
  

 

Abstract—In this paper, a new mixed type higher-order 

symmetric duality in scalar programming over cone is 

formulated. The weak, strong and converse duality theorems are 

proved for these programs under  -invexity/ -pseudoinvexity 

assumptions. Self duality also discussed. As a special case of our 

duality relation, we give some known duality results. Our results 

generalize these existing dual formulations. 

 

 Index Terms—Higher-order symmetric duality, duality 

theorems, higher-order invexity/generalized invexity. 

 

I. INTRODUCTION 

Mangasarian [1] introduced the concept of second and 

higher-order duality for nonlinear problems. The study of 

higherorder duality is significant due to the computational 

advantage over the first order duality as it provides tighter 

bounds for the value of the objective function when 

approximations are used. Mond and Zhang [2] obtained 

duality results for various higher-order dual problems under 

higher-order invexity assumptions, Chen [3] presented 

Mond-Weir type higher order symmetric duality for scalar 

and multiobjective nondifferentiable programming problem 

under F-convexity while Mishra and Rueda [4] generalized 

Mangasarian [5] and Mond-Weir [6] type higher-order 

duality to higher-order type I functions. Ahmad et al. [6] 

discussed higher-order duality in nondifferentiable 

Multiobjective Programming. Recently, Ahmad [7] Unified 

higher-order duality in nondifferentiable multiobjective 

programming involving cones. 

 Xu [8] formulated two mixed type duals in multiobjective 

programming and also proved duality theorems. Ahmad and 

Husain [9] studied mixed symmetric multiobjective dual 

programs and obtained duality results under K-preinvexity 

and K-pseudoinvexity assumptions. Chandra et al. [10] and 

Yang et al. [11] discussed a mixed symmetric dual 

formulation for a nonlinear programming problem and for a 

class of nondifferentiable nonlinear programming problems, 

respectively. Later on, Ahmad [12] formulated mixed type 

symmetric dual in multiobjective programming problems 

ignoring nonnegativity restrictions of Bector et al. [13]. 

 In this paper, a new mixed type higher-order symmetric 

duality over cone in multiobjective programming is 

formulated. The weak, strong and converse duality theorems 
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are proved for these programs under 

 -invexity/ -pseudoinvexity assumptions. Self duality also 

discussed. As a special case of our duality relation, we give 

some known duality results. Special cases are discussed to 

show that this study extends some of the known results in [14], 

[15] and [4]  

 

II. PREREQUISITES 

For N= {1, 2, 3,  ..., n} and M= {1, 2, 3,  ..., m}, let 

,1 NJ  MK 1  and 12 \= JNJ
 and 12 \= KMK

. 

Let 
|| 1J
 denote the number of elements in the set 1J

. The 

other numbers 
|| 2J
, 

|| 1K
 and 

|| 2K
 are defined similarly. 

Notice that if 
=1J

, then 
NJ =2 , that is 

0|=| 1J
 and 

nJ |=| 2 . Hence, 
|

1
|J

R  is zero dimensional Euclidean space 

and 
|

2
|J

R  is n-dimensional Euclidean space. It is clear that 

any 
nRx  can be written as 

|
2

|2|
1

|121  , }, ,{=
JJ

RxRxxxx 
. Similarly, any 

mRy
 can be written as 

|
2

|2|
1

|121  , }, ,{=
KK

RyRyyyy 
. 

We consider the following programming problem : 

(P)      Minimize ),(xF  

                           SxQxg       ,)(  

where 
mnRS   and RSF :  and Q is a closed 

convex cone. 

The following convention for vector inequalities will be 

used: If a, b 
nR , then 

 

  , =1,2,...,i ia b a b i n   ; 

 a b a b    and ba  ; 

.1,2,...,=,>> nibaba ii  

  

Definition 2.1 A function RS:  is said to be 

higher-order invex at Su  with respect to SSS :  

and ,: RSSh   if for 

all ( , ) ,x p S S 
( ) ( ) ( , ) ( , )

( , ){ ( ) ( , )}.

T

p

T

x p

x u h u p p h u p

x u u h u p

 

 

    

   

Definition 2.2 A function RS:  is said to be 

higher-order pseudoinvex at 
nRu  with respect to 

SSS :  and ,: RSSh   if for all 
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( , ) ,x p S S 
( , ){ ( ) ( , )} 0

( ) ( ) ( , ) ( , ) 0.

T

x p

T

p

x u u h u p

x u h u p p h u p

 

 

  

     
 

  Unless otherwise stated, 321 ,, CCC  and 4C  represent 

closed convex cones in 
|

1
|J

R , 
|

2
|J

R ,
|

1
|K

R  and 
|

2
|K

R , 

respectively, with non-empty interiors and 1,2,3,4= ,
*

iCi  

is its polar cones and 
nRS 1  and 

mRS 2  are open sets 

such that 2121 SSCC  . 

 

III. HIGHER-ORDER MIXED TYPE SYMMETRIC DUALITY 

We consider the following pair of higher order symmetric 

duals and establish weak, strong and converse duality 

theorems. 

Primal Problem (MHPC): 

Minimize ( , , ) =L x y p
 

1 1 2 2 1 1 1 2 2 2

1 2 1 2( , ) ( , ) ( , , ) ( , , )f x y f x y h x y p h x y p  

1 1 1 1 2 2 2 2

1 1 2 2

2 2 2 2 2 2

2 2 2

( ) ( , , ) ( ) ( , , )

( ) [ ( , ) ( , , )]

T T

p p

T

y p

p h x y p p h x y p

y f x y h x y p

   

  
 

Subject to 

 

,),,(),(
*

3

111

11

11

1 Cpyxhyxf
py


      

(3.1) 

,),,(),(
*

4

222

22

22

2 Cpyxhyxf
py


      

(3.2) 

1 1 1 1 1 1

1 1 1( ) [ ( , ) ( , , )] 0,T

y p
y f x y h x y p  

     
(3.3) 

1 1 1 1 1 1

1 1 1( ) [ ( , ) ( , , )] 0,T

y p
p f x y h x y p  

     
(3.4) 

     
2 2 2 2 2 2

2 2 2( ) [ ( , ) ( , , )] 0,T

y p
p f x y h x y p   (3.5) 

1 2 2

2 2, , 0,x C x C y  
                    

(3.6) 

 

Dual Problem (MHDC): 

Minimize  ( , , ) =L x y p  

1 1 2 2 1 1 1 2 2 2

1 2 1 2( , ) ( , ) ( , , ) ( , , )f u v f u v g u v r g u v r    

1 1 1 1 2 2 2 2

1 1 2 2

2 2 2 2 2 2 2

2 2 2

( ) ( , , ) ( ) ( , , )

( ) [ ( , ) ( , , )]

T T

r r

T

u r

r g u v r r g u v r

u f u v g u v r

   

  
 

 

Subject to 

 

,),,(),(
*

1

111

11

11

11 Crvugvuf
ru


    

(3.7) 

,),,(),(
*

2

222

22

222

2 Crvugvuf
ru


        

(3.8) 

1 1 1 1 1 1

1 1 1 1( ) [ ( , ) ( , , )] 0,T

u r
u f u v g u v r  

   
(3.9) 

1 1 1 1 1 1

1 1 1 1( ) [ ( , ) ( , , )] 0,T

u r
r f u v g u v r  

       
(3.10) 

2 2 2 2 2 2 2

2 2 2( ) [ ( , ) ( , , )] 0,T

u r
r f u v g u v r  

    
(3.11) 

1 2 2

3 4, , 0,v C v C u                       (3.12) 

 

 where 

 (i) RRRf
KJ


|
1

||
1

|1 : , 

(ii) RRRf
KJ


|
2

||
2

|2 : , 

(iii) RRRg
KJ


|
1

||
1

|1 : , 

(iv) RRRg
KJ


|
2

||
2

|2 : , 

(v) ,:
|

1
||

1
||

1
|1 RRRRh

KKJ
  

(vi) RRRRh
KKJ


|
2

||
2

||
2

|2 : , are twice 

differentiable functions, respectively, 

 (vii) 

|
1

|1 K
Rp 

, 

|
2

|2 K
Rp 

, 
|

1
|1 J

Rr   and 

.
|

2
|2 J

Rr   

IV. DUALITY THEOREMS 

Theorem 4.1 (Weak Duality).  

 Let ),,,,,( 212121 ppyyxx  be feasible for (PP) and 

),,,,,( 212121 rrvvuu  be feasible for (DP). Suppose that 

 (i) )(., 11 vf  is higher-order pseudo-invex at 
1u  with 

respect to 1  and ),,( 1111 rvug , 

(ii) ,.)( 11 xf  is higher-order pseudo-invex at 
1y  with 

respect to 2  and ),,( 1111 pyxh , 

(iii) )(., 22 vf  is higher-order invex at 
2u  with respect to 

3  and ),,( 2222 rvug , 

(iv) ,.)( 22 xf  is higher-order invex at 
2y  with respect 

to 4  and ),,( 2222 pyxh , 

(v) ,),( 1

1111

1 Cruux   

(vi) ,),( 3

1111

2 Cpyyv   

(vii) ,),( 2

2222

3 Cruux   

(viii) .),( 4

2222

4 Cpyyv   

 Then  

 
1 2 1 2 1 2 1 2 1 2 1 2( , , , , , ) ( , , , , , ).L x x y y p p M u u v v r r  (4.1) 

  

Proof: From hypothesis (vii), (viii) and equations (3.2) and 

(3.8), we get 

 
2 2 2 2 2 2 2 2

3 2 2 2

2 2 2 2 2 2 2

2 2 2

( , )[ ( , ) ( , , )]

[ ( , ) ( , , )]

x r

x r

x u f u v g u v r

u f u v g u v r

  

  
 

2 2 2 2 2 2 2

2 2 2[ ( , ) ( , , )],
x r

r f u v g u v r    

 
2 2 2 2 2 2 2

4 2 2 2

2 2 2 2 2 2

2 2 2

( , )[ ( , ) ( , , )]

[ ( , ) ( , , )]

y p

y p

v y f x y h x y p

y f x y h x y p

  

    

2 2 2 2 2 2

2 2 2[ ( , ) ( , , )].
y p

p f x y h x y p    
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Which on using equations (3.5) and (3.11) implies that 

 
2 2 2 2 2 2 2 2

3 2 2 2

2 2 2 2 2 2 2

2 2 2

( , )[ ( , ) ( , , )]

[ ( , ) ( , , )] 0,

x r

x r

x u f u v g u v r

u f u v g u v r

  

   
(4.2) 

2 2 2 2 2 2 2

4 2 2 2

2 2 2 2 2 2

2 2 2

( , )[ ( , ) ( , , )]

[ ( , ) ( , , )] 0.

y p

y p

v y f x y h x y p

y f x y h x y p

  

   
(4.3) 

 

  Now from hypothesis (iii) and (iv), we have 

 
2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2

( , ) ( , ) ( , , )

( ) ( , , ) ( , , )T

p

f x v f u v h x v p

p h x v p h u v p

 

  
 

2 2 2 2 2

2

2 2 2 2 2 2 2 2

3 2 2 2

     ( ) ( , , )

( , )[ ( , ) ( , , )],

T

p

x r

p h u v p

x u f u v g u v r

 

  
 

 and 
2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2

( , ) ( , ) ( , , )

( ) ( , , ) ( , , )T

p

f x y f x v h x y p

p h x y p h x v p

 

  
 

2 2 2 2 2

2

2 2 2 2 2 2 2

4 2 2 2

     ( ) ( , , )

( , )[ ( , ) ( , , )],

T

p

y p

p h x v p

v y f x y h x y p

 

  
 

 

which along with equations (4.2) and (4.3), we obtain 

 
2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2

( , ) ( , ) ( , , )

( ) ( , , ) ( , , )T

p

f x v f u v h x v p

p h x v p h u v p

 

  
 

2 2 2 2 2

2

2 2 2 2 2 2 2

2 2 2

 ( ) ( , , )

[ ( , ) ( , , )],

T

p

x r

p h u v p

u f u v g u v r

 

  
 

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2

( , ) ( , ) ( , , )

( ) ( , , ) ( , , )T

p

f x y f x v h x y p

p h x y p h x v p

 

  
 

2 2 2 2 2

2

2 2 2 2 2 2

2 2 2

      ( ) ( , , )

[ ( , ) ( , , )].

T

p

y p

p h x v p

y f x y h x y p

 

  
 

 

Now adding the above two equation, we get 

 
2 2 2 2 2 2 2 2 2 2 2 2

2

2 2 2 2 2 2

2 2 2

( , ) ( , , ) ( ) ( , , )

[ ( , ) ( , , )]

T

p

y p

f x y h x y p p h x y p

y f x y h x y p

  

  

 
2 2 2 2 2 2 2 2 2 2 2 2

2

2 2 2 2 2 2 2

2 2 2

( , ) ( , , ) ( ) ( , , )

[ ( , ) ( , , )].

T

p

x r

f u v h u v p p h u v p

u f u v g u v r

   

  

 (4.4) 

  Similarly, from hypothesis (i), (ii) and equations (3.1), (3.7), 

we get 

 

1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1

( , )[ ( , ) ( , , )]

( )[ ( , ) ( , , )],

u r

u r

x u f u v g u v r

u r f u v g u v r

  

   
 

and 

1 1 1 1 1 1 1

2 1 1 1

1 1 1 1 1 1 1

1 1 1

( , )[ ( , ) ( , , )]

( )[ ( , ) ( , , )].

y p

y p

v y f x y h x y p

y p f x y h x y p

  

   
 

 

Now inequalities (3.3), (3.4), (3.9) and (3.10) gives 

 

 
1 1 1 1 1 1 1

1 1 1 1 1( , )[ ( , ) ( , , )] 0,
u r

x u f u v g u v r     

and 

 
1 1 1 1 1 1 1

2 1 1 1( , )[ ( , ) ( , , )] 0,
y p

v y f x y h x y p     

 

 which by hypothesis (i) and (ii) implies 

 
1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1

( , ) ( , ) ( , , )

( ) ( , , )T

p

f x v f u v h x v p

p h x v p

 

 

1 1 1 1 1 1 1 1 1

1( , , ) ( ) ( , , ) 0,T

p
h u v p p h u v p     

and 
1 1 1 1 1 1 1 1

1 1

1 1 1 1 1

1

( , ) ( , ) ( , , )

( ) ( , , )T

p

f x y f x v h x y p

p h x y p

 

 
 

1 1 1 1 1 1 1 1 1

1( , , ) ( ) ( , , ) 0.T

p
h x v p p h x v p     

 Adding the above two inequalities, we get 

 

),,()(),,(),( 1111

1

1111111

1 pyxhppyxhyxf
p

T  

 
1 1 1 1 1 1 1 1 1 1 1

1 1( , ) ( , , ) ( ) ( , , ).T

p
f u v h u v p p h u v p   

 (4.5) 

  Combining inequalities (4.4) and (4.5), we have 

 

 
1 2 1 2 1 2 1 2 1 2 1 2( , , , , , ) ( , , , , , ).L x x y y p p M u u v v r r

 
 

 Thus the results holds. 

Theorem 4.2 (Strong Duality).  

 Let ),,,,,( 212121 ppyyxx  be an optimal solution of 

(MHPC). Suppose that 

 (i)  ),,( 1111

11 pyxh
pp

  is positive or negative definite 

and  ),,( 2222

22 pyxh
pp

  is         negative definite, 

(ii) 
0),,(),( 111111111  pyxhyxf py  

and
0,),,(),(       222222222  pyxhyxf py  

(iii) 

0=0=)],,(),([)( 11111111111 ppyxhyxfp py

T 

 and 
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0,=0=]),(

),,(),,([

22222

22

2222

2

2222

2

2

ppyxf

pyxhpyxhy

yy

py





 

(iv) ,0),,(=,0),( 111111 yxgyxh  

,0),(=,0),( 111

1

111

1 yxgyxh
rx

 , 

,0),(=,0),(       111

1

111

1 yxhyxh
py

  and 

,0),,(=,0),( 222222 yxgyxh  

,0).,(=,0),(       222

2

222

2 yxgyxh
rx

  

Then 

(I) 0)=0,=,,,,( 212121 rryyxx  is feasible for 

(MHDC) and 

(II) 

).,,,,,(=),,,,,( 212121212121 rryyxxMppyyxxL
 

 

 Furthermore, if the hypothesis of Theorem (4.1) are 

satisfied for all feasible solutions of (MHPC) and (MHDC), 

then 0)=0,=,,,,( 212121 rryyxx  is an optimal 

solution for (MHDC). 

Proof: Since ),,,,,( 212121 ppyyxx  is a n optimal 

solution of (MHPC), by the Fritz John necessary optimality 

conditions [1], there exist R21,,,  , 3

1 C , 

,4

2 C  and 2

2

1

1   , CC    such that the following 

conditions are satisfied at :),,,,,( 212121 ppyyxx
 

 
1 1 1 1 1 1 1

1 1

1 1 1 1 1 1 1 1

1 1 1 1

[ [ ( , ) ( , , )

( , , ) ] [ ( , )

x x

p x y x

f x y h x y p

h x y p p f x y

  

  

 
1 1 1 1 1 1 1 1 1 1 1

1 1

1

1

( , , )]( ) ]( )

0, , ,

p x
h x y p y p x x

forall x C

       

 

 (4.6) 
2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2 2 2 2 2

2 2

[ ( , ) ( , , )]

{ ( , , )}( )

x x

p x

f x y h x y p

h x y p y p p



   

 

    
 

2 2 2 2 2 2 2 2

2 2

2 2 2 2

2

{ ( , )}( )

]( ) 0, , ,

y x
f x y y p

x x forall x C

  



   

   
              (4.7) 

 
1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

[ ( , ) ( , , )

( , , ) ] ( ( , )

y y

p y y y

f x y h x y p

h x y p p f x y

  

  
 

1 1 1 1 1 1 1 1

1 1

1 1 1 1 1 1 1 1 1

( , , ))( )

[ ( , ) ( , , )] 0,

p y

y p

h x y p y p

f x y h x y p

  



  

   
 

, , 
|

1
|1 K

Ryforall                        (4.8) 

 
2 2 2 2 2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2 2 2

2 2

{ ( , , )}( )

[ ( , , ) ( , , )]

p y

y p

h x y p y p p

h x y p h x y p

   



   

  

2 2 2 2 2 2 2 2

2 2

| |2 2 2

{ ( , )}( )

0, , ,

y y

K

f x y y p

forall y R

  



   

  

     (4.9) 

 
1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1 1 1 1 1 1

{ ( , , )}( )

[ ( , ) ( , , )] = 0,

p p

y p

h x y p p y p

f x y h x y p

   



   

  
(4.10) 

 

2 2 2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2 2

2 2

{ ( , , )}( )

[ ( , ) ( , , )] = 0,

p p

y p

h x y p y p p

f x y h x y p

   



   

  
     (4.11) 

 0,=)],,(),([ 11111111

1

1 pyxhyxf py
      (4.12) 

0,=)],,(),([ 2222

2

222

2

2 pyxhyxf
py

    (4.13) 

0,=)],,(),([ 11111111

1

1 pyxhyxfy py
      (4.14) 

0,=)],,(),([ 11111111

1

11 pyxhyxfp py
    (4.15) 

0,=)],,(),([ 2222

2

222

2

22 pyxhyxfp
py



 (4.16) 

    0,=11x                                  (4.17) 

 0,=22x                                (4.18) 

 0,=22 y                                (4.19) 

 0,),,,,,,,,( 2212121              (4.20) 

 
1 2 1 2 1 2 2( , , , , , , , , ) 0,                    (4.21) 

 

  Premultiplying equations (4.10), (4.11) by 

)( 11111 pyp   , )( 22222 pyp   , 

respectively and then using equations (4.12)-(4.16), we get 

 

 

1 1 1 1 1

1 1 1 1 1 1 1 1

1 1

( )

( , , )( ) = 0,

T

p p

p y p

h x y p p y p

   

   

  

   
 

And 
2 2 2 2 2 2 2 2

2 2

2 2 2 2 2

( ) ( , , )

( )

p p
p y p h x y p

p y p

   

   

   

  
2 2 2 2 2 2 2 2

2 2= [ ( , ) ( , , )].
y p

y f x y h x y p  
 
 

Using hypothesis (i), we get 

 

.= 11111 pyp                      (4.22) 

  

Further using inequality (3.1), (3.6) and (4.21), we obtain 

 
2 2 2 2 2 2 2 2

2 2

2 2 2 2 2

( ) ( , , )

( ) 0,

p p
p y p h x y p

p y p
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which on using hypothesis (i)  

 

.= 22222 pyp                      (4.23) 

 

From equations (4.10) and (4.11), and hypothesis (ii), we 

obtain 

0,=1                               (4.24) 

  And 

0.=2                             (4.25) 

 

Now suppose, 0.=  Then equations (4.23), with (4.9) 

gives 0=2  and, with (4.25) implies 0=2  also 

equations (4.6), (4.22) implies 0=1  and equations (4.7), 

(4.23) and (4.25) implies 0=2 . From equation (4.8) and 

hypothesis (ii) yield 0,=  which along with equation 

(4.22), (4.24) reduces 0=1 . Thus 

0=),,,,,,,( 212121  , a contradiction to 

(4.20).   

 

Hence 0.=                       (4.26) 

 

Using equations (4.12), (4.14) and (4.15), we have 

 
1 1 1 1 1 1 1 1

1 1 1

1

( ) [ ( , )

( , , )] = 0,

T

y

p

y p f x y

h x y p

    

  

 

 Now equation (4.22), gives 

 

0.=)],,(),([ 111

1

11111 pyxhyxfp
py

T
         (4.27) 

 

which along with hypothesis (iii) yield 

 

0.=1p                                 (4.28) 

 

Further, from equation (4.9) and (4.23), we get 

  
2 2 2 2 2 2 2 2 2

2 2

2 2 2 2 2

2 2

[ ( , , ) ( , , )

( , ) ] = 0.

y p

y y

h x y p h x y p

f x y p





 

    
(4.29) 

 

 Now from hypothesis (iii), we obtain 

 

0.=2p                                     (4.30) 

 

Therefore equation (4.22) and (4.23) reduce to 

,= 11 y
                               

(4.31)  

 

  And 

 

.= 22 y
                              

(4.32) 

 

Also, it follows from equations (4.8), (4.22), (4.28) and 

hypothesis (ii) and (iv) that 

 

0.>=                               (4.33) 

 

So equation (4.31) implies 

 

0.�=
1

1




y                             (4.34) 

 

 Moreover, equation (4.6), (4.7) along with (4.22), (4.23), 

(4.30) and hypothesis (iv) yields 

 
1 1 1 1 1 1 1

1 1

1 1 1 1

1

[ ( , ) ( , , )

]( ) 0,  ,

x r
f x y h x y p

x x forall x C





 

             
(4.35) 

2 2 2 2 2 2 2

2 2

2 2 2 2

2

[ ( , ) ( , , )

]( ) 0,  ,

x r
f x y h x y p

x x forall x C





 

         
(4.36) 

 

 Let ,1

1 Cx   then 1

11 Cxx   and then above 

inequality implies 

 
1 2 2 2 2 2 2 2

2 2

2 1

1

[ ( , ) ( , , )

] 0,  ,

T

x r
x f x y h x y p

forall x C





 

  
 

 

Further by using equation (4.17) the above inequality also 

be rewritten as 

 
1 1 1 1 1 1 1 1

1 1

1 1 1

1

[ ( , ) ( , , )]

= 0,  .

T

x r
x f x y h x y p

x forall x C

 

 
 

 

Therefore 

 

,),,(),(
*

1

1111

1

111

1 Cpyxhyxf
rx

       (4.37) 

 

Similarly, we also obtain that 

 

.),,(),(
*

2

2222

2

222

2 Cpyxhyxf
rx

      (4.38) 

 

Thus 0)=0,=,,,,( 212121 rryyxx  satisfies the dual 

constraints (3.7)-(3.12), i.e, it is an feasible solution of 

)(MHDC .  

Also, using hypothesis (iv) we get the values of the 

objective functions of )(MHPC  and )(MHDC  at 

0)=0,=,,,,( 212121 ppyyxx and 

0)=0,=,,,,( 212121 rryyxx  are equal. Using Weak 

duality it easily shown that 
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0)=0,=,,,,( 212121 rryyxx  and 

0)=0,=,,,,( 212121 ppyyxx  are an optimal solutions 

for )(MHPC  and )(MHDC , respectively. 

Theorem 4.3 (Converse Duality). 

Let ),,,,,( 212121 rrvvuu  be an optimal solution of 

)(MHDC . Suppose that 

 (i)  ),,( 1111

11 rvug
rr

  is positive or negative definite 

and  ),,( 2222

22 rvug
rr

  is         negative definite, 

(ii) 
0),,(),( 111111111  rvugvuf ru  and 

0,),,(),(       222222222  pyxhyxf py  
 (iii) 

0=0=)],,(),([)( 11111111111 rrvugvufr ru

T   

and 
2 2 2 2 2 2 2 2

2 2

2 2 2 2 2

2 2

       ( , , ) ( , , )

( , ) = 0 = 0,

u r

u u

g u v r g u v r

f u v r r

 

 
 

(iv) ,0),,(=,0),( 111111 vugvug  

,0),(=,0),( 111

1

111

1 vugvug
ru

 , 

,0),(=,0),(       111

1

111

1 vugvug
rv

  and 

,0),,(=,0),( 222222 vuhvug  

,0).,(=,0),(       222

2

222

2 vuhvug
ru

  

Then 

 (I) 0)=0,=,,,,( 212121 rrvvuu  is feasible 

for )(MHPC  and 

(II) 

).,,,,,(=),,,,,( 212121212121 rrvvuuMppvvuuL
 

 

 Furthermore, if the hypothesis of Theorem 4.1 are satisfied 

for all feasible solutions of )(MHPC  and )(MHDC , then 

0)=0,=,,,,( 212121 rryyxx  is an optimal solution for 

)(MHPC . 

Proof. Follows on the line of Theorem 4.2. 

Theorem 4.4 (Self Duality). 

A primal (dual) problem having equivalent dual (primal) 

formulation is said to be self-dual, that is, if the dual can be 

recast in the form of the primal. In general, )(MHPC  and 

)(MHDC  are not self-duals without some added 

restrictions on f ; g; and h. If we assume 

,:
|

1
||

1
|1 RRRf

KJ
 ,:

|
2

||
2

|2 RRRf
KJ


,:
|

1
||

1
|1 RRRg

KJ
 ,:

|
2

||
2

|2 RRRg
KJ


,:
|

1
||

1
||

1
|1 RRRRh

KKJ
  

RRRRh
KKJ


|
2

||
2

||
2

|2 : , to be skew symmetric, that 

is 

1,2.,=),,(=),( 1111 ivufvuf ii   

and  

1,2,=),,,(=),,( 111111 irvugrvug ii 
 

 
Then we shall show that )(MHPC  and )(MHDC  are 

self-duals. By recasting the dual problem )(MHDC  as a 

minimization problem, we have 

Minimize  
=),,( rvuM
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T T
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T
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u f u v g u v r

   

    

Subject to 

 
1 1 1 1 1
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u r
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2 2 2 2 2 2
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1 1 1 1 1 1
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u r
r f u v g u v r    

1 2 2   , , 0,v v u 
 

 

As f, g and h are skew symmetric, i.e.,  

 

 ),(=),( 11

11

11

11 uvfvuf
uu

 , 

),(=),( 22
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22

21 uvfvuf
uu

 , 

),,(=),,( 111

11

111

11 ruvgrvug
uu

 , and  

),,(=),,( 222

21

222

21 ruvgrvug
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 , 

 

Then the above problem becomes : 

Minimize  
=),,( rvuM
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2
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1
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2
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1 ruvgruvguvfuvf 
1 1 1 1 2 2 2 2

1 1 2 2
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T T
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Subject to 

 
1 1 1 1 1
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1 1 1 1 1 1
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1 1 1 1 1 1

1 1 1 1( ) [ ( , ) ( , , )] 0,T
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Which shows that ),,( pvuM  is identical to ),,( pyxL , 

that is, the objective and the constraint functions are identical. 

Thus, the problem ),,( pyxL  becomes self-dual. 

It is obvious that the feasibility of ),,,,,( 212121 ppyyxx  

for ),,( pyxL  implies the feasibility of 

),,,,,( 212121 ppxxyy  for )(MHPC  implies the 

feasibility of for )(MHDC  and vice versa. 

  

V. SPECIAL CASE 

In this section, we consider some special cases of our 

problems by choosing particular forms of the closed convex 

sets 1C  and 2C . In all these cases, 

( , , ) = (1/2) ( , )   

  ( , , ) = (1/2) ( , ) ,

T

yy

T

xx

h x y p p f x y p

and g u v r r f u v r




 

(a) If 
0|=| 1K

, 
0|=| 1J

, 
0=p

 and 0=r , then 

)(MHPC
 and 

)(MHDC
 reduce to the programs studied 

in Chandra and Kumar [14]. 

(b) If 0|=| 1K , 0|=| 1J , 
nRC =1  and 

mRC =2 , 

then after removing inequalities (3.5), (3.11), our programs 

reduce to the problems considered in Mishra [4]. 

(c) If 0|=| 1K , 0|=| 1J , 
nRC =1  and 

mRC =2 , then 

the then after removing inequalities (3.5), (3.11), programs 

reduce to the second-order symmetric dual programs of Gulati 

et al. [15]. 

 

VI. CONCLUSION 

A pair of mixed symmetric dual programs has been 

formulated by considering the optimization under the 

assumptions of  -invexity and  -pseudoinvexity. It may be 

noted that the symmetric duality between )(MHPC  and 

)(MHDC  can be utilized to establish non differentiable 

mixed symmetric duality in integer over cone and other 

related programming problems. 
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