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ABSTRACT 

Many simulation experiments require much computer time, 
so they necessitate interpolation for sensitivity analysis and 
optimization. The interpolating functions are ‘metamodels’ 
(or ‘response surfaces’) of the underlying simulation mod-
els. Classic methods combine low-order polynomial re-
gression analysis with fractional factorial designs. Modern 
Kriging provides ‘exact’ interpolation, i.e., predicted out-
put values at inputs already observed equal the simulated 
output values. Such interpolation is attractive in determi-
nistic simulation, and is often applied in Computer Aided 
Engineering. In discrete-event simulation, however, 
Kriging has just started. Methodologically, a Kriging 
metamodel covers the whole experimental area; i.e., it is 
global (not local). Kriging often gives better global predic-
tions than regression analysis. Technically, Kriging gives 
more weight to ‘neighboring’ observations. To estimate the 
Kriging metamodel, space filling designs are used; for ex-
ample, Latin Hypercube Sampling (LHS). This paper also 
presents novel, customized (application driven) sequential 
designs based on cross-validation and bootstrapping. 

1 INTRODUCTION 

In practice, experiments with simulation models (also called 
computer codes) often require much computer time; for ex-
ample, we have heard of a simulation that requires 50 hours 
per run. Consequently, sensitivity analysis and optimization 
require the analysts to interpolate the observed input/output 
(I/O) data. The interpolating function is called a metamodel 
of the underlying simulation model (it is also called a re-
sponse surface, emulator, compact model, auxiliary model, 
etc.) Interpolation treats the simulation model as a black box 
model (unlike Perturbation Analysis and Score Function 
methods). Classic interpolation methods use first-order or 
second-order polynomials; see Kleijnen (2004). In this pa-
per, however, we survey an alternative type of metamodel, 
namely Kriging (named after Krige, the South-African min-
ing engineer who developed this method in the 1950s; see 
Cressie (1993) for historical details). Kriging has already re-
alized a track record in geostatistics–see the classic textbook, 
Cressie (1993)–and in deterministic simulation–see the clas-
sic paper, Sacks et al. (1989) and the recent textbook, Sant-
ner, Williams, and Notz  (2003). 

Kriging provides exact interpolation, i.e., the predicted 
output values at ‘old’ input combinations already observed 
are equal to the simulated output values at those inputs 
(‘inputs’ are also called ‘factors’; ‘input combinations’ are 
also called ‘scenarios’). Obviously, such interpolation is 
appealing in deterministic simulation.  Kriging and deter-
ministic simulation are often applied in Computer Aided 
Engineering (CAE) for the (optimal) design of airplanes, 
automobiles, computer chips, computer monitors, etc.; see 
again Sacks et al. (1989) and–for updates–Meckesheimer 
et al. (2002) and Simpson et al. (2001). 

However, Kriging for discrete-event simulation has just 
started. In 2002, a search of the ‘International Abstracts of 
Operations Research’ gave only two hits. A Google search 
for the term Kriging in the WSC proceedings gave   only 
seven hits for 1998 through 2003; for example, Chick (1997) 
and Barton (1998). Earlier, Barton (1994) also proposed the 
application of Kriging to random simulations (such as dis-
crete-event queueing simulations). Régnière and Sharov 
(1999) discuss spatial and temporal output data of a random 
simulation model for ecological processes. In this paper, we 
survey our recent research on Kriging in random simulation; 
details are given by Kleijnen and Van Beers (2004a) and 
Van Beers and Kleijnen (2003). 

Methodologically speaking, a Kriging interpolator 
covers the whole experimental area; i.e., it is a global (not 
local) metamodel. Our research indicates that Kriging may 
give better global predictions than low-order polynomial 
regression metamodels. 

Note: Regression may be attractive when looking for an 
explanation–not a prediction–of the simulation’s I/O behav-
ior; for example, which inputs are most important; does the 
simulation show a behavior that the experts find acceptable 
(also see Kleijnen 1998)? Regression models such as poly-
nomials are useful in the local search for optimization and in 
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screening for identification of the most important factors 
among hundreds of factors; again see Kleijnen (2004). 

To estimate the parameters (or coefficients) of these 
polynomials, the analysts must run their simulation model 
for a set of (say) n combinations of the k input values; this 
set is called a design  (or an n×k design matrix or plan). 
The analysts usually apply classic designs such as frac-
tional factorials (for example, 2k - p designs); see Myers and 
Montgomery (2002). Kriging, however, estimates its pa-
rameters through space filling designs, which we shall de-
tail in Section 3. The simplest and most popular designs 
use Latin Hypercube Sampling (LHS), which is already 
part of spreadsheet add-on software, such as Crystal Ball 
and @Risk. We shall summarize our own novel customized 
sequential design approach (tailored to the actual simula-
tion; i.e., application driven)–first presented for determinis-
tic simulation in Kleijnen and Van Beers (2004b), and for 
random simulation in Van Beers and Kleijnen (2004).  

We organize the remainder of our paper as follows. 
Section 2 presents Kriging basics (including its stationary 
covariance process), and compares Kriging with regres-
sion. Section 3 summarizes standard designs for Kriging 
metamodels, emphasizing LHS designs. Section 4 presents 
novel designs that are sequential and customized, using ei-
ther cross-validation or bootstrapping. Section 5 gives con-
clusions and further research topics. 

2 BASICS OF ORDINARY KRIGING  

There are several types of Kriging, but we limit our discus-
sion to so-called Ordinary Kriging. Its predictor for the 
‘new’, unobserved (non-simulated) input 1+nx —denoted 

by )(ˆ
1+nY x —is a weighted linear combination of all the 

n ‘old’, already observed outputs ix :  
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1 ))(,),(( nxYxY … ; capital letters denote random vari-
ables. This Kriging assumes a single output per input com-
bination; in case of multiple outputs, the predictor may be 
computed per output. For multivariate Kriging we refer to 
Wackernagel (2003). (Each input vector has k components; 
see Section 1.) 

To quantify the Kriging weights λ  in (1), Kriging de-
rives the best linear unbiased estimator (BLUE). The bias 
criterion implies that the predictor for an input that has al-
ready been observed, equals the observed output (this 
property makes Kriging an exact interpolator). To account 
for the output (co)variances, Kriging assumes that the 
closer the input data are, the more positively correlated 
their outputs are. 

This assumption is modeled through a covariance 
process that is second-order stationary; i.e., the means and 
variances are constants (say) 2

Yµ  and 2
Yσ , and the covari-

ances of the outputs depend only on the ‘distances’ (say) h 
between the inputs. In fact, these covariances decrease as 
these distances. increase. 

Kriging may use different types of covariance func-
tions. For example, if there is a single input factor (k = 1), 
the exponential covariance function with parameter θ  is 

 
)||exp()](),(cov[ 2

jiYji xxxYxY −−= θσ   (2) 
 
so the second factor in (2) represents the correlation func-
tion. Another example is the Gaussian function, which re-
places the absolute value || ji xx −  in (2) by the square 

2)( ji xx −  (so it becomes smoother).  A third example is 
the linear covariance function, which is used in Kleijnen 
and Van Beers (2004a, b) and Van Beers and Kleijnen 
(2003). In two examples, Kleijnen and Van Beers (2004b) 
find that it does not matter much whether linear or expo-
nential covariance functions are used. 

On one hand, the covariance functions tend to zero as 
the distance increases; again see (2) for an example. On the 
other hand, at zero distance there is still variation in the 
output, namely 2

Yσ . In geostatistics this is called the nug-
get effect; for example, when going back to the ‘same’ 
spot, a completely different output (namely, a gold nugget) 
may be observed. In deterministic simulation, this variance 
is harder to interpret. Den Hertog, Kleijnen, and Siem 
(2004) experiment with deterministic simulations, and 
demonstrate how a given covariance function with a spe-
cific θ  parameter may give particular output patterns; see 
Figure 1. Obviously, this pattern is not white noise, which 
implies uncorrelated outputs (white noise is assumed by 
classic regression analysis). This figure demonstrates what 
it means to model the I/O function of a deterministic simu-
lation model by means of a random metamodel, namely, 
the random process specified by (1) and (2). More details 
follow in Section 3.2. 

In practice there are multiple input factors (k > 1). The 
Kriging literature then assumes product form correlation 
functions; for example, (2) gives 
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where the parameters gθ quantify the relative importance 

of the various inputs, and gi;x  denotes the value of input g 
in input combination i. 
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Note: The geostatistics literature uses so-called 
variograms to model the covariances, whereas the deter-
ministic simulation literature uses covariance functions 
such as (3). In our previous publications, we used the 
variogram, but currently we use the software developed by 
Lophaven, Nielsen, and Sondergaard (2002), which uses 
covariance functions in its Matlab toolbox. 
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Figure 1: Realizations of a Covariance 
Stationary Process Model 

 
Using the co-variances between the ‘old’ outputs and 

the covariances between the old and the new outputs, the 
optimal weights in (1) can be derived. We refer to the lit-
erature–and the corresponding software–for the rather 
complicated formula. The result is twofold:  

 
(i) observations closer to the input to be predicted get 

more weight (if the new input equals an old input, 
then the corresponding weight becomes one and 
all the other n – 1 weights become zero); 

(ii) the optimal weights vary with the specific input 
combination 1+nx  that is to be predicted (i.e., a 
different ‘new’ input has different neighbors with 
‘old’ outputs that get more weight), whereas re-
gression metamodels use fixed estimated parame-
ters (say) β̂ . 

 
Figure 2 illustrates Kriging versus second-order poly-

nomial regression in a simulation experiment. More nu-
merical illustrations–with constant and heterogeneous vari-
ances respectively–are given by Van Beers and Kleijnen 
(2003) and Kleijnen and Van Beers (2004a). In all these 
examples, Kriging gives better predictions than regression 
metamodels. 

The literature (e.g., Cressie 1993, p. 122) and software 
also give–rather complicated–formulas for the predictor 
variance, ))(ˆ(var 1+nY x . However, the formulas for the 
optimal weights and the corresponding predictor variance 
are wrong! They neglect the fact that the covariances must 
be estimated; i.e., given a function type such as (3), the pa-
rameters gθ  must be estimated. (Most publications assume 

 

 
Figure 2: Kriging versus Second-Order Poly-
nomial Regression in a Simulation Experiment 

 
normally distributed output Y , and use maximum likeli-
hood estimation–MLE–for these parameters; we, however, 
use ordinary least squares–OLS–in our linear covariance 
functions.) But these estimators make the predictor in (1) a 
non-linear predictor: replace λ  by (say) L. Therefore we 
shall reconsider Kriging in Section 4. 

3 STANDARD DESIGNS FOR KRIGING 

In the preceding section, we focused on the Kriging analy-
sis. Now we focus on the design of the experiment with a 
simulation model–that is going to be analyzed by Kriging. 
(When the analysts are going to analyze their I/O data by 
means of low-order polynomials, then they use designs 
such as fractional factorial designs.) ‘Design and analysis’ 
is a ‘chicken and egg’ problem. 

In random simulations, we must confront the issue of 
replication. Even in expensive simulations–which require 
much computer time per replicate (or simulation run)–it is 
non-sense to obtain a few replicates if the signal/noise is 
then too small (so the analysts better toss a coin rather than 
develop and run a simulation model). Kleijnen and Van 
Beers (2004a, Figure 1) demonstrate that–in case of too 
few replicates–the estimated correlation function is very 
noisy–and hence the Kriging weights and predictions are 
very inaccurate. 

After simulating a reasonable number of replicates 
(also see Law and Kelton 2000), Kriging is applied to the 
average output per input combination. Kleijnen and Van 
beers (2004a) demonstrate that as the number of replicates 
increases, the Kriging predictor’s accuracy also increases. 
(Regression models, however, did not give better predic-
tions; an explanation might be that regression models use 
the average output per input combination, but–whatever 
the number of replicates is–their average has the same ex-
pected value). Their conclusion is that ordinary Kriging 
works well in case of random simulation–provided repli-
cates are obtained such that the signal/noise is acceptable; 
it is not necessary to take so many replicates that the sam-
ple averages get a constant variance. 
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The simplest and most popular designs use LHS; see 
Section 1 and Kleijnen (2004). LHS was invented by 
McKay, Beckman, and Conover (1979) for deterministic 
simulation models. Those authors did not analyze the I/O 
data by Kriging (but they did assume I/O functions more 
complicated than the polynomial models in classic DOE). 
LHS offers flexible design sizes n (number of input combi-
nations actually simulated) for any k (number of simulation 
inputs). LHS proceeds as follows; also see the example for 
k = 2 factors in Figure 3. 
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Figure 3: A LHS Design for Two Factors and 
Four Scenarios 

 
(i) LHS divides each input range into n intervals of 

equal length, numbered from 1 to n (so the num-
ber of values per input can be much larger than in 
designs for low-order polynomials). 

(ii) Next, LHS places these integers 1,…, n such that 
each integer appears exactly once in each row and 
each column of the design matrix. 

(iii) Within each cell of the design matrix, the exact 
input value may be sampled uniformly. (Alterna-
tively, these values may be placed systematically 
in the middle of each cell. In risk analysis, this 
uniform sampling may be replaced by sampling 
from some other distribution for the input values.) 

 
Because LHS implies randomness, its result may hap-

pen to be an outlier. For example, it might happen–with 
small probability–that two input factors have a correlation 
coefficient of –1 (all their values lie on the main diagonal 
of the design matrix). Therefore the LHS may be adjusted 
to become (nearly) orthogonal; see Ye (1998). 

Classic designs simulate extreme scenarios–namely the 
corners of a k-dimensional square–whereas LHS has better 
space filling properties; again see Figure 3. This space filling 
property has inspired many statisticians to develop related 
designs. One type maximizes the minimum Euclidean dis-
tance between any two points in the k-dimensional experi-
mental area. Other designs minimize the maximum distance. 
See Koehler and Owen (1996), Santner, Williams, and Notz 
(2003), and also Kleijnen et al. (2004). 
4 NOVEL DESIGNS FOR KRIGING 

The classic Kriging variance formula for the prediction error 
neglects the random character of the ‘optimal’ weights (see 
Section 2). The formula implies zero variances at all the n 
old input combinations–which is correct, as Kriging implies 
exact interpolation. (Also see Figure 7, which we discuss be-
low.) To correct this formula, we propose three approaches 
to quantify the uncertainty of the Kriging predictor: 
 

(i) cross-validation for deterministic simulation; 
(ii) parametric bootstrapping for deterministic 

simulation; 
(iii) distribution-free bootstrapping for random 

simulation. 
 

In the next three subsections, we summarize these three ap-
proaches. We focus on the application of these approaches to 
derive novel designs for the Kriging analysis of simulation 
experiments (for classic Kriging designs see Section 3). Two 
of these approaches have already been applied to derive 
customized sequential designs; see Kleijnen and Van Beers 
(2004a) and Van Beers and Kleijnen (2004). 

Sequentialization means that–after a small pilot design– 
the I/O data obtained so far, are analyzed and used to decide 
on the next scenario to be simulated. In general, sequential 
procedures are known to be more ‘efficient’; that is, they re-
quire fewer observations than fixed-sample procedures. 
Moreover, simulation experiments proceed sequentially–
unless run in batch mode or run on parallel computers. See 
Park et al. (2002) and also Sacks et al. (1989). 

Moreover, our approach derives designs that are cus-
tomized; that is, they are not generic designs (such as a 
classic 2k – p designs or LHS). 

To compare different designs for academic simulations 
with known outputs, we follow Sacks et al. (1989, p. 416) 
and compare the calculated predictions )(ˆ jy x  with the 
known true values )( jy x in a test set of size (say) m (so j = 
1, …, m) through the Empirical Integrated Mean Squared 
Error (EIMSE): 
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Note that such a criterion is more appropriate in sensi-

tivity analysis than in optimization; see Kleijnen and Sargent 
(2000) and Sasena, Papalambros, and Goovaerts (2002).   

4.1 Customized Sequential Designs  
for Deterministic Simulation 

To customize our design, we estimate the true I/O function 
through a type of  cross-validation; i.e., we successively 
delete one of the I/O observations already simulated (for 
cross-validation see again Meckesheimer et al. 2002 and 
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also Mertens 2001). In this way, we estimate the uncer-
tainty of the output at input combinations not yet observed. 
To quantify this uncertainty, we use the jackknifed vari-
ance; see (6) below (for jackknifing in general, again see 
Meckesheimer et al. and Mertens). 

It turns out that customized designs concentrate on 
scenarios in sub-areas that have more interesting I/O be-
havior.  In Figure 4 (further discussed below), we avoid 
spending much time on the relatively flat part of the I/O 
function with two local hills; in Figure 5, we spend most of 
our simulation time on the ‘explosive’ part of the hyper-
bolic I/O function. 
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Figure 4: Customized Design for Example with Two 
Local Hilltops, Including Four Pilot Observations and 
36 Additional Observations 
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Figure 5: Customized Design for Hyperbolic Example, 
Including Four Pilot Observations and 36 Additional 
Observations 
 

The procedure that leads to Figures 4 and 5, runs as 
follows. We start with a pilot design of size (say) n0.  
Kriging may give bad predictions in case of extrapolation. 
Therefore, we propose to start with the 2k scenarios of a 
(classic) full factorial as a subset of the pilot design. Our 
two examples have a single input (k = 1), so one input 
value is the minimum and one is the maximum of the in-
put’s range; see Figure 6 (other parts of this figure will be 
explained below). (Recently, however, we realized that the 
covariance function used in Kriging implies that values 
‘close’ to the extreme scenarios might be better than the 
extremes themselves.) 
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Figure 6: Customized Design for Example with Two 
Local Hilltops 
 

Besides these 2k scenarios, we must select some more 
input combinations to estimate the covariance function. 
Obviously, estimation of a linear covariance function re-
quires at least three different values of the distance h; thus 
at least three different I/O combinations. Moreover, cross-
validation drops one of the n0 observations and re-
estimates the covariance function; i.e., cross-validation ne-
cessitates one extra I/O combination. 

In the general case of more than one input, we may use 
a small space-filling design (see above). In our two exam-
ples, we take–besides the two endpoints of the factor’s 
range–two additional points such that all four observed 
points are equidistant; again see Figure 6. 

After simulating the pilot design, we choose additional 
input combinations–accounting for the particular simula-
tion model at hand. Because we do not know the I/O func-
tion of this model, we choose (say) c candidate points–
without actually running any expensive simulations for 
these candidates! 

First we must select a value for c. In the example of 
Figure 6 we select three candidate input values. In gen-
eral,  as we consider more candidates, we must calculate 
more Kriging predictions;  the latter calculations take lit-
tle computer time compared with the ‘expensive’ simula-
tion computations. 

Next we must select c specific candidates. Again, we 
use a space-filling design. In Figure 6 we select the three 
candidates halfway between the four input values already 
observed. 

To select a ‘winning’ candidate for actual (expensive) 
simulation, we estimate the variance of the predicted out-
put at each candidate input–using cross-validation. There 
are several types of cross-validation; for example, each 
time a single observation is dropped. To avoid extrapola-
tion, we do not drop the observations at the vertices: we 
calculate the Kriging predictions from only (say) nc obser-
vations. Next, we re-estimate the ‘optimal’ Kriging 
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weights. Figure 6 shows the re-computed nc = n0 – 1 = 3 
Kriging predictions (say) )(ˆ iy − after deleting observation i 
for each of the c = 3 candidates. This figure suggests that it 
is most difficult to predict the output at the candidate point 
x = 8.33 (see the solid circles or heavy dots). 

To quantify this prediction uncertainty, we use jack-
knifing. First, we calculate the jackknife’s pseudo-value for 
candidate j: 

 
)()0(

; ˆ)1(ˆ~ i
jcjcij ynyny −− ×−−×=     (5) 

 
where )0(ˆ −

jy is the original Kriging prediction for candidate 
input j based on the complete set of observations (zero ob-
servations eliminated: see the superscript -0).  

From the pseudo-values in (5), we compute the jack-
knife variance for candidate j: 
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To select the winning candidate among the c candi-

dates for actual simulation, we find the candidate with the 
maximum jackknife variances in (6). 

Once we have simulated the ‘winning’ candidate, we 
add the new observation to the set of observations. Next, 
we choose a new set of candidates with respect to this aug-
mented set. 

In the literature, we could not find an appealing stop-
ping criterion for our sequential design; more research is 
needed. In practice, simulation experiments may stop pre-
maturely (e.g., the computer may break down); our proce-
dure then still gives useful information! Moreover, in one-
shot (non-sequential) designs such as LHS, the users must 
apriori decide on the sample size. 

Two simple examples with a single input (k = 1) were 
displayed in Figures 4 and 5. We saw that our design is in-
tuitively appealing–but now we also use a test set to quan-
tify its performance. In this test, we compare our design 
with two alternative design types of the same size (n = 36): 

 
i. A sequential design based on the approximate Kriging 
variance formula discussed in Section 2. This design se-
lects as the next point the input value that maximizes this 
variance (we do not need to specify candidate points); see 
Figure 7. 

The figure illustrates that this approach selects the new 
input farthest away from the old inputs, namely x = 0.5. 
This results in a final design that spreads all its points 
evenly across the experimental area–so it resembles the 
next design. 

 
ii. A single-stage LHS design. To reduce the variability in 
our test results, we obtain ten LHS samples–and average 
our results over these ten designs.  
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Figure 7: Approximate Variance of Kriging 
Prediction Error  

 
Each design gives the Kriging predictors for the 32 

true test values–which gives the EIMSE, defined in (4). 
Our customized sequential designs give substantially better 
results; for example, our EIMSE is only 15% of design (i) 
and 43% of design (ii) in the first example (for more in-
formation see Kleijnen and Van Beers 2004b, Table 2).  

Note: We focus on sensitivity analysis, not optimiza-
tion. For example, our design selects input values–not only 
near the ‘top’–but also near the ‘bottom’ in Figure 4. If we 
were searching for a maximum, we would adapt our proce-
dure such that it would not collect data near an obvious 
minimum.  Also see our discussion on further research in 
Section 5. 

4.2 Parametric Bootstrap for  
Deterministic Simulation 

To derive an unbiased estimator of the variance of the 
Kriging prediction error, Den Hertog et al. (2004) use 
Monte Carlo sampling from the assumed stationary Gaus-
sian process with a type of covariance function specified 
by (say) equation (3). As parameters for this process, they 
use the MLE computed from a (pilot) sample of I/O obser-
vations. This Monte Carlo experiment is actually a para-
metric bootstrap; see Efron and Tibshirani (1993). They 
find that the classic formula underestimates the true vari-
ance of the Kriging predictor. Moreover, the true variance 
function may be less symmetric than the classic Figure 7. 

Moreover, this bootstrapping demonstrates what it 
means to model the I/O function of a deterministic simu-
lation by means of a random process; again see Figure 1. 
(More details will be reported orally at the WSC 2004 
conference.) 

4.3 Distribution-Free Bootstrap  
for Random Simulation 

In random simulation, the analysts must obtain several rep-
licates in order to get a clear signal/noise picture; again see 
Section 3. We propose to resample these replicates–with 
replacement; i.e., we propose distribution-free bootstrap-
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ping; again see Efron and Tibshirani (1993). This gives the 
resampled I/O data (say) ))(,( *

iri Y xx  where )(*
irY x denotes 

the thr resampled value for input ix  and r =1, …, p where 
p denotes the number of replicates (for simplicity of nota-
tion we assume a constant number of replicates—as is of-
ten the case when common random numbers are used). 

 Next, we recompute the estimated Kriging 
weights *L̂  and the corresponding predictor )(ˆ * xY . Re-
peating this bootstrapping (say) b times gives the bootstrap 
variance: 
 

  2*

1

*
;

* )ˆˆ(
)1(
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g
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b
Y −

−
= ∑

=
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which is analogous to (6) (the latter equation is the jackknife 
variance estimator based on cross-validation). The variance 
estimator in (7) can be used to select the next scenario to be 
simulated–analogous to the customized sequential design in 
Section 4.1 with (6) now replaced by  (7). More details can 
be found in Van Beers and Kleijnen (2004) (and will be re-
ported orally at the WSC 2004 conference). 

5 CONCLUSIONS AND FUTURE RESEARCH 

Kriging gives more accurate predictions than regression 
does, because regression assumes that the prediction errors 
are white noise whereas Kriging allows errors that are cor-
related; i.e., the closer the inputs are, the more positive are 
the output correlations. Moreover, regression uses a single 
estimated parameter set for all input values, whereas 
Kriging adapts its parameters (Kriging weights) as the in-
put to be predicted changes.  

Besides a proper analysis, an appropriate design of the 
simulation experiments is essential. We discussed several 
alternatives for classic designs for polynomial regression 
analysis, namely LHS and our own customized sequential 
designs for Kriging analysis. 

The development of Kriging analysis and designs for 
random simulation need much more research. More em-
pirical work is required on Kriging in realistic random 
simulations, to see if the track record in deterministic simu-
lation may be matched. 

Recently, Van Beers and Kleijnen (2004) used distri-
bution-free bootstrapping, and investigated the effects of 
non-constant variances (which occur in queueing simula-
tions), common random numbers (which create correla-
tions among the simulation outputs), and non-normality 
(Kriging uses maximum likelihood estimators of the 
weights, which assumes normality). 

Future research may investigate alternative pilot-
samples–sizes n0 and components x–and alternative sets of 
candidate points, for sequential customized designs. A 
good stopping criterion for these designs is also needed. 
It seems interesting to compare our customized se-
quential designs with the alternatives of Cox and John 
(1995), Jin, Chen, and Sudjianto (2002), and Sasena et al. 
(2002). For example, Jin et al. (2002) also use ‘cross-
validation’, but they do not use jackknifing; they do not 
use a set of space filling candidate input combinations–our 
empirical results are more promising than their results. 
Distinguishing between sensitivity analysis and optimiza-
tion is also important. 

Comparisons of different metamodel types (polyno-
mial regression, Kriging, splines, rational functions, etc.) 
remains a challenging problem. For example, Clarke, 
Griebsch, and Simpson (2003) compare five metamodel 
types. Keys and Rees (2004) present a sequential design 
using splines (instead of Kriging). Kleijnen (2004) gives 
more references. 

Multivariate outputs also deserve more research, since 
realistic simulation models give multiple responses; again 
see Wackernagel (2003). 
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