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ABSTRACT 

Simulation models provide relatively fast and inexpensive 
estimates of the performance of alternative system configu-
rations and/or alternative operating procedures.  This tuto-
rial provides some techniques for planning a set of simula-
tion model runs, in order to gain insight on system 
behavior.  There is an emphasis on graphical methods for 
planning the experiment and displaying the results. 

1 INTRODUCTION 

Discrete-event simulation modeling is a popular method for 
predicting the performance of complex systems, particularly 
systems that include random phenomena.  Simulation pro-
jects can fall short of their intended goals, however, unless 
the simulation model is exercised intelligently to gain useful 
understanding of the likely performance of the real system. 

This is where the design of simulation experiments 
plays a key role.  Usually, simulation projects are con-
ducted within time and budget limits.  Often the bulk of 
time and resources are spent on building and validating the 
model, with little remaining to exercise the model for deci-
sion-making insight.  This is risky, since poorly planned 
simulation runs can result in a significant loss of informa-
tion, or worse, provide misleading results. 

This tutorial presents a five-step process for the design 
of a simulation experiment.  Graphical methods are em-
phasized for the first four steps, drawing largely from Bar-
ton (1999).  A hypothetical simulation project for a die-
making machine shop will help to illustrate each step.  

The tutorial largely follows that in Barton (2002).  The 
next section describes the limits of the topics covered, de-
fines the five-step process, and describes the machine shop 
scenario.  Sections 3-7 describe each step in more detail 
and illustrate the activities for the machine shop simula-
tion.  The next section shows how to use the graphical 
framework to present results.  In some cases the graphical 
display provides more insight than an ANOVA table or re-
gression analysis.  Section 9 covers some remaining issues. 

 

2 FOCUS OF THE TUTORIAL 

Exactly what activities are considered as part of the design 
of an experiment?  Consider the overall process of scien-
tific investigation.  Generally, it is a repeating, cyclic proc-
ess which can be broken down into several activities: 

 
A. State a hypothesis to be evaluated. 
B. Plan an experiment to test the hypothesis. 
C. Conduct the experiment. 
D. Analyze the data from the experiment.  This will 

likely lead to modification of the original hypothe-
sis, and a return to activity one for the next cycle. 

 
This tutorial focuses on activity B.  Typically, simula-

tionists (and the simulation methodology literature) em-
phasize C and D, but careful planning in B can simplify the 
remaining activities.  Activity B is what we will call the 
design of the simulation experiment (DOE), although many 
texts consider B, C, and D together under this topic. 

For people without statistical training, it can be diffi-
cult to organize information about the system under study 
in a way that aids the design of the experiment. To help 
clarify this process, we break the design task B into five 
separate steps. 

 
1. Define the goals of the experiment. 
2. Identify and classify independent and dependent 

variables. 
3. Choose a probability model for the behavior of 

the simulation model. 
4. Choose an experiment design. 
5. Validate the properties of the chosen design. 

 
The next sections describe each step in detail.  To make 
these activities more concrete, they will be described in the 
context of a hypothetical simulation project. 

Imagine that you have constructed a simulation model 
of a machine shop that specializes in making dies for 
stamping parts.  You are particularly interested in the op-
eration of the milling machines, and in how jobs are re-
leased to the shop floor.  You would like to choose policies 
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that allow the shop to operate efficiently.  You want to ex-
amine how shop operation is affected by release policies, 
the schedule for preventative maintenance, the speed/feed 
of the milling machines for a particular family of dies, and 
the production lot size.  The example is described in more 
detail as we cover the five steps of the DOE process. 

3 DEFINE GOALS 

Of course, the selection of what conditions to run in a 
simulation experiment depends on the goals of the experi-
menter. Why was the simulation model constructed?  What 
particular issues are being examined during the current cy-
cle of experimentation?  These goals generally fall at a 
middle level in the hierarchy of goals within the organiza-
tion that is sponsoring the development and use of the 
simulation model.  It is good to place these goals in per-
spective, to gain support for the effort that will be required, 
and to make sure that the short-term objectives are consis-
tent with the overall goals of the organization. 

Goal hierarchy plots provide a graphical means to 
show an experiment’s impact on higher-level goals, and to 
identify resources that will be needed to conduct the simu-
lation study.  These plots were developed as part of a spe-
cial decision-making procedure called the Analytic Hierar-
chy Process (Saaty 1980).   

Figure 1 shows a goal hierarchy plot for the machine 
shop study.  At the highest level, one goal of the company 
is to grow its share of the die market.  Two sub-goals to 
help accomplish this are to lower the cost of the dies, and 
to lower the average cycle time for producing a lot of dies.  
In order to achieve lower cost, the experimenters need to 
understand factors that affect throughput and operating 
costs.  To lower the cycle time, the experimenters need to 
understand the impact that various factors have on cycle 
time. Both of these needs can be met through experimental 
studies using a simulation model of the shop.  Completing 
such studies requires a validated simulation model and a 
planned set of model runs.  The validated simulation model 
requires construction of a model and a planned set of runs 
to validate its performance. 

The figure highlights the repeated cycle of experimen-
tation:  the simulation model must be validated through a 
preliminary experiment before conducting the experiment 
to examine the impact of lot size, release policy, etc. on 
cost, throughput and cycle time.  Table 1 classifies the ex-
periment goals in one direction:  the stage of the scientific 
process.  At the earliest stage, activities focus on valida-
tion.  Next, one often seeks to identify the most important 
design or policy variables affecting system performance.  
The next cycle often involves experiments to understand in 
a quantitative and predictive way how design or policy 
variables affect system performance.  In some cases this 
level of understanding is sufficient for decision-making. In 
other cases the simulation is exercised repeatedly to 
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Figure 1: Goal Hierarchy Plot for the Machine 
Shop Study 

 
optimize some measure of system performance.  See Klei-
jnen and Sargent (2000) for a similar structuring of goals. 

This tutorial focuses on the third and fourth cycles of 
goals in Table 1.  Specific activities for validation are de-
scribed in the Verification, Validation and Accreditation 
Track of the  Proceedings of the 2000 Winter Simulation 
Conference (Joines et al. 2000) and the references cited in 
these papers.  Screening designs are described in standard 
texts on the design of experiments such as Montgomery 
(1997), and in papers by Lin (1995), Trocine and Malone 
(2000) and Wan, Ankenman and Nelson (2003) and refer-
ences therein.  Optimization and robust design are fre-
quently topics of tutorials at the Winter Simulation Confer-
ence.  See the papers by Fu et al. (2000) and Sanchez 
(2000) to find additional information and references. 

 
Table 1: Goals by Cycle of the Investigation 
Cycle Goal 

1. Early Validation 
2. Early Screening 
3. Middle Sensitivity Analysis, Understanding 
4. Middle Predictive Models 
5. Late Optimization, Robust Design 
 
For our machine shop example, we will focus on the 

fifth level of the goal hierarchy plot.  The goal for the ex-
periment is to construct predictive models of throughput, cy-
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cle time and operating costs, the fourth cycle in Table 1.  The 
form of the predictive probability model that will be fitted is 

 
Y = β0 + β1g1(x1, x2, ..., xd) + ... + βpgp(x1, x2, ..., xd) + ε, (1) 

 
where ε are independent, normal random quantities with 
mean zero and unknown variance.  The x’s are independent 
variables that are identified using the techniques in the next 
section.  The appropriate g functions can be determined us-
ing the techniques in Section 5.  For some simulation out-
puts, it may not be reasonable to assume that the random 
variation in the output performance measure will be nor-
mally distributed.  When the output measure is an average 
or cumulative quantity over time, a form of the Central 
Limit Theorem often applies, making a normal distribution 
a reasonable approximation for ε. 

The goal of the experiment (at hierarchy level 4) is to 
provide estimates of the unknown βi coefficients in the 
model (1), as well as an estimate of the variance of ε.  For 
the machine shop study, there are three such models:  one 
for cycle time, one for operating costs, and one for 
throughput.  They do not necessarily have the same factors 
or same kinds of terms. 

4 IDENTIFY AND CLASSIFY VARIABLES 

The second step in the experiment design process is to iden-
tify quantities in the simulation that can be set to desired 
values (independent variables) and the resulting system per-
formance measures that are of interest (dependent variables). 

There are two other classes of variables to be consid-
ered when designing the experiment.  Nuisance variables are 
known to affect the behavior of the system, but cannot be 
controlled directly.  These are rarely present in simulation, 
where all factors are generally under the user’s control. 

The fourth type of variable is an intermediate variable.  
Intermediate variables cannot be controlled independently: 
they are affected by the settings of the independent vari-
ables.  They are not considered dependent variables, how-
ever, if there is no interest in their value except as it affects 
an important performance measure.  For example, the av-
erage number of unscheduled maintenance operations per 
month will affect operating costs for our shop.  This quan-
tity cannot be set independently:  it will depend on the 
speed and feed rates used for the milling machines and on 
the preventative maintenance policy, among other things.  
It is not of direct interest, since we care ultimately about 
cycle time, throughput, and operating costs. 

It is important to identify all variables of all four types 
before planning the set of runs.  Intermediate variables 
must be recognized so that they are not mistakenly in-
cluded as independent variables.  Nuisance variables must 
be monitored so that random variation in the experiment 
results can be understood.  ALL independent variables 
should be identified, not just the ones that will be varied in 
the experiment.  In order for you (or others) to be able to 
reproduce your results at a later date, you must record the 
(fixed) values of any independent variables that you did 
not adjust, as well as the values of ones that were varied.  
The held-fixed variables have a way of changing over time, 
as the simulation model is run and rerun for different pur-
poses.  Independent variables whose values are actually 
changed during the experiment will be called factors. 

Dependent variables are determined by the objectives 
of the study.  For our example, they appear in the goal hi-
erarchy plot in Figure 1:  cycle time, throughput, and oper-
ating costs.  Independent variables are harder to identify.  
Process diagrams (IDEF0) and cause-effect diagrams can 
be used to identify them.  We will illustrate the cause-
effect diagram here.  For examples of IDEF0 process dia-
grams, see Barton (1999). 

Figure 2 shows a cause-effect diagram for throughput, 
one of the dependent variables in the study.  A similar dia-
gram must be constructed for each dependent variable.  The 
diagram shows a chain of cause-effect relations.  At the end 
of each chain is the dependent variable.  At the beginning of 
each chain is a root cause, which may be either an independ-
ent variable (if it can be controlled) or a nuisance variable. 
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Figure 2: Cause-Effect Diagram for the Machine Shop 
Study 

 
Independent variables and nuisance variables appear 

as lines with no lines impinging on them:  if the diagram is 
a tree, they are the leaves.  The independent variables in 
ovals are the ones that will be varied in this study.  Setup 
time is assumed to be fixed at a particular value for this 
study.  Only part size and complexity remains. It might be 
considered either a nuisance variable, if we wish to model 
a random mix of die types, or a held-fixed independent 
variable, if we wish to consider only certain fixed mixes of 
parts in our production schedule. 

Intermediate variables appear as branches.  Time in 
unscheduled maintenance will depend on the speed/feed 
of the tools and on the preventative maintenance policy, 
for example. 

Table 2 shows the dependent variables for our ma-
chine shop study, and the independent variables associated 
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with each of them.  In parentheses are the ranges of interest 
for each independent variable.  These ranges are deter-
mined by practical limits or by policy decisions. 

 
Table 2:  Dependent Variables and Associated Independ-
ent Variables and Ranges for the Machine Shop Study 

Dependent Independent 

throughput 
job release policy (1, 2), lot size (10-30  
pieces), prev. maint.(2-8 hours),  
speed/feed (0.1 - 0.5 inch/second) 

cycle time 
job release policy (1, 2), lot size (10-30  
pieces), prev. maint.(2-8 hours),  
speed/feed (0.1 - 0.5 inch/second) 

operating  
costs 

prev. maint.(2-8 hours), speed/feed (0.1  
– 0.5 inch/second) 

 
Next, we need to identify, in a qualitative way, 

whether we expect a linear or nonlinear relationship.  This 
will determine what g functions we will need in the prob-
ability model (1). 

5 CONSTRUCT A PROBABILITY MODEL 

This step is closely linked to step one of the overall process 
of scientific investigation:  define the hypothesis to be 
tested. Before we can choose a set of simulation runs, we 
need to know the form of the model (1) that will be fitted 
and tested.  That means we need to know not only which 
x’s but also which g’s, as well as something about the vari-
ance of the ε’s.  Often the g functions are just power and 
cross-product terms of the form xi, xixj, xi

2, xixjxk, xixj
2, and 

so forth.  These forms are supported to some extent by 
Taylor’s Theorem, which shows that polynomial functions 
(power and cross-product terms) provide good local ap-
proximations to any smooth response function. 

Two kinds of graphs can help us identify the kind of 
terms to be included in the probability model.  A-priori 
main effect plots help to identify g function power terms of 
the form xi, xi

2, xi
3, and so forth.  A-priori interaction plots 

help to identify terms of the form xixj, xixjxk, xixj
2, and so 

forth.  Space and time limitations restrict this presentation 
to main effect plots.  See Barton (1999) for details on con-
structing and interpreting a-priori interaction plots. 

Figure 3 shows a set of four a-priori main effect plots for 
the hypothesized effect of each factor on throughput.  Plots 
that are roughly linear over the range of interest require only 
an xi term.  Plots with curvature may require an xi

2 term in 
addition, and plots with changing curvature over the range of 
interest may require xi

3 and higher terms as well. 
Since we are only considering two candidate job re-

lease policies, there are only two discrete choices.  We hy-
pothesize that job release policy 2 will provide greater 
throughput, although this aspect of the hypothesis is not 
critical to the design chosen in Section 6.  The speed/feed 
variable can be expected to have a linear impact on through- 
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Figure 3:  A-Priori Main Effect Plots for Throughput 

 
put. The figure shows an expected increase in throughput as 
lot size is increased, with diminishing returns.  Over the re-
gion of interest, however, the figure suggests that a linear 
approximation should be adequate.  The preventative main-
tenance schedule’s impact on throughput is to reduce 
throughput for too-frequent PM times, and to again reduce 
throughput (due to frequent unscheduled maintenance) if the 
time between PMs is too long.  In this case, curvature occurs 
in the region of interest, and so linear and quadratic terms 
for the impact of PM will be included in the model. 

Two comments about these plots are in order.  First, 
there are no scales on the vertical axes.  These plots are 
qualitative, not quantitative.  We do not know the quantita-
tive relationships in advance:  that is why we are conducting 
the simulation experiment!  Second, the qualitative forms 
need not be correct.  After all, they are only our guesses.  
These plots provide a description of the hypotheses that we 
will test in this cycle of the scientific investigation. 

An assessment of these figures, along with the a-priori 
interaction plots (not shown) leads to the hypothesized model 

 
Y = β0 + β1x1 + β2x2 + β3x3 + β4x3

2 + β5x4 + β6x3x4 + ε, (2) 
 

where x1 is job release policy (1 or 2), x2 is lot size (units), 
x3 is PM schedule (hours), and x4 is speed/feed 
(in./second), and ε has a normal distribution with unknown 
variance.  The only interaction term that appears is due to a 
change in the impact of the PM schedule depending on 
speed/feed.  Similar plots would have to be constructed for 
the dependent variables cycle time and operating costs. 

6 CHOOSE AN EXPERIMENT DESIGN 

In this activity, one determines the number of distinct 
model settings to be run, and the specific values of the fac-
tors for each of these runs.  There are many strategies for 
selecting the number of runs and the factor settings for 
each run.  These include random designs, optimal designs, 
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combinatorial designs, mixture designs, sequential designs, 
and factorial designs.  

Factorial designs are based on a grid, with each factor 
tested in combination with every level of every other fac-
tor.  Factorial designs are attractive for three reasons:  i) 
the number of levels that are required for each factor are 
one greater than the highest-order power of that variable in 
the model, and the resulting design permits the estimation 
of coefficients for all cross-product terms ii) they are 
probably the most commonly used class of designs, and iii) 
the resulting set of run conditions are easy to visualize 
graphically for as many as nine factors.   

The disadvantage of factorial designs is that they re-
quire a large number of distinct runs when the number of 
factors and/or the number of levels of the factors are large.  
In this case, fractional-factorials are often employed.   This 
section focuses on factorial and fractional-factorial designs. 

Figure 4 shows geometric representations for three and 
five factors each with two levels.  The five-factor design 
shows how additional factors can be incorporated by hier-
archically using rectangular frames. 
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Figure 4: Factorial Designs for 
Three and Five Factors 

 
Figure 5 shows a candidate design for the machine 

shop study.  Three levels are used for the preventative 
maintenance schedule, to allow estimation of the quadratic 
term in (2).  There are seven β coefficients in the model (2) 
and the variance of ε to estimate, so we need at least seven 
different run conditions, eight if there are no replications 
(repeated runs with the same factor settings).  Replications 
allow us to check the adequacy of the model, so rather than 
run each factorial point for a total of  24 runs, we have 

lo   A   hi 
chosen 1/2 of the factorial points, and replicated four of 
those, for a total of 15 runs.  Barton (1999) describes geo-
metric characteristics that can be used to guide the selec-
tion of a fraction of the full factorial design. 
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Figure 5: Fractional Factorial Design for 
the Machine Shop Study 

7 VALIDATE THE PROPERTIES  
OF THE DESIGN 

Because this design was selected based on geometric prop-
erties, there is no guarantee that it will allow the estimation 
of all of the terms in the model.   A mathematical check is 
necessary.  The mathematical requirements can be found in 
a design of experiments text such as Montgomery (1997) 
or in Barton (1999). 

The simplest check, however, is to create a random ar-
tificial response for Y before running the simulation model 
and proceed with the statistical analysis.  If the design is 
inadequate, the statistical package will inform you that the 
parameters cannot be estimated.   

You can also use this approach to get an idea about 
whether the number of runs will be sufficient to estimate 
the coefficients in (1) with adequate precision.   In this 
case, guesses for all of the β’s and an estimate of the vari-
ance of ε can be used to generate artificial Y’s using a 
spreadsheet and the hypothesized model.  If you find a lack 
of significance for the model terms when you analyze the 
statistics for the artificial data, you will need to increase 
the number of replications, or increase the magnitude of 
the β coefficients that you will be able to detect. 

Because we have two other dependent variables, and 
we would like a single experiment to allow us to fit all 
three models, we need further checks on the design. It must 
also be validated for fitting the hypothesized models for 
cycle time and operating costs. 

8 GRAPHICAL DISPLAY OF RESULTS 

A graphical design framework provides an added bonus:  it 
can be used to display the results of the experiment.  Figure 
6 shows the results of the experiment presented in Figure 
5, using the same framework. The size of the circle corre-
sponds to the throughput. We see that lot size increases 
throughput (the estimate for β2 is positive) and increasing 
the frequency of preventative maintenance increases 
throughput (the estimate for β3 is negative).  No other ef-
fects are apparent (except for β0, all other β’s are approxi-
mately zero). 
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 Figure 6:  Results of the Machine Shop Experiment 

 
In some cases, this graphical presentation can be more 

informative than the estimated coefficients of models like 
(1).  Imagine a simple simulation of the percent of on-time 
completions for a mortgage application processing center.  
The simulation study involves three factors: the arrival rate 
of applications (xA), whether the processing personnel also 
have telephone-answering responsibilities (xB) and whether 
the processing personnel also have copier maintenance re-
sponsibilities (xC). 

Figure 7 shows the results of the simulation experi-
ment:  the percentage of on-time processing of applications 
is shown by the diameter of the circle.  The results are easy 
to interpret:  processing personnel can handle telephone 
and/or copier maintenance without affecting performance 
when the arrival rate of applications is low; performance is 
degraded only when arrival rate is high and the personnel 
must also answer phones and maintain the copier. 
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Figure 7: Mortgage Process-
ing Example 

 
Table 3 shows the fitted regression model.  Without 

Figure 7, these results would be hard to interpret.  Every 
possible term has a significant coefficient!  In this case the 
model would have an intercept, three linear terms, three 
two-factor cross-product terms, and a three-factor interac-
tion term.  The insight would be:  “Gee, this is a complex 
response function.” 
 
Table 3: Regression Coefficients for the Mortgage Example 
                  Parameter     Standard    T for H0: 
 Variable  DF      Estimate       Error   Parameter=0   Prob > |T|
 
 INTERCEPT  1     8.054951   0.11733721       68.648        0.0001
   XA       1    -0.341090   0.11733721       -2.907        0.0050
   XB       1    -0.706990   0.11733721       -6.025        0.0001
   XC       1    -0.266921   0.11733721       -2.275        0.0263
   XAXB     1    -0.418560   0.11733721       -3.567        0.0007
   XAXC     1    -0.521779   0.11733721       -4.447        0.0001
   XBXC     1    -0.302551   0.11733721       -2.578        0.0122
   XAXBXC   1    -0.557293   0.11733721       -4.749        0.0001

 

9 ADDITIONAL ISSUES IN PLANNING AND 
CONDUCTING SIMULATION EXPERIMENTS 

This tutorial focused on the planning of run conditions 
for fitting a probability model.  There are a number of 
other issues that the simulationist faces when planning 
an experiment. 

 
1. If the simulation model is non-terminating (as 

was the case for our machine shop example), 
then the run length (in hours, days, or weeks) 
must be determined. 

2. There is often a tradeoff between run length and 
replications.  Depending on the estimated variance 
of ε, and the desired precision of  the β estimates, 
multiple replications may be needed. 

3. The variability of the performance measure may 
differ from one set of experimental conditions to 
another.  This may be handled by adjusting run 
lengths, transforming the dependent variable, or us-
ing a weighted least squares method for analysis. 

4. One must determine whether an initial transient pe-
riod must be deleted from each run (and its length) 
before computing the performance measure.   

5. Random number streams must be allocated to dif-
ferent components of the model.  This may be 
done in a non-independent fashion as a means to 
reduce the variability of the estimates of the 
model coefficients (β’s) in (1). 

6. The results of the experiment must be analyzed:  
statistical techniques must be used to fit the 
probability model and test hypotheses about its 
adequacy. 

7. Experiments may focus on optimization, requiring 
a sequential approach to the design and analysis 
of simulation experiments. 

 
These issues must be addressed to conduct a successful 
simulation study.  For in-depth coverage of these issues, 
see simulation texts such as Law and Kelton (2000), Klei-
jnen (1987), Banks et al. (2001), and Banks (1998). 
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