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ABSTRACT

Simulation and emulation techniques are fundamental to
aid the process of large-scale protocol design and network
operations. However, the results from these techniques
are often view with a great deal of skepticism from the
networking community. Criticisms come in two flavors: (i)
the study presents isolated and potentially random feature
interactions, and (ii) the parameters used in the study may
not be representative of real-world conditions. In this paper,
we explore both issues by applying large-scale experiment
design and black-box optimization techniques to analyze
convergence of network routes in the Open Shortest Path
First protocol over a realistic network topology. By using
these techniques, we show that: (i) the needed number
of simulation experiments can be reduced by an order of
magnitude compared to traditional full-factorial experiment
design (FFED) approach, (ii) unnecessary parameters can
easily be eliminated, and (iii) rapid understanding of key
parameter interactions can be achieved.

1 INTRODUCTION

Performance analysis techniques are fundamental to the pro-
cess of protocol design and network operations (Jain 1991,
Floyd and Paxson 2001, Floyd 2001). The high-level moti-
vation of these techniques is simple: to gain varying degrees
of qualitative and quantitative understanding of the behavior
of a system under-test. Systematic design-of-experiments
(Jain 1991, Montgomery 2001) is a well studied area of
statistics and performance analysis offering guidance in this
aspect. Such systematic techniques (e.g.: factorial designs,
large-scale search) have not been used in the protocol design
process or network operations process except possibly by
measurement specialists. This ad-hoc approach to organiz-
ing simulation or testbed experiments has worked when we
design and examine a small number of features, network
scenarios and parameter settings. However, this method is
likely to be untenable as we design newer protocols that will
rapidly be deployed on a large-scale, or have to deal with
a combinatorial explosion of feature interactions in large
operational inter-networks. This point has also been made
in Floyd and Paxson (2001), where scale, heterogeneity
and rapid change are listed as the the three reasons why it
is hard to simulate large networks. The need for scalable
simulation and meta-simulation tools is implicit in Floyd
(2001): “...we can’t simulate networks of that size (global
Internet). And even if we could scale, we would not have
the proper tools to interpret the results effectively...”

Beyond mere scaling of simulation platforms, our next
need is meta-simulation capabilities, i.e. large-scale ex-
periment design. Statistical experiment design considers
the system-under-test as a black-box that transforms input
parameters to output metrics, and aims to characterize and
optimize the black-box system. While regression models
for small dimensional parameter spaces can be built using
simple factorial methods (Jain 1991, Montgomery 2001),
these methods do not ramp up to large-scale situations. As
a result, we replace detailed regression-like characterization
with heuristic search methods. Many heuristic search algo-
rithms have been proposed such as multi-start hill-climbing
(Törn and Z̆ilinskas 1989), genetic algorithms (Goldberg
1989) and simulated annealing (Aarts and Korst 1989).
While these techniques tend toward the global optima in
the limit, they do not have the property of finding good
results quickly. We have recently proposed an efficient
search algorithm, Recursive Random Search (RRS) (Ye and
Kalyanaraman 2003), for efficient large-dimensional heuris-
tic optimization, which has yielded very positive results in
finding a “good” minima with few iterations.

The key focus here is a case study in the application
of this meta-simulation technique to examine OSPFv2 con-
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vergence times during network link failures. This study
includes OSPF optimizations for sub-second convergence,
adapted from Alaettinoglu, Jacobson, and Yu (2000). Here,
convergence is defined to be time at which all routers in the
network have a synchronized routing table or put another
way, a consistent view of the routing tables is shared by all
routers. We explore the cases , i.e. large-scale experiment
design and black-box optimization (i.e. large-dimensional
parameter state space search) using realistic topologies with
bandwidth and delay metrics to analyze convergence of net-
work route paths in the Open Shortest Path First (OSPFv2)
protocol.

By using Recursive Random Search (RRS) approach to
design of experiments, we find: (i) that the number of sim-
ulation experiments that must be run is reduced by an order
of magnitude when compared to full-factorial experiment
design (FFED) approach, (ii) it allowed the elimination of
unnecessary parameters, and (iii) it enabled the rapid under-
standing of key parameter interactions. From this design
of experiment approach, we were able to abstract away
large portions of the OSPF model that result in a 100 fold
improvement in simulation execution time.

In the next section we describe the term meta-simulation
and it’s relation to design of experiments. Then in Section
3, we present the OSPFv2 model, and the environment in
which we generated our results. In Section 4, we explain
how Recursive Random Search allows us to generate more
detailed results with fewer experiments. In the final sections,
we detail the results of our experiment designs and what
we have learned from them.

2 META-SIMULATION: LARGE-SCALE
EXPERIMENT DESIGN AND ANALYSIS

2.1 Overview of FFED

Design of Experiments or “experiment design” is a well
known branch of performance analysis, specifically, a sub
branch of statistics. It has been used extensively in areas
such as agriculture, industrial process design and quality
control (Montgomery 2001) , and has been introduced to
the area of practical computer and network systems design
by Jain (1991). Statistical experiment design views the
system-under-test as a black-box that transforms input pa-
rameters to output metrics. The goal of experiment design
is to maximally characterize (i.e. obtain maximum infor-
mation about) the black-box with the minimum number of
experiments. Another goal is robust characterization, i.e.,
one that is minimally affected by external sources of vari-
ability and uncontrollable parameters, and can be specified
at a level of confidence.

The underlying premise of experiment design is that
each experiment has a non-negligible cost. Simple designs
like “best-guess” or “one-factor-at-a-time” designs are less
favored in complex situations since they do not provide infor-
mation about the interactions between parameters. Designs
like full-factorial and fractional factorial (also called or-
thogonal designs), appropriately subjected to replication,
randomization and blocking are preferred. The usual end-
goal of formulating regression models is to observe the
effects of both individual parameters and parameter interac-
tions. Techniques like blocking and analysis of covariance
are used to explicitly handle measurable, but uncontrollable
(a.k.a. “nuisance”) factors. Transforms on data (e.g., Box-
Cox power-law family of transformations) can effectively
aid in producing a family of non-linear regression models
and stabilizing the variance of the response (Jain 1991,
Montgomery 2001).

The next step beyond characterization (i.e. developing
input-output regression models) is optimization, i.e. to
determine the region in the important factors that leads
to best-possible response. The output (i.e. response) in
general will have an unknown surface topology, also known
as “response surface”. The approach typically used involves
quickly traversing the surface sequentially (by using lower-
order models built with fractional factorial experiments) to
reach interesting areas where more detailed (higher-order)
characterization is done.

As well known, one of the significant drawbacks of the
FFED approach is the exponential increase in the number
of experiments that must be run as a function of the number
of data points per parameter. To vastly reduce the number,
heuristic search algorithms must be used, such as RRS.

2.2 Overview of The RRS Algorithm

The key idea behind RRS is to maintain the initial efficiency
of random sampling by “restarting” it before its efficiency
becomes low. However, unlike the other methods, such
as hill climbing, random sampling cannot be restarted by
simply selecting a new starting point. Instead we accomplish
the “restart” of random sampling by changing its sample
space. We perform random sampling for a number of
times, then move or resize the sample space according to
the previous samples and start another random sampling
in the new sample space. Given a black-box objective
function, a desired optimization process should start with
inspecting macroscopic features of the objective function,
and then look further into microscopic features in selected
promising areas. The search process of RRS algorithm is
fully consistent with this idea. In the beginning of the
search, RRS performs sampling from the whole parameter
space and thus examines the overall structure of the objective
function. With the search continuing and the sample space
gradually shrinking, the search gets more and more details
of the objective function until it finally converges to a local
optimum.
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A stochastic search algorithm usually comprises two
elements: exploration and exploitation. Exploration exam-
ines the macroscopic features of the objective function and
aims to identify promising areas in the parameter space,
while exploitation focuses on the microscopic features and
attempts to exploit local information to improve the solution
quickly. Various search techniques can be used for these two
purposes. The RRS algorithm uses random sampling for
exploration and recursive random sampling for exploitation.
Ideally it should only execute the exploitation procedure in
promising areas. However, it is difficult to determine which
areas are more promising and should be exploited. Many
algorithms, such as multi-start, do not differentiate areas and
hence may waste time in trivial areas. For the algorithmic
details and implementation of RRS we refer the interested
reader to Ye and Kalyanaraman (2003).

3 DESIGN OF EXPERIMENTS FOR OSPFv2
CONVERGENCE

The goal of our design of experiments was to understand the
factors determining the amount of wall-clock time required
for a network of routers to detect and propagate a link
state failure. Our experiment is a simulation of a network
of Internet routers all operating the OSPFv2 protocol as
described in Moy (1998). For an example router network,
we selected the AT&T network, as described by Rocketfuel
data (Rocketfuel 2002). This network description was de-
termined by using various network probing techniques (i.e,
traceroute). The AT&T network is challenging because of
it’s size and complexity.

3.1 OSPFv2

OSPFv2 is a link-state routing protocol designed to be run
internal to a single Autonomous System. Each OSPFv2
router maintains an identical database describing the inter-
nal network’s topology (i.e. an Autonomous System (AS)).
From this database, a routing table is calculated by con-
structing a shortest-path tree. OSPFv2 recalculates routes
quickly in the face of topological changes, utilizing a min-
imum of routing protocol traffic. OSPFv2 is classified as
an Interior Gateway Protocol (IGP). This means that it dis-
tributes routing information between routers belonging to a
single Autonomous System. An example of an Autonomous
System is the AT&T network, which is AS number 7018.
Routing between ASs is handled by an external protocol,
such as Border Gateway Protocol (BGP) (Stewart 1999).

The OSPFv2 protocol is based on link-state or shortest-
path-first (SPF) technology. In a link-state routing protocol,
each router maintains a database describing the Autonomous
System’s topology. This database is referred to as the link-
state database. Each participating router has an identical
database. Each individual piece of this database is a partic-
ular router’s local state (e.g., the router’s usable interfaces
and reachable neighbors). The router distributes its local
state throughout the Autonomous System via flooding. All
routers run the exact same algorithm, in parallel. From the
link-state database, each router constructs a tree of shortest
paths with itself as the root. This shortest-path tree gives the
route to each destination in the Autonomous System (Moy
1998). OSPFv2 routers employ the HELLO protocol for
establishing and maintaining communications with adjacent
routers. Adjacencies are established between two routers
when a HELLO protocol packet is received by one of the
two routers connected by a link. HELLO packets are then
sent at regular intervals between adjacent routers. Upon
receiving a HELLO packet from a neighboring router, an
inactivity timer is set for that router. If another HELLO
packet is not received from that router before the timer
expires, then the adjacency is broken and that router should
no longer be used to route IP packets.

All of these aspects are modeled. However, multiple
areas within a single OSPF domain is not currently modeled.
In the experiments presented here, we configure OSPF to be
a single large area. This was done because there is an interest
in determining where OSPF ceases to execute in an efficient
manner. This was a sub-goal of our experimentation.

3.2 AT&T Network Topology

For our network topology we selected the AT&T network,
which contains 11964 router nodes and 7491 links. Internet
topologies like the AT&T network are interesting from a
modeling prospective because of their sparseness and power-
law structure (Rocketfuel 2002). This structure allows for
a greater range of convergence times compared to fully
connected networks. The OSPFv2 update packets require
multiple hops in order to reach the outer edges of the
network.

In performing a breadth-first-search of the AT&T topol-
ogy, there are eight distinct levels. A number of routers
were not directly reachable and thus were removed. Those
routers are likely connected by transit routes. In total there
are 3371 backbone routers and at the successive levels there
are 8593 routers. The 4 ms delay that was chosen for the
backbone core routers was in-line with the delays that Rock-
etfuel had associated with the Telstra topology backbone.
An order of magnitude higher delay was selected for all
lower level routers.

The bandwidth and delay for the AT&T topology is as
follows:

• Levels 0 and 1 routers: 155 Mb/sec and 4 ms
delay

• Levels 2 and 3 routers: 45 Mb/sec and 4 ms delay
• Levels 4 and 5 routers: 1.5 Mb/sec and 10 ms

delay
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• Levels 6 and 7 routers: 0.5 Mb/sec and 10 ms
delay.

Our experiments focused on the convergence time met-
ric. We defined convergence to be the time at which all
routers on the network have received an update correspond-
ing to a link status change, and have recomputed their
forwarding tables. In order to clearly state convergence
intervals, in our simulations we have only a single link state
failure per simulation and all of the OSPFv2 routers were
started in a converged state. We defined the input plane
to this experiment design to be composed of the HELLO
Interval (HELLO-Int), HELLO Inactivity Timer (HELLO-
IT), Shortest Path First Computation Interval (SPF-CI), Ac-
knowledgment Timer (ACK) and Maximum Transmission
Unit (MTU). The response plane is the convergence time
from the link state failure.

The goal for our design of experiments was to adapt
some of the convergence optimizations in Alaettinoglu, Ja-
cobson, and Yu (2000) for the IS-IS protocol to the OSPFv2
RFC (Moy 1998) protocol. IS-IS is a link state protocol for
Cisco routers. Suggestions for lowering convergence times
were: to queue HELLO packets in front of data packets, use
a modern shortest-path-first (SPF) algorithm, and to give a
higher priority to link state packet (LSP) propagation over
SPF computation. We took the following steps to adapt the
optimizations.

We did not model the data plane in our OSPFv2 routers
so that HELLO packets would always be at the front of the
queue. It is still possible for other control plane packets to
queue in front of the HELLO packets. To facilitate a higher
priority for link state propagation over SPF computation,
we remove the LSP propagation timer from the OSPFv2
protocol. Now, LSP propagation will always occur imme-
diately, and the SPF computations will always occur later.
In addition, modern SPF computations would only add a
small amount of time to overall convergence interval. We
modeled this by adding in the amount of time stated by
Alaettinoglu, Jacobson, and Yu (2000) for a topology of our
size.

4 RRS RESULTS

As previously discussed, Recursive Random Search (RRS)
is a heuristic search algorithm for black-box optimization
problems. This algorithm is specifically designed to opti-
mize dynamic network protocol parameterizations with an
emphasis on obtaining “good” solutions within a limited
time frame. RRS does not attempt to find a full optimization
of the parameter space. The RRS algorithm maintains the
high efficiency property of random sampling by constantly
restarting random sampling but with adjusted parameter
spaces. Because it shares this property with random sam-
pling, it is also highly robust to the effect of random noises
Table 1: Input Plane Parameters for RRS Experiments

Parameters Unit Minimum Maximum
HELLO-Int seconds 0.5 10.0
HELLO-IT seconds 1.5 8.0
ACK seconds 0.5 10.0
MTU bytes 500 1500
SPF-CI seconds 0.5 10.0

Table 2: RRS Linear Regression Model

Coefficients

Estimate t value Pr(> |t|)
(Intercept) -19.838684 -12.816 < 2e − 16
HELLO-Int 4.426648 36.415 < 2e − 16
HELLO-IT 4.507337 26.623 < 2e − 16
ACK 0.089194 0.788 0.432
MTU -0.001568 -1.368 0.173
SPF-CI 0.717926 5.909 1.16e-08

Residuals

Min 1Q Median 3Q Max
-15.7286 -1.0311 0.1805 1.4811 11.5511

in the objective function. It also performs efficiently when
handling an objective function that contains negligible pa-
rameters.

As shown in Table 1, we chose a wide range of input
parameters for the RRS algorithm: HELLO-Int, HELLO-IT,
ACK, MTU, SPF-CI. We allowed RRS to search for 250
experiment runs, specifying a desired confidence level of
99%. RRS generated a convergence minimum after only 7
executions of 4.07 seconds. We fitted a linear regression
model to our data using a tool called R (2004), and generated
the co-efficients shown in Table 2. After analyzing the
variance on the inputs, we found the parameters that had
the greatest impact on the model to be the HELLO-Int,
HELLO-IT, and the SPF-CI.

After considering the simulation model, we realized
that the HELLO polling interval is set to be HELLO-Int
multiplied by HELLO-IT. These two parameters have an
impact on convergence because they determine the time to
detect a link state failure. The other factor of convergence
time is the time to propagate the link state failure to the
remainder of the routers in the network. The update prop-
agation time is defined by flooding packets throughout the
network. The router which detects the failure informs all
remaining neighbors, who notify their neighbors, and so on,
until eventually all routers in the network have received the
update. The propagation delay on the updates is bounded
by the amount of time it takes for the update to travel across
the diameter of the network. Recall also from our definition
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(a) Scatter plot. (b) Q-Q plot.

Figure 1: RRS Linear Regression Model
Table 3: Re-parameterized RRS linear Regression Model

Coefficients

Estimate t value Pr(> |t|)
(Intercept) -0.31820 -0.581 0.5617
HELLO-Int (1) -0.19646 -1.750 0.0814
HELLO-IT (2) 0.13986 1.047 0.2962
SPF-CI 1.0743 5.055 5.27e-06
(1) × (2) 0.92009 37.773 < 2e − 16

Residuals

Min 1Q Median 3Q Max
-18.6508 -0.6173 0.23916 0.5768 5.3645

of convergence that each router must have also recomputed
their forwarding tables. So the convergence time is com-
pounded by either how long it takes for the final router to
update it’s table, or by the longest SPF computation interval.

After analyzing the variance we fitted a new linear
regression model to SPF-CI and the cross between HELLO-
Int and HELLO-IT, as shown in Table 3. This regression
produced an adjusted R-squared value of 98%. In order to
verify the accuracy and correctness in our model we created
a scatter plot of the errors versus predicted responses. The
scatter plot did not show any trends in the data. The next
step in our verification was to create a quantile-quantile
plot of the residual errors. We observe a linear relationship
between sample error and theoretical. From Figure 1, the
linear model assumptions of normality appear to be valid.

In order to gain more detail about the interesting parts
of the design, we re-executed the model a second time
with only those input parameters. Specifically, we used
Figure 2: Re-parameterized RRS: Demonstration of the Ma-
jor Role Played by the HELLO Interval and HELLO Inac-
tivity Timer

only HELLO-Int, and HELLO-IT in the same ranges as
shown in Table 1. Again, we allowed RRS to search for
250 iterations and with a confidence interval of 99%. This
experiment generated a convergence minimum after only
129 executions of 0.93 seconds.

In this series of experiments, a sub-second range for
the convergence interval is observed. Figure 2 shows that
HELLO-Int and HELLO-IT form a plane with one corner
tilting downward toward the smaller values. This low corner
is anchored by the best convergence result given by RRS.
We report a clustering effect occurring on the graph, which
is attributed to the RRS algorithm centering upon a given
input. It appears that RRS was successful in isolating
HELLO-Int and HELLO-IT at the low end of their ranges.

The initial goal of our design was to determine if we
could adapt some of the ideas in Alaettinoglu, Jacobson, and
Yu (2000) to the OSPFv2 protocol and achieve convergence
times on the order of magnitude in the tens of milliseconds.
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Table 4: Re-scaled RRS input plane parameters.

Parameters Minimum Maximum
HELLO-Int 0.03 1.0
HELLO-IT 1.5 2.0

Figure 3: Re-scaled RRS: Re-run of RRS on the Specific
Region of Interest Where the Convergence Time is Lower.

Having isolated the effective parameters of the simulation
model, we being to see points in the sub-second range. So
we re-scaled the experiment into the range of the input values
that generated those results, and noticed that HELLO-Int
was in the range suggested by Alaettinoglu, Jacobson, and
Yu (2000). Table 4 and Figure 3 show the results of this
experiment. All of the convergence times are below a second,
and the best values are in range of tens of milli-seconds.

5 OSPF MODEL CRITICAL PATH ANALYSIS

Berry and Jefferson (1985), developed a technique called
Critical Path Analysis to determine the optimal parallel
simulation execution time. Armed with the results from
RRS, we apply this technique here to examine what the
critical path for OSPF convergence within the context of
our model.

After examining the results from our designs, we ob-
served that the two main components of convergence are
detection and propagation. Detection is simply the amount
of time that elapses between a link state change and the
time at which the inactivity timer fires. The second com-
ponent, propagation is determined by the longest path the
link state update travels through the network. The longest
path is not immediately determined by the number of hops
between the originating router and the final router to receive
the update. It is possible for an update to take many hops
over high-speed links and still not be on the longest path.
Conversely, it is possible to take only a small number of
hops over very low speed links and be on the longest path.
Realizing that these two factors have the highest impact
on convergence time, we observed that to accurately model
convergence in any network, only the set of nodes which
encompass the longest path through the network require
simulation. This observation has been used on other OSPF
optimizations (Goyal, Ramakrishnan, and Feng 2003).

We simulated the AT&T network which contained al-
most 12,000 routers. The model was instrumented so that
each router would keep track of which routers they received
link state updates from. Once the update reached the final
router in the network, we then backtracked this path to find
the longest path in the network.

In order to validate the modeling optimization, we an-
alyzed the OSPF convergence on the VSNL (India) topol-
ogy by applying FFED. This topology contained only 291
routers, which allowed us to compare the optimization to
the full model simulation results. We tried all combinations
possible within the range of each parameter, and the opti-
mization results generated exactly the same output for the
optimization as we would have received had we modeled
the entire topology.

Simulations on the full AT&T network required any-
where from one half hour to initialize to several hours
depending on whether the routing tables need o be com-
puted. In addition to the time required to initialize the
simulation, execution time took on average one second of
wall clock time to simulate one second of simulated time. In
other words, to simulate an hour of OSPFv2 traffic required
almost one hour of real time.

After determining this optimization, we computed the
longest paths through the AT&T network for each of the
updates generated from a single link failure. These paths we
11 and 12 hops long respectively, and the paths only varied
at a single node. This means that in order to simulate the
entire AT&T network for convergence times only required
actually simulating 13 total routers. Obviously, this reduced
the time required to run the simulation to the order of
seconds. At this stage, the simulation requires a second or
so to initialize, and on an average execution was complete in
0.0006 seconds. The simulation results we presented in this
paper required 12,000 events to generate the convergence
times in a simulation of 100 seconds. Using this optimized
model, we are now able to compare FFED approach to
RRS.

6 COMPARISON OF RRS TO FFED

In the previous section we showed how meta-simulation can
reduce the amount of time to acquire meaningful results
from our models by employing algorithms such as Recursive
Random Search. Using RRS, we were able to generate
all of our results in only 750 experiments, or simulation
executions. However, RRS had not sampled a large area of
the state space, so how confident can we be in the results?

We applied FFED model in order to validate the results
we gained. We used the same five input parameters in
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(a) Scatter plot. (b) Q-Q plot.

Figure 4: FFED Linear Regression Model
Table 5: FFED Linear Regression Model

Coefficients

Estimate t value Pr(> |t|)
(Intercept) -2.132e+01 -86.26 < 2e − 16
HELLO-Int 3.844e+00 236.49 < 2e − 16
HELLO-IT 4.690e+00 197.41 < 2e − 16
ACK -1.528e-17 -9.40e-16 1
MTU -1.335e-19 -8.64e-16 1
SPF-CI 9.796e-01 60.26 < 2e − 16

Residuals

Min 1Q Median 3Q Max
-16.567 -4.262 0.523 3.762 15.306

Table 1, as in the RRS experiments. In Table 5, we fitted a
linear regression model to the data and found that the same
three input parameters had the most effect on the model.
The FFED model produced an adjusted R-squared value of
85%. We were confident that RRS was properly modeling
the same parameter space as we would have explored had
we done a more detailed FFED. Plotting the same two most
effective parameters as we modeled in RRS, the scatter plot
did not show any trends in the data, as shown in Figure 4.
The final step in our verification was to create a quantile-
quantile plot of the residual errors. We observed a linear
relationship between sample error and theoretical. From
Figure 4, the linear model assumptions of normality appear
to be valid for the FFED model.

FFED generated 16,807 experiment runs, 20 times more
than the RRS design, and yielded less information in the
areas that we were interested in studying. Figure 5 illustrates
the amount of detail generated by RRS versus the FFED
for convergence times in the sub-second range. RRS also
generate a “good” value for the convergence time 0.11
seconds, which was within 7% of the FFED best value.
While we could have generated a FFED using the final
RRS input parameter ranges, we would not have had the
benefit of the knowing that was in fact the area of interest,
beyond our ability to analyze the system. In fact, we
purposely chose FFED presented here because we wanted
to be certain about the nature of the system. It was necessary
to explore a large range in order to validate our results in
the RRS design.

7 CONCLUSIONS

In this paper, we demonstrate the efficacy of the Recursive
Random Search (RRS) technique when applied to large-scale
meta-simulation of OSPF routing networks. We found that:
(i) the number of simulation experiments is reduced by an
order of magnitude when compared to full-factorial experi-
ment design (FFED) approach, (ii) this approach enabled the
rapid elimination of unnecessary parameters, and (iii) RRS
enabled the rapid understanding of key parameter interac-
tions. By using RRS we made the interesting observation
that when modeling only OSPF control-plane dynamics we
were able to shrink the number nodes down to that subset
that was only needed for determining convergence times.
This reduction resulted in models that execute 100 times
faster than their full topology counterparts.

In the future, we plan to leverage our experience here
to examine potential optimization to the OSPF protocol
that may decrease convergence times over what has been
previously reported.
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(a) FFED (b) RRS

Figure 5: Comparison of FFED and RRS: FFED Samples Uniformly While RRS First Samples Randomly and then Focuses
on Specific Regions
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