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ABSTRACT 

In this paper we discuss validation and verfication of simula-
tion models.  Four different approaches to deciding model 
validity are described; two different paradigms that relate 
validation and verification to the model development proc-
ess are presented; various validation techniques are defined; 
conceptual model validity, model verification, operational 
validity, and data validity are discussed; a way to document 
results is given; a recommended procedure for model valida-
tion is presented; and accreditation is briefly discussed.  

1 INTRODUCTION 

Simulation models are increasingly being used in problem 
solving and to aid in decision-making. The developers and 
users of these models, the decision makers using information 
obtained from the results of these models, and the individu-
als affected by decisions based on such models are all rightly 
concerned with whether a model and its results are “correct”. 
This concern is addressed through model validation and 
verification. Model validation is usually defined to mean 
“substantiation that a computerized model within its domain 
of applicability possesses a satisfactory range of accuracy 
consistent with the intended application of the model” 
(Schlesinger et al. 1979) and is the definition used here. 
Model verification is often defined as “ensuring that the 
computer program of the computerized model and its im-
plementation are correct” and is the definition adopted here. 
A model sometimes becomes accredited through model ac-
creditation.  Model accreditation determines if a model satis-
fies specified model accreditation criteria according to a 
specified process.  A related topic is model credibility. 
Model credibility is concerned with developing in (potential) 
users the confidence they require in order to use a model and 
in the information derived from that model.  

A model should be developed for a specific purpose (or 
application) and its validity determined with respect to that 
purpose.  If the purpose of a model is to answer a variety of 
questions, the validity of the model needs to be determined 

 

with respect to each question.  Numerous sets of experimen-
tal conditions are usually required to define the domain of a 
model’s intended applicability.  A model may be valid for 
one set of experimental conditions and invalid in another. A 
model is considered valid for a set of experimental condi-
tions if the model’s accuracy is within its acceptable range, 
which is the amount of accuracy required for the model’s 
intended purpose. This usually requires that the model’s 
output variables of interest (i.e., the model variables used in 
answering the questions that the model is being developed to 
answer) be identified and that their required amount of accu-
racy be specified. The amount of accuracy required should 
be specified prior to starting the development of the model 
or very early in the model development process. If the vari-
ables of interest are random variables, then properties and 
functions of the random variables such as means and vari-
ances are usually what is of primary interest and are what is 
used in determining model validity. Several versions of a 
model are usually developed prior to obtaining a satisfactory 
valid model. The substantiation that a model is valid, i.e., 
performing model validation and verification, is generally 
considered to be a process and is usually part of the (total) 
model development process.  

It is often too costly and time consuming to determine 
that a model is absolutely valid over the complete domain 
of its intended applicability.  Instead, tests and evaluations 
are conducted until sufficient confidence is obtained that a 
model can be considered valid for its intended application 
(Sargent 1982, 1984). If a test determines that a model 
does not have sufficient accuracy for any one of the sets of 
experimental conditions, then the model is invalid.  How-
ever, determining that a model has sufficient accuracy for 
numerous experimental conditions does not guarantee that 
a model is valid everywhere in its applicable domain. The 
relationships of (a) cost (a similar relationship holds for the 
amount of time) of performing model validation and (b) 
the value of the model to a user as a function of model con-
fidence are shown in Figure 1.  The cost of model valida-
tion is usually quite significant, especially when extremely 
high model confidence is required. 
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Figure 1: Model Confidence 

 
The remainder of this paper is organized as follows: Sec-

tion 2 presents the basic approaches used in deciding model 
validity; Section 3 describes two different paradigms used in 
verification and validation; Section 4 defines validation tech-
niques; Sections 5, 6, 7, and 8 discuss data validity, concep-
tual model validity, computerized model verification, and op-
erational validity, respectively; Section 9 describes a way of 
documenting results; Section 10 gives a recommended vali-
dation procedure; Section 11 contains a brief description of 
accreditation; and Section 12 presents the summary. 

2 BASIC APPROACHES 

There are four basic approaches for deciding whether a 
simulation model is valid.  Each of the approaches requires 
the model development team to conduct validation and veri-
fication as part of the model development process, which is 
discussed below.  One approach, and a frequently used one, 
is for the model development team itself to make the deci-
sion as to whether a simulation model is valid.  A subjective 
decision is made based on the results of the various tests and 
evaluations conducted as part of the model development 
process. However, it is usually better to use one of the next 
two approaches, depending on which situation applies. 

If the size of the simulation team developing the 
model is not large, a better approach than the one above is 
to have the user(s) of the model heavily involved with the 
model development team in determining the validity of the 
simulation model. In this approach the focus of who de-
termines the validity of the simulation model moves from 
the model developers to the model users.  Also, this ap-
proach aids in model credibility. 

Another approach, usually called “independent verifi-
cation and validation” (IV&V), uses a third (independent) 
party to decide whether the simulation model is valid.  The 
third party is independent of both the simulation develop-
ment team(s) and the model sponsor/user(s). The IV&V 
approach should be used when developing large-scale 
simulation models, whose developments usually involve 
several teams. This approach is also used to help in model 
credibility, especially when the problem the simulation 
model is associated with has a high cost. The third party 
needs to have a thorough understanding of the intended 
purpose(s) of the simulation model in order to conduct 
IV&V. There are two common ways that the third party 
conducts IV&V: (a) IV&V is conducted concurrently with 
the development of the simulation model and (b) IV&V is 
conducted after the simulation model has been developed. 

In the concurrent way of conducting IV&V, the model 
development team(s) receives input from the IV&V team 
regarding verification and validation as the model is being 
developed. When conducting IV&V this way, the develop-
ment of a simulation model should not progress to the next 
stage of development until the model has satisfied the verifi-
cation and validation requirements in its current stage. It is 
the author’s opinion that this is the better of the two ways to 
conduct IV&V. When IV&V is conducted after the model 
has been completely developed, the evaluation performed 
can range from simply evaluating the verification and vali-
dation conducted by the model development team to per-
forming a complete verification and validation effort. Wood 
(1986) describes experiences over this range of evaluation 
by a third party on energy models.  One conclusion that 
Wood makes is that performing a complete IV&V effort af-
ter the simulation has been completely developed is both ex-
tremely costly and time consuming, especially for what is 
obtained.  This author’s view is that if IV&V is going to be 
conducted on a completed simulation model then it is usu-
ally best to only evaluate the verification and validation that 
has already been performed. 

The last approach for determining whether a model is 
valid is to use a scoring model. (See Balci (1989), Gass 
(1993), and Gass and Joel (1987) for examples of scoring 
models.) Scores (or weights) are determined subjectively 
when conducting various aspects of the validation process 
and then combined to determine category scores and an 
overall score for the simulation model.  A simulation 
model is considered valid if its overall and category scores 
are greater than some passing score(s).  This approach is 
seldom used in practice.  

This author does not believe in the use of scoring 
models for determining validity because (1) a model may 
receive a passing score and yet have a defect that needs to 
be corrected, (2) the subjectiveness of this approach tends 
to be hidden and thus this approach appears to be objec-
tive, (3) the passing scores must be decided in some (usu-
ally) subjective way, (4) the score(s) may cause over con-
fidence in a model, and (5) the scores can be used to argue 
that one model is better than another.  

3 PARADIGMS 

In this section we present and discuss paradigms that relate 
validation and verification to the model development proc-
ess. There are two common ways to view this relationship.  
One way uses a simple view and the other uses a complex 
view. Banks, Gerstein, and Searles (1988) reviewed work 
using both of these ways and concluded that the simple 
way more clearly illuminates model verification and vali-
dation. We present a paradigm for each way, both devel-
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oped by this author. The paradigm of the simple way is 
presented first and is this author’s preferred paradigm. 

Consider the simplified version of the model devel-
opment process in Figure 2 (Sargent 1981). The problem 
entity is the system (real or proposed), idea, situation, pol-
icy, or phenomena to be modeled; the conceptual model is 
the mathematical/logical/verbal representation (mimic) of 
the problem entity developed for a particular study; and the 
computerized model is the conceptual model implemented 
on a computer. The conceptual model is developed through 
an analysis and modeling phase, the computerized model 
is developed through a computer programming and imple-
mentation phase, and inferences about the problem entity 
are obtained by conducting computer experiments on the 
computerized model in the experimentation phase. 
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Figure 2: Simplified Version of the Modeling Process 

 
 We now relate model validation and verification to 

this simplified version of the modeling process. (See Fig-
ure 2.) Conceptual model validation is defined as deter-
mining that the theories and assumptions underlying the 
conceptual model are correct and that the model represen-
tation of the problem entity is “reasonable” for the in-
tended purpose of the model. Computerized model verifica-
tion is defined as assuring that the computer programming 
and implementation of the conceptual model is correct. 
Operational validation is defined as determining that the 
model’s output behavior has sufficient accuracy for the 
model’s intended purpose over the domain of the model’s 
intended applicability. Data validity is defined as ensuring 
that the data necessary for model building, model evalua-
tion and testing, and conducting the model experiments to 
solve the problem are adequate and correct. 

In using this paradigm to develop a valid simulation 
model, several versions of a model are usually developed 
during the modeling process prior to obtaining a satisfac-
tory valid model. During each model iteration, model vali-
dation and verification are performed (Sargent 1984). A 
variety of (validation) techniques are used, which are given 
below. No algorithm or procedure exists to select which 
techniques to use.  Some attributes that affect which tech-
niques to use are discussed in Sargent (1984). 

 A detailed way of relating verification and validation 
to developing simulation models and system theories is 
shown in Figure 3.  This paradigm shows the processes of 
developing system theories and simulation models and re-
lates verification and validation to both of these processes. 

This paradigm (Sargent 2001b) shows a Real World 
and a Simulation World. We first discuss the Real World. 
There exist some system or problem entity in the real world 
of which an understanding of is desired.  System theories 
describe the characteristics of the system (or problem en-
tity) and possibly its behavior (including data). System data 
and results are obtained by conducting experiments (ex-
perimenting) on the system. System theories are developed 
by abstracting what has been observed from the system 
and by hypothesizing from the system data and results.  If a 
simulation model exists of this system, then hypothesizing 
of system theories can also be done from simulation data 
and results. System theories are validated by performing 
theory validation. Theory validation involves the compari-
son of system theories against system data and results over 
the domain the theory is applicable for to determine if there 
is agreement.  This process requires numerous experiments 
to be conducted on the real system. 

We now discuss the Simulation World, which shows a 
slightly more complicated model development process than 
the other paradigm.  A simulation model should only be de-
veloped for a set of well-defined objectives.  The conceptual 
model is the mathematical/logical/verbal representation 
(mimic) of the system developed for the objectives of a par-
ticular study. The simulation model specification is a written 
detailed description of the software design and specification 
for programming and implementing the conceptual model 
on a particular computer system. The simulation model is 
the conceptual model running on a computer system such 
that experiments can be conducted on the model. The simu-
lation model data and results are the data and results from 
experiments conducted (experimenting) on the simulation 
model. The conceptual model is developed by modeling the 
system for the objectives of the simulation  study  using  the  
understanding  of  the  system  contained in the system theo-
ries. The simulation model is obtained by implementing the 
model on the specified computer system, which includes 
programming the conceptual model whose specifications are 
contained in the simulation model specification.  Inferences 
about the system are obtained by conducting  computer  ex-
periments (experimenting) on the simulation model. Con-
ceptual model validation is defined as determining that the 
theories and assumptions underlying the conceptual model 
are consistent with those in the system theories and that the 
model representation of the system is “reasonable” for the 
intended purpose of the simulation model. Specification 
verification is defined as assuring that the software design 
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Figure 3: Real World and Simulation World Relationship with Verification and Validation 
 

and the specification for programming and implementing 
the conceptual model on the specified computer system is 
satisfactory. Implementation verification is defined as as-
suring that the simulation model has been implemented ac-
cording to the simulation model specification. Operational 
validation is defined as determining that the model’s out-
put behavior has sufficient accuracy for the model’s in-
tended purpose over the domain of the model’s intended 
applicability.   

This paradigm shows processes for both developing 
valid system theories and valid simulation models. Both 
are accomplished through iterative processes. To develop 
valid system theories, which are usually for a specific pur-
pose, the system is first observed and then abstraction is 
performed from what has been observed to develop pro-
posed system theories. These theories are tested for cor-
rectness by conducting experiments on the system to obtain 
data and results to compare against the proposed system 
theories. New proposed system theories may be hypothe-
sized from the data and comparisons made, and also possi-
bly from abstraction performed on additional system ob-
servation. These new proposed theories will require new 
experiments to be conducted on the system to obtain data 
to evaluate the correctness of these proposed system theo-
ries.  This process repeats itself until a satisfactory set of 
validated system theories has been obtained. To develop a 
valid simulation model, several versions of a model are 
usually developed prior to obtaining a satisfactory valid 
simulation model. During every model iteration, model 
verification and validation are performed. (This process is 
similar to the one for the other paradigm except there is 
more detail given in this paradigm.) 

4 VALIDATION TECHNIQUES 

This section describes various validation techniques and 
tests used in model verification and validation.  Most of the 
techniques described here are found in the literature, al-
though some may be described slightly differently.  They 
can be used either subjectively or objectively.  By “objec-
tively,” we mean using some type of statistical test or 
mathematical procedure, e.g., hypothesis tests or confi-
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dence intervals. A combination of techniques is generally 
used.  These techniques are used for validating and verify-
ing the submodels and overall model.  

Animation: The model’s operational behavior is dis-
played graphically as the model moves through time.  For 
example the movements of parts through a factory during a 
simulation run are shown graphically. 

Comparison to Other Models: Various results (e.g., out-
puts) of the simulation model being validated are compared 
to results of other (valid) models.  For example, (1) simple 
cases of a simulation model are compared to known results of 
analytic models, and (2) the simulation model is compared to 
other simulation models that have been validated. 

 Degenerate Tests: The degeneracy of the model’s be-
havior is tested by appropriate selection of values of the input 
and internal parameters.  For example, does the average 
number in the queue of a single server continue to increase 
over time when the arrival rate is larger than the service rate? 

Event Validity: The “events” of occurrences of the 
simulation model are compared to those of the real system 
to determine if they are similar.  For example, compare the 
number of fires in a fire department simulation. 

Extreme Condition Tests: The model structure and 
outputs should be plausible for any extreme and unlikely 
combination of levels of factors in the system.  For exam-
ple, if in-process inventories are zero, production output 
should be zero. 

Face Validity: Asking individuals knowledgeable 
about the system whether the model and/or its behavior are 
reasonable.  For example, is the logic in the conceptual 
model correct and are the model’s input-output relation-
ships reasonable. 

Historical Data Validation: If historical data exist (or 
if data are collected on a system for building or testing a 
model), part of the data is used to build the model and the 
remaining data are used to determine (test) whether the 
model behaves as the system does.  (This testing is con-
ducted by driving the simulation model with either samples 
from distributions or traces (Balci and Sargent 1982a, 
1982b, 1984b).) 

Historical Methods: The three historical methods of 
validation are rationalism, empiricism, and positive eco-
nomics. Rationalism assumes that everyone knows whether 
the underlying assumptions of a model are true.  Logic de-
ductions are used from these assumptions to develop the 
correct (valid) model.  Empiricism requires every assump-
tion and outcome to be empirically validated.  Positive 
economics requires only that the model be able to predict 
the future and is not concerned with a model’s assumptions 
or structure (causal relationships or mechanisms). 

Internal Validity: Several replication (runs) of a sto-
chastic model are made to determine the amount of (inter-
nal) stochastic variability in the model.  A large amount of 
variability (lack of consistency) may cause the model’s re-
sults to be questionable and if typical of the problem entity, 
may question the appropriateness of the policy or system be-
ing investigated. 

Multistage Validation: Naylor and Finger (1967) pro-
posed combining the three historical methods of rational-
ism, empiricism, and positive economics into a multistage 
process of validation.  This validation method consists of 
(1) developing the model’s assumptions on theory, obser-
vations, and general knowledge, (2) validating the model’s 
assumptions where possible by empirically testing them, 
and (3) comparing (testing) the input-output relationships 
of the model to the real system.  

Operational Graphics: Values of various performance 
measures, e.g., the number in queue and percentage of 
servers busy, are shown graphically as the model runs 
through time; i.e., the dynamical behaviors of performance 
indicators are visually displayed as the simulation model 
runs through time to ensure they are correct. 

Parameter Variability - Sensitivity Analysis: This 
technique consists of changing the values of the input and 
internal parameters of a model to determine the effect upon 
the model’s behavior or output.  The same relationships 
should occur in the model as in the real system.  Those pa-
rameters that are sensitive, i.e., cause significant changes in 
the model’s behavior or output, should be made suffi-
ciently accurate prior to using the model.  (This may re-
quire iterations in model development.) 

Predictive Validation: The model is used to predict 
(forecast) the system’s behavior, and then comparisons are 
made between the system’s behavior and the model’s fore-
cast to determine if they are the same. The system data 
may come from an operational system or be obtained by 
conducting experiments on the system, e.g., field tests.  

Traces: The behavior of different types of specific en-
tities in the model are traced (followed) through the model 
to determine if the model’s logic is correct and if the nec-
essary accuracy is obtained. 

Turing Tests: Individuals who are knowledgeable 
about the operations of the system being modeled are 
asked if they can discriminate between system and model 
outputs.  (Schruben (1980) contains statistical tests for use 
with Turing tests.) 

5 DATA VALIDITY 

We discuss data validity, even though it is often not con-
sidered to be part of model validation, because it is usually 
difficult, time consuming, and costly to obtain appropriate, 
accurate, and sufficient data, and is often the reason that 
attempts to valid a model fail.  Data are needed for three 
purposes: for building the conceptual model, for validating 
the model, and for performing experiments with the vali-
dated model.  In model validation we are usually con-
cerned only with data for the first two purposes. 

To build a conceptual model we must have sufficient 
data on the problem entity to develop theories that can be 
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used to build the model, to develop mathematical and logi-
cal relationships for use in the model that will allow the 
model to adequately represent the problem entity for its in-
tended purpose, and to test the model’s underlying assump-
tions.  In additional, behavioral data are needed on the 
problem entity to be used in the operational validity step of 
comparing the problem entity’s behavior with the model’s 
behavior. (Usually, this data are system input/output data.)  
If behavior data are not available, high model confidence 
usually cannot be obtained because sufficient operational 
validity cannot be achieved.     

The concern with data is that appropriate, accurate, 
and sufficient data are available, and if any data transfor-
mations are made, such as disaggregation, they are cor-
rectly performed. Unfortunately, there is not much that can 
be done to ensure that the data are correct.  One should de-
velop good procedures for collecting and maintaining data, 
test the collected data using techniques such as internal 
consistency checks, and screen the data for outliers and de-
termine if they are correct.  If the amount of data is large, a 
database should be developed and maintained. 

6 CONCEPTUAL MODEL VALIDATION 

Conceptual model validity is determining that (1) the theories 
and assumptions underlying the conceptual model are correct 
and (2) the model’s representation of the problem entity and 
the model’s structure, logic, and mathematical and causal re-
lationships are “reasonable” for the intended purpose of the 
model.  The theories and assumptions underlying the model 
should be tested using mathematical analysis and statistical 
methods on problem entity data.  Examples of theories and 
assumptions are linearity, independence of data, and arrivals 
are Poisson.  Examples of applicable statistical methods are 
fitting distributions to data, estimating parameter values from 
the data, and plotting data to determine if the data are station-
ary.  In addition, all theories used should be reviewed to en-
sure they were applied correctly. For example, if a Markov 
chain is used, does the system have the Markov property, and 
are the states and transition probabilities correct? 

Next, every submodel and the overall model must be 
evaluated to determine if they are reasonable and correct 
for the intended purpose of the model.  This should include 
determining if the appropriate detail and aggregate rela-
tionships have been used for the model’s intended purpose, 
and if appropriate structure, logic, and mathematical and 
causal relationships have been used.  The primary valida-
tion techniques used for these evaluations are face valida-
tion and traces.  Face validation has experts on the problem 
entity evaluate the conceptual model to determine if it is 
correct and reasonable for its purpose.  This usually re-
quires examining the flowchart or graphical model (Sar-
gent 1986), or the set of model equations.  The use of 
traces is the tracking of entities through each submodel and 
the overall model to determine if the logic is correct and if 
the necessary accuracy is maintained.   If errors are found 
in the conceptual model, it must be revised and conceptual 
model validation performed again. 

7 COMPUTERIZED MODEL VERIFICATION 

Computerized model verification ensures that the computer 
programming and implementation of the conceptual model 
are correct.  The major factor affecting verification is 
whether a simulation language or a higher level program-
ming language such as FORTRAN, C, or C++ is used.  
The use of a special-purpose simulation language generally 
will result in having fewer errors than if a general-purpose 
simulation language is used, and using a general-purpose 
simulation language will generally result in having fewer 
errors than if a general purpose higher level programming 
language is used. (The use of a simulation language also 
usually reduces both the programming time required and 
the amount of flexibility.) 

When a simulation language is used, verification is pri-
marily concerned with ensuring that an error free simulation 
language has been used, that the simulation language has 
been properly implemented on the computer, that a tested 
(for correctness) pseudo random number generator has been 
properly implemented, and the model has been programmed 
correctly in the simulation language.  The primary tech-
niques used to determine that the model has been pro-
grammed correctly are structured walk-throughs and traces. 

If a higher level programming language has been used, 
then the computer program should have been designed, de-
veloped, and implemented using techniques found in soft-
ware engineering.  (These include such techniques as ob-
ject-oriented design, structured programming, and program 
modularity.)  In this case verification is primarily con-
cerned with determining that the simulation functions (e.g., 
the time-flow mechanism, pseudo random number genera-
tor, and random variate generators) and the computer 
model have been programmed and implemented correctly. 

There are two basic approaches for testing simulation 
software: static testing and dynamic testing (Fairley 1976).  
In static testing the computer program is analyzed to de-
termine if it is correct by using such techniques as struc-
tured walk-throughs, correctness proofs, and examining the 
structure properties of the program.  In dynamic testing the 
computer program is executed under different conditions 
and the values obtained (including those generated during 
the execution) are used to determine if the computer pro-
gram and its implementations are correct.  The techniques 
commonly used in dynamic testing are traces, investiga-
tions of input-output relations using different validation 
techniques, internal consistency checks, and reprogram-
ming critical components to determine if the same results 
are obtained.  If there are a large number of variables, one 
might aggregate some of the variables to reduce the num-
ber of tests needed or use certain types of design of ex-
periments (Kleijnen 1987). 
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It is necessary to be aware while checking the correct-
ness of the computer program and its implementation that 
errors found may be caused by the data, the conceptual 
model, the computer program, or the computer implemen-
tation. (For a detailed discussion on model verification, see 
Whitner and Balci (1989).) 

8 OPERATIONAL VALIDITY 

Operational validation is determining whether the simula-
tion model’s output behavior has the accuracy required for 
the model’s intended purpose over the domain of the 
model’s intended applicability.  This is where much of the 
validation testing and evaluation take place. Since the 
simulation model is used in operational validation, any de-
ficiencies found may be caused by what was developed in 
any of the steps that are involved in developing the simula-
tion model including developing the system’s theories or 
having invalid data. 

All of the validation techniques discussed in Section 4 
are applicable to operational validity.  Which techniques 
and whether to use them objectively or subjectively must 
be decided by the model development team and the other 
interested parties.  The major attribute affecting operational 
validity is whether the problem entity (or system) is ob-
servable, where observable means it is possible to collect 
data on the operational behavior of the problem entity.  
Table 1 gives a classification of the validation approaches 
in operational validity. “Comparison” means compar-
ing/testing the model and system input-output behaviors, 
and “explore model behavior” means to examine the output 
behavior of the model using appropriate validation tech-
niques, including parameter variability-sensitivity analysis.  
Various sets of experimental conditions from the domain 
of the model’s intended applicability should be used for 
both comparison and exploring model behavior. 

 
Table 1: Operational Validity Classification 

 Observable 
System 

Non-observable 
System 

 
Subjective 
Approach 

• Comparison Using 
  Graphical Displays 
• Explore Model 
   Behavior 

• Explore Model 
   Behavior 
• Comparison to 
   Other Models 

 
Objective  
Approach 

• Comparison  
   Using Graphical  
   Displays 
 

• Comparison  
   To Other 
   Models Using 
   Statistical         
   Tests  

 
To obtain a high degree of confidence in a model and its 

results, comparisons of the model’s and system’s input-
output behaviors for several different sets of experimental 
conditions are usually required. There are three basic ap-
proaches used: (1) the use of graphs of model and system 
behavior data to make a subjective decision, (2) the use of 
confidence intervals, and (3) the use of hypothesis tests. It is 
preferable to use confidence intervals or hypothesis tests for 
the comparisons because these allow for objective decisions. 
However, it is frequently not possible in practice to use ei-
ther one of these two approaches because (a) the statistical 
assumptions required cannot be satisfied or only with great 
difficulty (assumptions usually necessary are data independ-
ence and normality) and/or (b) there is insufficient quantity 
of system data available, which causes the statistical results 
not to be “meaningful” (e.g., the length of a confidence in-
terval developed in the comparison of the system and model 
means is to large for any practical usefulness).  As a result, 
the use of graphs is the most commonly used approach for 
operational validity.  Each of these three approaches is dis-
cussed in the following subsections. 

8.1 Graphical Comparisons of Data 

The behavior data of the model and the system are graphed 
for various sets of experimental conditions to determine if the 
model’s output behavior has sufficient accuracy for the 
model’s intended purpose.  Three types of graphs are used: 
histograms, box (and whisker) plots, and behavior graphs us-
ing scatter plots. (See Sargent (1996a, 2001b) for a thorough 
discussion on the use of these for model validation.)  Exam-
ples of a histogram and a box plot are given in Figures 4 and 
5, respectively, both taken from Lowery (1996). Examples of  
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Figure 4: Histogram of Hospital Data 

 
Figure 5: Box Plot of Hospital Data 

 
behavior graphs, taken from Anderson and Sargent (1974), 
are given in Figures 6 and 7.  A variety of graphs using dif-
ferent types of (1) measures such as the mean, variance, 
maximum, distribution, and times series of a variable, and (2) 
relationships between (a) two measures of a single variable 
(see Figure 6) and (b) measures of two variables (see Figure 
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7) are required.  It is important that appropriate measures and 
relationships be used in validating a model and that they be 
determined with respect to the model’s intended purpose. 
See Anderson and Sargent (1974) and Lowery (1996) for ex-
amples of sets of graphs used in the validation of two differ-
ent simulation models. 

 

 
Figure 6: Reaction Time 

 

  
Figure 7: Disk Access 
 

These graphs can be used in model validation in dif-
ferent ways.  First, the model development team can use 
the graphs in the model development process to make a 
subjective judgment on whether a model posses sufficient 
accuracy for its intend purpose. Second, they can be used 
in the face validity technique where experts are asked to 
make subjective judgments on whether a model possesses 
sufficient accuracy for its intended purpose. Third, the 
graphs can be used in Turing tests. Fourth, the graphs can 
be used in different ways in IV&V. We note that the data 
in these graphs do  not  need to be independence nor satisfy 
any statistical distribution requirement such as normality of 
the data (Sargent 1996a, 2001a, 2001b). 

8.2 Confidence Intervals 

Confidence intervals (c.i.), simultaneous confidence inter-
vals (s.c.i.), and joint confidence regions (j.c.r.) can be ob-
tained for the differences between means, variances, and 
distributions of different model and system output vari-
ables for each set of experimental conditions.  These c.i., 
s.c.i., and j.c.r. can be used as the model range of accuracy 
for model validation. 

To construct the model range of accuracy, a statistical 
procedure containing a statistical technique and a method 
of data collection must be developed for each set of ex-
perimental conditions and for each variable of interest.  
The statistical techniques used can be divided into two 
groups: (1) univariate statistical techniques and (2) multi-
variate statistical techniques. The univariate techniques can 
be used to develop c.i., and with the use of the Bonferroni 
inequality (Law and Kelton 2000) s.c.i. The multivariate 
techniques can be used to develop s.c.i. and j.c.r.  Both pa-
rametric and nonparametric techniques can be used. 

The method of data collection must satisfy the under-
lying assumptions of the statistical technique being used.  
The standard statistical techniques and data collection 
methods used in simulation output analysis (Banks et al. 
2000, Law and Kelton 2000) could be used for developing 
the model range of accuracy, e.g., the methods of replica-
tion and (nonoverlapping) batch means. 

It is usually desirable to construct the model range of 
accuracy with the lengths of the c.i. and s.c.i. and the sizes 
of the j.c.r. as small as possible.  The shorter the lengths or 
the smaller the sizes, the more useful and meaningful the 
model range of accuracy will usually be.   The lengths and 
the sizes (1) are affected by the values of confidence lev-
els, variances of the model and system output variables, 
and sample sizes, and (2) can be made smaller by decreas-
ing the confidence levels or increasing the sample sizes.  A 
tradeoff needs to be made among the sample sizes, confi-
dence levels, and estimates of the length or sizes of the 
model range of accuracy, i.e., c.i., s.c.i. or j.c.r.  Tradeoff 
curves can be constructed to aid in the tradeoff analysis. 

Details on the use of c.i., s.c.i., and j.c.r. for opera-
tional validity, including a general methodology, are con-
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tained in Balci and Sargent (1984b).  A brief discussion on 
the use of c.i. for model validation is also contained in Law 
and Kelton (2000). 

8.3 Hypothesis Tests 

Hypothesis tests can be used in the comparison of means, 
variances, distributions, and time series of the output vari-
ables of a model and a system for each set of experimental 
conditions to determine if the model’s output behavior has 
an acceptable range of accuracy.  An acceptable range of 
accuracy is the amount of accuracy that is required of a 
model to be valid for its intended purpose. 

The first step in hypothesis testing is to state the hy-
potheses to be tested: 

 
• H0 Model is valid for the acceptable range of ac-

curacy under the set of experimental conditions. 
• H1 Model is invalid for the acceptable range of 

accuracy under the set of experimental conditions. 
 
Two types of errors are possible in testing hypotheses.  

The first, or type I error, is rejecting the validity of a valid 
model and the second, or type II error, is accepting the va-
lidity of an invalid model.  The probability of a type I er-
ror, α, is called model builder’s risk, and the probability of 
type II error, β, is called model user’s risk (Balci and Sar-
gent 1981).  In model validation, the model user’s risk is 
extremely important and must be kept small.  Thus both 
type I and type II errors must be carefully considered when 
using hypothesis testing for model validation.  

The amount of agreement between a model and a sys-
tem can be measured by a validity measure, λ, which is 
chosen such that the model accuracy or the amount of 
agreement between the model and the system decrease as 
the value of the validity measure increases.  The acceptable 
range of accuracy can be used to determine an acceptable 
validity range, 0 < λ < λ*. 

The probability of acceptance of a model being valid, 
Pa, can be examined as a function of the validity measure 
by using an operating characteristic curve (Johnson 1994).  
Figure 8 contains three different operating characteristic  
 

 
Figure 8: Operating Characteristic Curves 
curves to illustrate how the sample size of observations af-
fects Pa as a function of λ.  As can be seen, an inaccurate 
model has a high probability of being accepted if a small 
sample size of observations is used, and an accurate model 
has a low probability of being accepted if a large sample 
size of observations is used.  

The location and shape of the operating characteristic 
curves are a function of the statistical technique being 
used, the value of α chosen for λ = 0, i.e. α*, and the sam-
ple size of observations.  Once the operating characteristic 
curves are constructed, the intervals for the model user’s 
risk β(λ) and the model builder’s risk α can be determined 
for a given λ* as follows: 

 
α* < model builder’s risk α < (1 - β*) 
   0 < model user’s risk β(λ) < β*. 

 
Thus there is a direct relationship among the builder’s risk, 
model user’s risk, acceptable validity range, and the sam-
ple size of observations.  A tradeoff among these must be 
made in using hypothesis tests in model validation. 

Details of the methodology for using hypotheses tests 
in comparing the model’s and system’s output data for 
model validations are given in Balci and Sargent (1981). 
Examples of the application of this methodology in the 
testing of output means for model validation are given in 
Balci and Sargent (1982a, 1982b, 1983). 

9 DOCUMENTATION 

Documentation on model verification and validation is usu-
ally critical in convincing users of the “correctness” of a 
model and its results, and should be included in the simula-
tion model documentation. (For a general discussion on 
documentation of computer-based models, see Gass (1984).) 
Both detailed and summary documentation are desired.  The 
detailed documentation should include specifics on the tests, 
evaluations made, data, results, etc. The summary documen-
tation should contain a separate evaluation table for data va-
lidity, conceptual model validity, computer model verifica-
tion, operational validity, and an overall summary. See 
Table 2 for an example of an evaluation table of conceptual 
model validity.  (For examples of two other evaluation ta-
bles, see Sargent (1994, 1996b).)  The columns of Table 2 
are self-explanatory except for the last column, which refers 
to the confidence the evaluators have in the results or con-
clusions. These are often expressed as low, medium, or high. 

10 RECOMMENDED PROCEDURE 

This author recommends that, as a minimum, the following 
steps be performed in model validation: 

 
1. An agreement be made prior to developing the 

model between (a) the model development team
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Table 2: Evaluation Table for Conceptual Model Validity 

 

 

and (b) the model sponsors and (if possible) the 
users that specifies the basic validation approach 
and a minimum set of specific validation tech-
niques to be used in the validation process. 

2. Specify the amount of accuracy required of the 
model’s output variables of interest for the 
model’s intended application prior to starting the 
development of the model or very early in the 
model development process. 

3. Test, wherever possible, the assumptions and 
theories underlying the model.  

4. In each model iteration, perform at least face va-
lidity on the conceptual model. 

5. In each model iteration, at least explore the 
model’s behavior using the computerized model. 

6. In at least the last model iteration, make compari-
sons, if possible, between the model and system 
behavior (output) data for at least a few sets of 
experimental conditions, and preferably for sev-
eral sets. 

7. Develop validation documentation for inclusion in 
the model documentation. 

8. If the model is to be used over a period of time, 
develop a schedule for periodic review of the 
model’s validity. 

 
Some models are developed for repeated use. A pro-

cedure for reviewing the validity of these models over their 
life cycles needs to be developed, as specified in Step 8. 
No general procedure can be given, as each situation is dif-
ferent. For example, if no data were available on the sys-
tem when a model was initially developed and validated, 
then revalidation of the model should take place prior to 
each usage of the model if new data or system understand-
ing has occurred since the last validation.  

11 ACCREDITATION 

The U. S. A. Department of Defense (DoD) has moved to 
accrediting simulation models.  They define accreditation 
as the “official certification that a model, simulation, or 
federation of models and simulations and its associated 
data are acceptable for use for a specific application” 
(DoDI 5000.61). The evaluation for accreditation is usually 
conducted by a third (independent) party, is subjective, and 
often includes not only verification and validation but 
items such as documentation and how user friendly the 
simulation is.  The acronym VV&A is used for Verifica-
tion, Validation, and Accreditation. (Other areas and fields 
often use the term “Certification” to certify that a model 
(or product) conforms to a specified set of characteristics 
(see Balci (2003) for further discussion).)   

12 SUMMARY 

Model validation and verification are critical in the devel-
opment of a simulation model.  Unfortunately, there is no 
set of specific tests that can easily be applied to determine 
the “correctness” of a model.  Furthermore, no algorithm 
exists to determine what techniques or procedures to use.  
Every simulation project presents a new and unique chal-
lenge to the model development team. 

There is considerable literature on validation and veri-
fication; see e.g. Balci and Sargent (1984a).  Articles given 
under references, including several not referenced above, 
can be used to further your knowledge on model validation 
and verification.  Research continues on these topics. 
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