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Mixed Type Higher Order Symmetric Duality Over Cones

Khushboo Verma, Pankaj Mathur, and T. R. Gulati

Abstract—In this paper, a new mixed type higher-order
symmetric duality in scalar programming over cone is
formulated. The weak, strong and converse duality theorems are
proved for these programs under 77 -invexity/ 77 -pseudoinvexity

assumptions. Self duality also discussed. As a special case of our
duality relation, we give some known duality results. Our results
generalize these existing dual formulations.

Index Terms—Higher-order symmetric duality,
theorems, higher-order invexity/generalized invexity.

duality

. INTRODUCTION

Mangasarian [1] introduced the concept of second and
higher-order duality for nonlinear problems. The study of
higherorder duality is significant due to the computational
advantage over the first order duality as it provides tighter
bounds for the value of the objective function when
approximations are used. Mond and Zhang [2] obtained
duality results for various higher-order dual problems under
higher-order invexity assumptions, Chen [3] presented
Mond-Weir type higher order symmetric duality for scalar
and multiobjective nondifferentiable programming problem
under F-convexity while Mishra and Rueda [4] generalized
Mangasarian [5] and Mond-Weir [6] type higher-order
duality to higher-order type | functions. Ahmad et al. [6]
discussed  higher-order duality in nondifferentiable
Multiobjective Programming. Recently, Ahmad [7] Unified
higher-order duality in nondifferentiable multiobjective
programming involving cones.

Xu [8] formulated two mixed type duals in multiobjective
programming and also proved duality theorems. Ahmad and
Husain [9] studied mixed symmetric multiobjective dual
programs and obtained duality results under K-preinvexity
and K-pseudoinvexity assumptions. Chandra et al. [10] and
Yang et al. [11] discussed a mixed symmetric dual
formulation for a nonlinear programming problem and for a
class of nondifferentiable nonlinear programming problems,
respectively. Later on, Ahmad [12] formulated mixed type
symmetric dual in multiobjective programming problems
ignoring nonnegativity restrictions of Bector et al. [13].

In this paper, a new mixed type higher-order symmetric
duality over cone in multiobjective programming is
formulated. The weak, strong and converse duality theorems
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are proved for these programs under
n -invexity/ 17 -pseudoinvexity assumptions. Self duality also
discussed. As a special case of our duality relation, we give
some known duality results. Special cases are discussed to
show that this study extends some of the known results in [14],
[15] and [4]

Il. PREREQUISITES
.., N} and M= {1, 2, 3,

ang J2 =N\J

For N= {1, 2, 3,
J;c N, K cM

., M}, let

1ang K2 = MK,

Let | ‘]1 | denote the number of elements in the set ‘]1. The

other numbers | I, | | K | and | K, | are defined similarly.

=@ .. J,=N

Notice that if , that is | ‘]1 |: 0 and

|J;[Fn

, then

1941 . . . .
. Hence, R™!" is zero dimensional Euclidean space

Js| . . . . .
and R| 2l is n-dimensional Euclidean space. It is clear that

any xeR" can be written as
— 1 2 1 1941 2 135l
x={x,x}x eR™,x" R Similarly, any
m
yeR can be written as

y :{yl, yz}’ yl c RIKll, yz c RlKZl_
We consider the following programming problem :
(P)  Minimize F(X),
—-9(x) €Q,
where SCR™™ and F:S — R and Q is a closed

convex cone.
The following convention for vector inequalities will be

used: Ifa, b € R", then

xeS

abh<axb,i=1,2,..,n;
a>b<ab and a#b;
a>b<ea >b,i=12,..,n

Definition 2.1 A function ¢:S+>R is said to be

higher-order invex at ueS with respect to 7:SxS+> S
and h:SxS—R, if for

#(x) = (u) =h(u, p)+ p'V ,h(u, p)2

7" (% uX{V,¢(u) +V h(u, p)}
Definition 2.2 A function @¢:S+> R is said to be

all (x, p) e Sx8S,

higher-order pseudoinvex at U e R" with respect to
n:SxSH>S and h:SxSR, if for all
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1" (%, u{V,4(u) +V h(u, p)}z0
= ¢(x) —¢(u) —h(u, p)+ p'V h(u, p)=0.

Unless otherwise stated, C;,C,,C, and C, represent

(X, p) e SxS,

closed convex cones in R™', R"2 R gng R
respectively, with non-empty interiors and Ci*, 1=1,234
is its polar cones and S; — R" and S, = R™ are open sets
suchthat C, xC, < S, xS,.

I11.  HIGHER-ORDER MIXED TYPE SYMMETRIC DUALITY

We consider the following pair of higher order symmetric
duals and establish weak, strong and converse duality
theorems.

Primal Problem (MHPC):

Minimize L(x,y,p)=
RO YD+ B0CY) +h 0V P +h 04y, pY)
=(P)'V Ry p) = ()Y L0, (¢, y° p?)

() IV, FOCY)+V o0 (05, p7)]

Subject to
Vi O, vh) +Vplhl(x1, yhpheC,, (31)
Vyzf(xz,y2)+Vp2h2(x2,y2, peC,, (32
(V) IVA O Y)+V Oy, P10, (33)
(P IV, PO Y)+V (Y, PO, 349

(p*)’ [vV,f (X%, y%) +V h, (X, y?, p?)120, (3.5)

x' eC,,x* €C,,y*20, (3.6)

Dual Problem (MHDC):
Minimize L(X,Y, p) =

f (Ut v+ f,u?,v?) +g, U Vv ) + g, (u?,v2r?)
—(rt)’ Vrlgl(ul,Vl, rh—(r?)’ V. g,(u?v?,r?)
—u?)’ [Vuz f2(u?v?) +V, g, v?,r?)]

Subject to

VU V)4V g, (V) eCl, @3)
Vuzf2(u2,v2)+Vr2g2(u2,v2,r2)eCz*, (3.8)
W)V, U V) +V 10, (v, r)IS0, (39)
(M) IV, HW V) +V g,V r)I<0,  (3.10)
(r*)' IV, T2 (U V") +V ,0,(u®,v*, r*)I0, (3.11)

vt eC,,v? eC,,u’20, (3.12)

79

where
i f:RM xR SR,
i) f2:R2 xR ! SR,
Gii) g : R R SR,
iv) g2 R xR"? R,
v) h': R xR '« R" R,
i) h?: RV xR I« R 5 R are  twice
differentiable functions, respectively,
[Kql Kyl
(vii) p'eR™ p*eR™ r'eR™  and
r2eR™,

IV. DUALITY THEOREMS
Theorem 4.1 (Weak Duality).
Let (X', X%, y', ¥y, p', p?) be feasible for (PP) and
(u',u®,v,v?,r',r?) be feasible for (DP). Suppose that
@ f'(.,Vv") is higher-order pseudo-invex at u® with
respect to 77, and g*(u',v*,r'),
(i) — f*(x,.) is higher-order pseudo-invex at y* with
respect to 77, and —h'(x", y*, p*),
(i) f2(.,v®) ishigher-order invex at U’ with respect to
1, and g°(u®,v%,r?),
(iv) — F2(x?,.) is higher-order invex at Y with respect
to 77, and —h*(x*,y%, p%),
v (U +ut+rteCy,
wi) 7,(v, y) +y' + p' eC,,
(vii) 77,(x*,u?) +u’ +r? € C,,
(viii) 17,(v*,y*) +y*+ p° €C,.
Then
L(x5 %2, vh 2, ph pP)2M (Ut u?, v ve et rd). (4)

Proof: From hypothesis (vii), (viii) and equations (3.2) and
(3.8), we get

773(XZvuZ)[VX2 f Z(UZaVZ) +vr2 gz(u21V21 rz)]
+u2[VX2 f2(u®,v?) +Vrzgz(u2,v2, r)]

> PV, AL V)4V 0, (WA VA P

7OV YV, FOC,Y°)+V 0 (¢, y*, p°)]
YV FOC Y +V L0, (¢, Y7, p7)]
2= PV, 04, Y)+V 0 (¢, p7)]
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Which on using equations (3.5) and (3.11) implies that

773(X2’u2)[vxz f Z(UZ’VZ) +vr2 gz(uz’vz, rz)]

(4.2)

HUV, (U2 V2) 4V, g, (U2 V2, 1),

A yz)[Vyz f(x?, y2)+szhz(X2, y*, p*)]

(X UDIV (U V) +V g, (V)]

2= (u' + )V, f U v)+V g uh v )]
(L YOIV T OGY)+V S (6 Y pY)]
2= (y'+ POV F O, y)+V (Y )]

and

(4.3)

VIV, FOC ) +V o (4, v, p)0.
Now from hypothesis (iii) and (iv), we have
fZ(XZ,VZ)— fZ(UZ’VZ)_hZ(XZ,VZ’ p2)
+(p2)TVp2h2(X2,V2, p2)+h2(U2,V2, p2)
—(P°)TV 0PV, p7)
277, (A UE)[Y , T2 (U2 VF) 4V, 0, (u?, V2, 1),
and
fZ(XZ, yZ)_ fz(XZ,VZ)—hZ(XZ, y2’ p2)
H(pF)'V 0 0C, ¥, p%)+h7 (v, pY)
—(P)TV N0V p)
20, (VLYY T O y) +V o0 (37,2, 7)),
which along with equations (4.2) and (4.3), we obtain
.I:Z(XZ’VZ)_ f2(u21v2)_h2(X2,V21 pZ)
+(p2)TVp2h2(X2,V2, p2)+h2(U2,V2, pZ)
—(pY)'V  h*(u%, V%, p?)
g_uz[vxz fZ(UZ,VZ)—I—Vngz(uZ,Vz,rz)],
fZ(XZ, y2)_ fZ(XZ’VZ)_hZ(XZ, y2' p2)
HP)TV NP Oy, 7+ 02 0¢ V2, p?)
—(P)'V POV p)
2y* [V, F0C,¥°)+V 0 (¢, y%, )l

Now adding the above two equation, we get

P20, Y7) =h* (¢, ¥, p%) +(p°)V LN (X, y*, p?)

VIV FOC Y +V L0, (¢, 7, p7)]

§f2(u2,V2)_h2(u2’V21 p2)+(p2)TVp2h2(u2,V2, p2) (ﬁ

—u2[VX2 f 2(u2,v2)+Vrzgz(u2,v2, r)].

Now inequalities (3.3), (3.4), (3.9) and (3.10) gives

(¢ UDIV UV + Vg, (Ut V)]0,
and

n (A YOIY T O Y)+V RO Y PO,
which by hypothesis (i) and (ii) implies
f (x' v = f(u,v) —h'(x, v ph)
H(P)'V L OE VY pY)
+hl(u11 Vl! pl) - ( pl)T vpl hl(ul! Vl! pl)gol
and
L0,y = 04V~ (e, pY)
HP)' VOGP
(¢ ) = ()Y LI,V pY)20.
Adding the above two inequalities, we get
A DELIC DRI COIFUNC ST D
2f, (U, V) —hi (U, p) +(p7)' VRSV pY).

(4.5)
Combining inequalities (4.4) and (4.5), we have

L(x, X2, v, Y2, ph p2)2M (U u?, v Ve, rt r?).

Thus the results holds.

Theorem 4.2 (Strong Duality).

Let (X', X%, y", V2, P, P?) be an optimal solution of
(MHPC). Suppose that

(i) vplpl h'(X',y*, p') is positive or negative definite
and szpzhz()_(z, y%,p°) is negative definite,

Vi B ¥ + Vi (Y ) %0

(ii)
i v§f2(22,72)+v§,h2(>‘<2,72,;—)2)7:0,
(iii)
NIV, IR YD)+ Vo (X Y PY)]=0=p =0
and

(4.4)
Similarly, from hypothesis (i), (ii) and equations (3.1), (3.7),

we get

80
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yZ[VyZhZ()—(Z' 72’ ﬁZ)_vpth()—(?_, yZ’ EZ)

Vo TR, 7P

]:0:>ﬁ2:

(v) h"(x",y",0) = g°(x", y,0),
v h(x, .00 =V ,9'(X', ¥',0),

Vylhl(il, y',0) = Vplhl(T(l

h?(x?,y%,0) = g*(X*,¥%,0),
szhz(x2 y2,0) = Vzg (x%,y2,0).
Then
(x5, %%y, y?, 7 =0,7> = 0) is feasible for
(MHDC) and
(1)
L()_(l, )—(2’ yl’ yz, ply EZ) = M ()—(l’ )—(2’ yl’ yz, Fl, I72)

,¥,0) and

Furthermore, if the hypothesis of Theorem (4.1) are
satisfied for all feasible solutions of (MHPC) and (MHDC),

then (X', X%, ¥',y%,7 =0,f*=0)
solution for (MHDC).

Proof: Since (X', X%, y", V% P, Pp°) is a n optimal
solution of (MHPC), by the Fritz John necessary optimality
conditions [1], there exist a,7,51,52 eR, ﬂl eC,,

is an optimal

p°eC,, and u' €C,, u* €C, such that the following
conditions are satisfied at (X", X*, V", y>, p", P°):
[ofV, (X 7)) +V 0(X 7, D)
_vpl 1h1(¥1’ )—/1, ﬁl) ﬁl] +[V 1.1 f 1(X1: 71)
X yX

PTG AP (VS A Ry (D)

>0, forall, x' e C,,

o[V , 11(%°, 7))+ V (2,77, )]
_’_{szxzhz(iz, 721 ﬁz)}(ﬁz _azyz _QZEZ —52ﬁ2)
_‘_{VyZXZ fz(izy yz)}(ﬂz —azyz _52ﬁ2)

4.7)
—-%x%)=0, forall, x* €C,,

—11(x?
oV, £1(x, ¥+ V i (X ¥, B)
-V hl(X v, p)D]+(Vy11f (x4 YY)
+Vp1y1h1(x YLPNB ~ry -6
-V, F1 (X%, ¥) + Vb (X, 7, BY)120,

forall, y* e R, (4.8)

81

v, 0 (575 PN~y —a’p’ - 5°D")
+al[V (KT B) - I, 5 )]

HV 2 O TOHS -0’y - 6°P) “s)
—£2>0, forall, y? e R*?, .
vV h(x YOS —ap' —yy -6'D)
PP (4.10)
=5V, (XL ¥ + Vi hi (kL Y, PY1=0,
{V 1 Y PO — ey’ —ap’ - 5°P)
(4.11)
—52[V f2(x?, 72)+v ,h*(X%,¥%,p9)1=0,
[V (X", ‘1)+V h'(x', ¥, p)]=0, (4.12)
,B[Vyzf 2(x?, ‘2)+V h?(x%,¥%,p°)]=0, (4.13)
AV Y )+V W'(x".y', p)1=0, (19
SPIV I Y)+ Vi (XY, P)I=0, (4.15)

S PV, 15(X5, ) +V Lh* (X%, 7%, p)] =0,

wx =0, (4.17)

41X =0, (4.18)

£2y% =0, (4.19)

(. B B2y, 84, 68% ut, 12, &%) %0, (4.20)
(o, B4 B2y, 64,82, 1t 1P, E2)=0, (4.21)
Premultiplying equations  (4.10), (4.11) by
(B —ap' =y -6'P") . (B°—ap’—ay*-56°p°)

respectively and then using equations (4.12)-(4.16), we get

(B —ap -y -6'p)
VNGB - Bt -7 - 6P = 0,
And
(B*—ap’ —ay* -5 p)V , h(*,¥", %)
(B ~ap’ —ay* ~5°F’)
:—ozcﬁyz[vyzfz(x2 ‘2)+V ,h* (X2, ¥%, p9)]
Using hypothesis (i), we get

[ =ap + N +5Pp. (4.22)

Further using inequality (3.1), (3.6) and (4.21), we obtain
(5" -ap’
(B*—ap’

—ay =" PV , (X5 ¥, D)
—ay’ -5°p*)20,
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which on using hypothesis (i)

L =op’+ay> +5°p°. (4.23)

From equations (4.10) and (4.11), and hypothesis (ii), we
obtain

(4.24)
And

(4.25)

Now suppose, & = 0. Then equations (4.23), with (4.9)
gives 52 =0 and, with (4.25) implies ﬂz =0 also
equations (4.6), (4.22) implies ,ul =0 and equations (4.7),
(4.23) and (4.25) implies ,u2 = 0. From equation (4.8) and
hypothesis (ii) yield » =0, which along with equation
(4.22),  (4.29) £ =0 Thus

(a,ﬂl,ﬂz,yﬁlﬁz,ﬂl,ﬂz):0, a contradiction to
(4.20).

reduces

Hence o = 0. (4.26)
Using equations (4.12), (4.14) and (4.15), we have
(B =y =8 p) IV, F1(X,¥)
+V (7, P)1=0,
Now equation (4.22), gives
op’ [V, (x4, )+ V h(3, 5 P]=0. @2n)
which along with hypothesis (iii) yield
pr=0. (4.28)
Further, from equation (4.9) and (4.23), we get
a’[V LN (X%, Y%, P°) =V L0 (X%, ¥, P7)
(4.29)
+vy2y2 f2(x?, yz)ﬁz]_éz =0.
Now from hypothesis (iii), we obtain
p°>=0. (4.30)
Therefore equation (4.22) and (4.23) reduce to
B=W, (431)

And

82

p=ay"

Also, it follows from equations (4.8), (4.22), (4.28) and
hypothesis (ii) and (iv) that

(4.32)

a=y>0. (4.33)
So equation (4.31) implies
1
yi= s 9. (4.34)
Y

Moreover, equation (4.6), (4.7) along with (4.22), (4.23),
(4.30) and hypothesis (iv) yields

oV, (X", 7)) +V (XY, PY)
S . (4.35)
-1 ](x" —X)=0, forall x” e C,,

alV , T5(X*,¥°) +V ,h* (X%, ¥,

w2

p%)

(4.36)
—1°1(x* —=x*)=0, forall x* € C,,

Let x'e C,, then X+ xt e C, and then above
inequality implies
ax'[V , 15(X*,y°)+V ,h* (X", ¥, p°)
X r
— 1’120, forall x* e C,,

Further by using equation (4.17) the above inequality also
be rewritten as

XUV (XL 7)) +V (LY )]
>u'x' =0, forall x' eC,.

Therefore

VPR YDAV R T P eC, @an)

Similarly, we also obtain that
V(X% Y2 +V ,hP (X%, Y, PP eC, . (439)

Thus (X', X%, y", ¥2, 7 =0,F* =0) satisfies the dual
constraints (3.7)-(3.12), i.e, it is an feasible solution of
(MHDC).

Also, using hypothesis (iv) we get the values of the
objective functions of (MHPC) and (MHDC) at
(x',x*,y",y*,p =0,p" =0)
(x*, X%y, y>,r =0,f>=0) are equal. Using Weak
duality it that

and

easily shown
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(X, %%y, ¥, 7 =0,F* =0) and
(x*, X%, ¥, y%, p* =0, p? = 0) are an optimal solutions
for (MHPC) and (MHDC), respectively.

Theorem 4.3 (Converse Duality).

Let (@', T®,v',v?, 7', 7?) be an optimal solution of
(MHDC) . Suppose that

(i) Vrlrlgl(Ul,\_/l, ") is positive or negative definite

and V,,g°(@% V>, T?) is negative definite,
rer

v fi@h v +vigi@t, v, ) 20 and
Vi £2(x%, ) +V2ih*(x?, ¥, p?) %0,
(iii)
[V, fi @ v +vigi@, v, r)]=0=>r1'=0
and

(i)

vuzgz(Uz,vz,rz)—vrzgz(uz,vz,rz)
+V o f (@ VP =0=>T7"=0,
(iv) g'(U’,v',0)=g"(u’,v',0),
V.,9'(U,vi0) =V ,g'U v"0),
V.gi(Uvi,0)=V,g'(U,v"0)
g?(a?,v?,0)=h*@?*,v?0),
Vuzgz(UZ,VZ,O) = Vrzhz(Uz,\‘/z,O).

and

Then
o (@,u?v,v%rt=0,r>=0) is feasible
for (MHPC) and
)
L@, a® v,v?, pt,pY) =M@, u?,v,ve, o).

Furthermore, if the hypothesis of Theorem 4.1 are satisfied
for all feasible solutions of (MHPC) and (MHDC), then
()_(l, X2, 371, yz, rt=0,r%= 0) is an optimal solution for
(MHPC).

Proof. Follows on the line of Theorem 4.2.

Theorem 4.4 (Self Duality).

A primal (dual) problem having equivalent dual (primal)
formulation is said to be self-dual, that is, if the dual can be
recast in the form of the primal. In general, (MHPC) and
(MHDC) are not self-duals without some added
g; and h. If we assume

f2:RM xR"? R,
9% :R"'xR" LR,

restrictions on f ;

f1:R" xR™ SR,
g R xRN SR,
ht: R < RM x RM 5 R,

h?: R« R"?'x R*2' -3 R to be skew symmetric, that
is
flut v =—f'@uvh),i=1,2,

and
g'(ut,vhr)=—g'(u', v, r),i=12,

Then we shall show that (MHPC) and (MHDC) are
self-duals. By recasting the dual problem (MHDC) as a
minimization problem, we have

Minimize M(u,v,r) =
—{f (" v+, v?)+g, UV, r) +g, (U v, r?)
—(rl)TVrlgl(Ul,Vl, r') —(rz)TVrzgz(Uz,Vz, r?)
—(U*)' [V, P2 V) +V L9, (U, v, )T}
Subject to
VU V) +V g (Ut v )0,

VTP V) +V ,0,(u%, v, r?)20,

W)V, (" V) +V g, (u", v, )]0,
(F)'IV f U V) +V g, (', v, )]0,
(r*)' IV, T2 (% V*) +V ,0,(u’,v*, r*)I<0,
Vh V2, u?>0,
As f, g and h are skew symmetric, i.e.,

VU V) ==V (v,
Vo v ==V f, (v uf),
Vg UV r) ==V g, (vi,u'r')  and
V10,(U%, V2, r%) ==V 19, (v*,u%,r%),
Then the above problem becomes :
Minimize M(u,v.r) =
f (v ut)+ f,(v2u?)+ g, (v, ut rt) + g, (V2 u?,r?)
—(r)"V 10, (ViU 1) = (r*)'V ,8,(vA,u’,r?)
—(U*)'[V, F2(v* U +V ,0,(v*,u% )]

Subject to

V(LU +V g, (v Ut r)<0,
VAV UT) +V L0, (v, 0%, r%)<0,
W)V, (v, u) +V gy (v ut, r)]0,
(F)'IV, L0 U) +V g, (v U, )]0,
(r*)T [V, 2 (v*,u*) +V ,9,(v*,u*, r*)]20,

v, v2, u?>0,

83
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Which shows that M (u,V, p) is identical to L(X,Y, p),
that is, the objective and the constraint functions are identical.
Thus, the problem L(X, Y, p) becomes self-dual.

It is obvious that the feasibility of (X', X%, V", y?, p*, p%)
L(X, Y, p) the
(v, y?, x4 %%, ph p?) for (MHPC)
feasibility of for (MHDC) and vice versa.

of
the

for implies feasibility

implies

V. SPECIAL CASE

In this section, we consider some special cases of our
problems by choosing particular forms of the closed convex

C, C, all  these
h(x,y,p)=(2)p"V , f(x y)p
and g(u,v,r)=/2)r'v, f(u,vr,

@) If |K1|:O, |‘J1|:0' p=0
(MHPC) ., (MHDC)

in Chandra and Kumar [14].

®) If |[K,]=0,|J;F0, C,=R! and C, =R]",
then after removing inequalities (3.5), (3.11), our programs
reduce to the problems considered in Mishra [4].

© If|K;[=0,]J,|=0, C, =R and C, =R, then
the then after removing inequalities (3.5), (3.11), programs

reduce to the second-order symmetric dual programs of Gulati
et al. [15].

sets and In cases,

and r =0, then

reduce to the programs studied

V1.

A pair of mixed symmetric dual programs has been
formulated by considering the optimization under the
assumptions of 77 -invexity and 77 -pseudoinvexity. It may be
noted that the symmetric duality between (MHPC) and
(MHDC) can be utilized to establish non differentiable

mixed symmetric duality in integer over cone and other
related programming problems.

CONCLUSION
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