.76x1010 -

Table 3: Execution Time (in Seconds) for Simulator and DFS on Example Model
SimulatorPath Length

Distance-based Attack Severity-based Combination-based
DFS

≤6 55.021 27.689 8.563 0.177
≤8 80.101 43.620 40.10 17.928
≤10 182.623 104.22 504.7 2076.03
< ∞ 720.9 740.3 890.19 -
6 CONCLUSION

This paper demonstrates a technique for security quantifica-
tion by performing repeated penetration testing of detailed
system models. We provide a precise mathematical for-
mulation of how to use importance sampling techniques
to estimate security metrics, such as the total number of
attack paths that lead to the compromise of a given asset.
We have successfully analyzed a detailed model possessing
over 1700 bits of state, whereas previous model-checking
approaches have not been able to achieve anywhere near that
level of complexity. We believe this estimation technique
can scale to larger and even more complex models.

Clearly, the results show that the choice of heuristic
function used to guide a simulation has a large effect on the
convergence of the estimate, and therefore the running time
as well. The choice of heuristic functions presented in this
paper shows simply that what is good for one measure is not
necessarily good for all measures. Further work is needed
how to chose heuristic functions for security models.

Computation time can be further reduced by running
simulations in parallel, since there would be no dependency
between simulation runs. However, such parallel processing
may not possible with a model checker.

Other directions for future work include use of other
variance reduction techniques, such as structured sampling,
in combination with importance sampling. The effects of
unknown vulnerabilities on the system are also of great
importance with respect to system security. The model and
approach could be extended to account for such uncertainties.
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