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ABSTRACT 

In this paper, we discuss a specific type of mixed syntactic n-

grams: syntactic n-grams with relation names, snr-grams. This 

type of syntactic n-grams combines lexical elements of the 

sentence with the syntactic data, but it keeps the properties of 

traditional n-grams and syntactic n-grams. We discuss two 

possibilities related to labelling of the relation names for snr-

grams: based on dependencies and based on constituencies. 

Examples of various types of n-grams, sn-grams, and snr-grams 

are given. 

1   INTRODUCTION 

In our previous works starting in 2012 we proposed a concept of 

syntactic n-grams (Sidorov, Velasquez, Stamatatos, Gelbukh & 

Chanona-Hernandez 2012, 2013, 2014; Sidorov 2013a, 2013b, 2013c). 

This concept is quite on the agenda of the computational linguistics: say, 

our works obtained many positive feedback comments, besides, the same 

concept was implemented independently for English language in the 

form of a large collection of syntactic n-grams obtained from books by 

(Goldberg and Orwant, 2013), while they were working on this project 

in Google.  

Let us remind that syntactic n-grams are n-grams of textual elements 

obtained in a specific non-linear manner based on syntactic relations 

(Sidorov 2013c), i.e., instead of using the order of elements in the surface 
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structure, the syntactic structure is used. For obtaining syntactic n-grams, 

we traverse the syntactic tree and use the order of elements in it. It is 

equivalent (but probably less clear) to say that we use subtrees of a 

syntactic tree as syntactic n-grams. It is obvious that the syntactic 

structure is non-linear with respect to the surface structure: the order of 

elements is usually changed. We discuss the concept of syntactic n-

grams in greater detail in the next section. 

Syntactic n-grams can be used in any task in the field of the Natural 

Language Processing, when traditional n-grams can be applied. It is 

especially important in the modern paradigm related to application of 

machine learning algorithms, because this paradigm is completely based 

on the concept of vector space model and feature selection, where the 

features are precisely n-grams or syntactic n-grams. 

Syntactic n-grams are similar in nature to so-called concepts (Poria, 

Agarwal, Gelbukh, Hussain & Howard 2014). Use of concepts in 

sentiment analysis has become very popular and set up a new research 

field called concept-level sentiment analysis (Poria, Cambria, Ku, Gui & 

Gelbukh 2014; Poria, Ofek, Gelbukh, Hussain & Rocach 2014). In 

standard sentiment lexicons concepts are usually ignored. However, 

modern research shows that concepts carry meaning and sentiment, and 

they are more useful for, for example, sentiment analysis than word-level 

approaches (Cambria, Poria, Gelbukh & Kwok 2014). Concepts are also 

useful to understand emotions (Das, Poria & Bandyopadhyay 2012). For 

this and other tasks, concept vectors are used instead of bag of words 

(Cambria, Fu, Bisio & Poria 2015; Poria, Gelbukh, Cambria, Hussain & 

Huang 2014). 

Machine learning simulates human ability for classification of 

objects based on their similarity. The best features for similarity 

calculation depend on a specific task. For example, for thematic 

classification of documents we need to take into account words themati-

cally related to each topic and ignore auxiliary words, while, say, for 

analysis of author's writing style we would prefer to focus precisely on 

auxiliary words, because they may reflect the style. Both supervised and 

unsupervised machine learning algorithms can be applied using syntactic 

n-grams as features in the corresponding vector space model. 

An alternative to machine learning methods is the paradigm based 

on formulation and application of handcrafted rules. This paradigm was 

prevalent until the end of the 20th century (Bolshakov, Gelbukh 2004). 

In this paradigm, the human evaluators analyze the example data of the 
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problem, try to propose some hypotheses about the structure and function 

of the phenomena related to the problem and after this, extract problem-

dependent features, and formulate rules. These rules usually correspond 

to selectional preferences, i.e., the generalized restrictions on 

combination between elements. The current state of the art is that 

machine learning algorithms—if they have sufficiently large marked 

corpus for training—outperform human crafted rules. Note that the 

human effort is still present, though it is moved from formulation of the 

rules to marking of the corpora (Gelbukh 2013).  

The advantage of machine learning algorithms over humans is that 

these algorithms are consistent and consider many variants during 

feature selection using vast data, while humans are not consistent, cannot 

process big volumes of data, and cannot generalize over too many 

examples. Obviously, the humans are better than the computers while 

marking the corpora using intuition, because they can use the extra 

linguistic world knowledge and common sense, which computers do not 

possess, for understanding of individual sentences or texts. However, it 

seems that given a marked corpus, a machine-learning algorithm can 

perform better feature selection than a human can. 

The paper is organized as follows. Dependency and constituency 

representations of syntactic relations are discussed in Section 2. In 

Section 3, we describe the concept of syntactic n-grams and present their 

various types. In Section 4 we propose the concept of syntactic n-grams 

with relation names (snr-grams) and give some examples of their 

extraction using formalisms of dependencies and constituencies. Finally, 

conclusions are drawn in Section 5. 

2 CONSTITUENCIES VS. DEPENDENCIES AS SYNTACTIC 

REPRESENTATIONS 

There are two main formalisms for representation of syntactic structure: 

dependencies and constituents. The dependency formalism directly 

reflects relations between words, usually using arrows. Since one word 

in a syntactic relation is the headword, while the other one is the 

dependent word, the arrow has the direction: head → dependent. The 

arrows are labelled with the types of syntactic relations. If there is no 

natural head, like, say, in case of a coordinative relation, some decision 

about the head/dependent words should be made anyway.  
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The constituency formalism represents syntactic relations with 

respect to the underlying formal grammar and reflects the history of the 

syntactic tree derivation according to this grammar. The syntactic 

relations between words are established based on the applied grammar 

rules: derivation history. Note that some relations are established not 

between words themselves, but between constituents, which represent 

the result of the previous application of the rules.  

Constituency trees have longer history in usage in the computational 

linguistics, because they are directly related to application of generative 

grammars (N. Chomsky). Modern approaches pay more attention to 

dependency trees, because they are more natural and direct. Besides, they 

contain the information about the syntactic roles of words, like “direct 

object”, “subject”, etc. 

 

2.1   Example of the Representation of a Syntactic Tree 

Let us present an example of the dependency and constituency 

formalisms for a syntactic tree, for instance, for the phrase John sees a 

black cat with a telescope. The syntactic tree that uses dependency 

formalism is shown in Fig. 1. We also show the POS tags of each word 

on the next line below the corresponding word. 

The example of representation of the same phrase using the 

formalism of constituencies is shown in Fig. 2. In this case, we mark with 

wider line the part of the constituent that corresponds to the headword. 

pobj 

prep 
dobj 

nsubj 

amod 
det 

det 

John   sees     a     black   cat   with    a    telescope 

NNP  VBZ    DT     JJ      NN   IN     DT     NN 

Fig. 1. Example of a dependency tree 
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We also show in the tree structure the left parts of the applied rules, i.e., 

the generalization introduced by each rule. 

This constituency tree is generated by the following very simple 

formal grammar. It is clear that real parsers can use more complex or 

more general rules, but for our discussion, this grammar is sufficient. We 

mark with “*” the head elements in the rules: 

S → NNP VP* 

VP → VP* PP 

NP → JJ NN* 

NP → DT NN* 

NP → DT NP* 

PP → IN* NP 

VP → VBZ* NP 

The derivation history of the phrase is the order of application of the 

grammar rules. For example, we start with the rules that correspond 

directly to words (terminal nodes) “NP → DT NN*”, “NP → JJ NN*”. 

After this, the “intermediate” rules like “VP → VBZ* NP” are applied 

and finally the “top” rule “S → NNP VP*” is used. This derivation 

history corresponds to the analysis strategy “bottom-up”, being the other 

possible strategy the reverse order of application of the rules: “top-

down”. 

 

NP

P 

PP 

VP 

VP

NP 

NP 

NP 

S 

John   sees    a    black   cat   with    a    telescope 

NNP  VBZ   DT     JJ     NN   IN     DT     NN 

Fig. 2. Example of a constituency tree 
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2.2   Conversion between Constituencies and Dependencies 

It is well-known that dependency and constituency formalisms are 

equivalent in general, i.e., there exists an algorithm that transforms the 

dependency tree structure into the constituency tree structure and vice 

versa (Gelbukh, Calvo, Torres 2005). It is not surprising, because both 

types of trees reflect the same syntactic reality. Note that this is only 

general (structural) conversion, as it does not convert the syntactic labels 

in both directions. 

The algorithm for constituency to dependency general conversion is 

simple. For each word that is a head word (it is marked with “wider” 

line) go up in the tree. At each step (while going up following the 

constituents) go down to a dependent constituent. After this follow 

downwards the head relations only (the “wider” line) and draw the arrow 

from the headword to the obtained dependent word. Continue going up 

in the tree from the point, when you start going down. 

For constituency to dependency general conversion, the formal 

grammar should mark the words that are heads on the right side of the 

rules, because otherwise we would not know the directions of the 

dependency arrows. Note that if the grammar does not mark them, the 

marking can be done in a random manner, but obviously with not so good 

results: the conversion will be done, but some arrows would have anti-

intuitive directions. It is also clear that the resulting dependency tree does 

not contain the names of syntactic relations for the arrows. 

The algorithm for dependency to constituency general conversion is 

also simple. We start with arrows at the lowest level and go to upper 

levels. For each arrow, we establish a constituent relation for the pair of 

words, being the headword the starting point of the arrow. If the 

headword already forms a constituent, then this constituent should be 

used instead of the word itself. Some additional conventions are 

necessary, for example, in case of bifurcations, we first process the 

arrows that are the closest ones to the word, or that nsubj relation is 

processed last. 

It is clear that for dependency to constituency general conversion 

the resulting constituency tree does not have the interpretation of 

constituents (left parts of the rules represented in the tree structure), 

because it is precisely what the formal grammar does; in certain sense, 

the resulting representation will lack of generalization for constituents. 
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3   SYNTACTIC N-GRAMS 

As we mentioned above, we introduced the concept of syntactic n-grams 

in our previous works (Sidorov et al. 2012, 2013, 2014; Sidorov 2013a, 

2013b, 2013c). Similar ideas were proposed in (Pado, Lapata 2007; 

Gelbukh 1999), but they were treated as very specific methods for certain 

tasks of syntactic or semantic analysis. The importance of the concept is 

confirmed by the fact that Google obtained and made public syntactic n-

grams for a large set of books in English (Goldberg and Orwant, 2013). 

In our earlier works, we preferred to use the term “syntactic 

dependency-based n-grams”, adding the words “dependency-based”. It 

was important, because there is possible naive misinterpretation of the 

term "syntactic n-grams" as "sequence of POS tags", because POS tags 

are perceived as carrying some syntactic information. In fact, it is not 

true: POS tags are more morphological than syntactic phenomena—the 

syntactic information is used only for disambiguation between several 

possible POS tags for a word. At most, we can consider them as 

morphosyntactic entities. Now, as the term "syntactic n-grams, sn-

grams" is more habitual, we can omit the words "dependency based". 

Note that we say "dependency based" (and not "constituency based"), 

because syntactic dependencies are much more direct projection of 

syntactic paths for construction of sn-grams. Constituencies can be 

applied to construction of sn-grams as well, though not so naturally, see 

discussion in Sections 2 and 4.  

So, while traditional n-grams are sequences of textual elements 

(words, POS tags, etc.) taken as they appear in texts, the general idea 

behind syntactic n-grams is to take the surface textual elements in a non-

linear order by following paths in syntactic trees. In this case, the order 

of textual elements is usually changed in comparison with the surface 

structure. 

3.1   Types of Syntactic N-grams 

In our previous works, we have proposed the classification of syntactic 

n-gram types. Depending on the elements that constitute them, there can 

be syntactic n-grams of words/lemmas/stems (lexical elements), POS 

tags, SR tags (names of Syntactic Relations), multiword expressions 

(Gelbukh, Kolesnikova 2013a, 2013b; Ledeneva, Gelbukh, García-

Hernández 2008), and even of characters (Sidorov et al. 2013, 2014).  
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For obtaining character sn-grams, we first construct sn-gram of 

lexical units (words or lemmas) and then character sn-grams are 

constructed over this sequence in the same way as for traditional 

character n-grams. Note that for this procedure it is preferable to use sn-

grams that contain most number of elements (long sn-grams, n-grams 

with large values of n), but each lexical element should be considered at 

least once. There is a problem for future research: how to calculate 

correctly the frequencies of character sn-grams obtained in this manner, 

because many elements in sn-grams are repeated. 

There also can be mixed sn-grams, e.g., one element in an sn-gram 

is a POS tag and the other one is a lexical unit. Note that character sn-

grams cannot be naturally mixed with other types of sn-grams, because 

they have different nature: all other types of sn-grams reflect properties 

of words (lexical unit, POS tag), even SR tags reflect the relations of a 

word with other word, while character sn-grams are sequences of 

characters obtained from already existing sn-grams of lexical units, so 

they are derivate, and in a certain sense they are secondary. We insist on 

considering them because in certain tasks, like, for example, authorship 

attribution, traditional character n-grams quite surprisingly give very 

good results, so character sn-grams should be tried as well. 

On the other hand, in (Sidorov, 2013a) we have proposed 

differentiating between continuous (non-interrupted path, path without 

bifurcations) and non-continuous (path with interruptions or returns (or 

bifurcations)) syntactic n-grams. It is obvious that continuous sn-grams 

are a special type of non-continuous sn-grams, namely sn-grams with no 

returns (without bifurcations). Intuitively, we consider that continuous 

sn-grams can contain more important linguistic information, but it 

should be verified for various tasks in the experimental manner. It is clear 

that for syntactic bigrams there is no difference between continuous and 

non-continuous sn-grams, because no bifurcations are possible in case of 

exactly two elements in an n-gram. 

Note that here appears another possible naïve misinterpretation of 

the general term “syntactic n-grams” that would be “n-grams of names 

of syntactic relations (SR tags)”. It is possible, since these sn-grams can 

be obtained only if we apply parsing before. Nevertheless, this interpre-

tation is too narrow: yes, it is the possible type of sn-grams, but there are 

other types as well. In general, when speaking about syntactic n-grams 

we refer not to a specific type of elements (SR tags, words, etc.) but to 

the manner of their construction by following paths in syntactic trees. 
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Another important consideration is related to the traditional practice 

of treatment of stop words (auxiliary words). There are two possibilities: 

taking them into account vs. filtering out of stop words. The possibility 

of filtering out of stop words can be easily applied to syntactic n-grams: 

we should follow syntactic paths and when we encounter with a stop 

word, we ignore it and just continue with the next word according to the 

path. In fact, this idea was generalized as “filtered n-grams” in (Sidorov 

2013c): we can filter out not only stop words, but any words that do not 

comply with any chosen criterion, for example, it can be a thresholds 

based on tf-idf values.  

Finally, we would like to mention that the elements of the same level 

in an sn-gram can be taken as they appear in the sentence, or can be 

reordered according to some criteria, for example, using the alphabetic 

order of the elements. The first possibility takes into account the word 

order in the sentences, while the second one tries to ignore possible 

(insignificant) changes in the word order. 

3.2   Extraction of Syntactic N-grams and their Representation 

The software for extraction of syntactic n-grams is available on the Web 

page of the author1. It takes as the input the file generated by the Stanford 

parser (de Marneffe, MacCartney, Manning 2006) and it produces sn-

grams of the desired size and type.  

Note that the software also treats in a practical manner the problem 

of exponential growth of the number of sn-grams in case of too many 

dependents of a word. This problem consists in the fact that if the number 

of the dependent words is large, say, more than six, then the number of 

possible combinations (i.e., non-continuous sn-grams) may become too 

large. It is very rare situation to have so many dependent words, but it 

may appear in real life, especially if something went wrong with parsing 

or if we want to treat punctuation (like parenthesis) and the parser 

chooses one word as their head. 

For the example in Fig. 1 and Fig. 2, the Stanford parser generates 

the output presented in Fig. 3 and Fig. 4 correspondingly. 

Let us now discuss how to represent syntactic n-grams. If we use 

only continuous sn-grams, then we can represent them using the 

sequences of words just like in case of the traditional n-grams. But if we 

                                                           
1 http://www.cic.ipn.mx/~sidorov 
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start considering non-continuous sn-grams, then it turns out that we need 

special metalanguage for their representation, namely for distinguishing 

the words that form a sequence from the words that have returns in the 

path (bifurcations).  

For example, if we have three words A, B, C and we want to express 

that both B and C are dependent from A, i.e., there is a return in the path 

(a bifurcation), then we separate B and C with a comma and put them 

into the brackets: “A [B, C]”. If there is no bifurcation that means that C 

depends from B and B depends from A, then we just write “A B C”. In 

the current version of our software we add more brackets: “[A[B[C]]]” 

and “[A[B,C]]”. This notation reflects more consistent use of brackets in 

each node and better shows the underlying tree structure. Note that if 

used uniformly, it does not affect the identity of sn-grams. 

3.3   Example of Extraction of Syntactic N-grams 

Let us consider the example presented in Fig. 1. The second line of the 

example contains the POS tags for each word. It is obvious that we can 

nsubj(sees-2, John-1) 

root(ROOT-0, sees-2) 

det(cat-5, a-3) 

amod(cat-5, black-4) 

dobj(sees-2, cat-5) 

prep(sees-2, with-6) 

det(telescope-8, a-7) 

pobj(with-6, telescope-8) 

Fig. 3. Results of the analysis using dependencies 

(ROOT 

  (S 

    (NP (NNP John)) 

    (VP (VBZ sees) 

      (NP (DT a) (JJ black) (NN cat)) 

      (PP (IN with) 

        (NP (DT a) (NN telescope)))) 

    )) 

Fig. 4. Results of the analysis using constituencies 
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substitute lexical units with their lemmas, for example, use see instead 

of sees, as well as with their POS tags, for instance, use VBZ instead of 

sees or NN instead of telescope, etc. Thus, we suppose that the reader 

understands this possibility and we will not illustrate it in the figure and 

in further discussion: we should just remember that while we use words, 

they can as well be substituted by lemmas or POS tags, or any 

combinations of these elements. As we mentioned in our previous works, 

it is a question of future experimental research to determine what types 

of sn-grams or mixed sn-grams are useful for particular tasks. 

Table 1. Traditional and syntactic bigrams 

Traditional bigrams Syntactic bigrams 

John sees  sees[with] 

sees a  telescope[a] 

a black sees[cat] 

black cat cat[black] 

cat with  with[telescope] 

with a  cat[a] 

a telescope sees[John] 

Table 2. Traditional and syntactic trigrams 

Traditional trigrams Syntactic trigrams 

John sees a with[telescope[a]] 

sees a black sees[cat,with] 

a black cat sees[John,cat] 

black cat with  sees[John,with] 

cat with a  sees[cat[a]] 

with a telescope sees[with[telescope]] 

 cat[a,black] 

 sees[cat[black]] 

Table 3. Traditional and syntactic 4-grams 

Traditional 4-grams Syntactic 4-grams 

John sees a black sees[cat[a,black]] 

sees a black cat sees[John,with[telescope]] 

a black cat with  sees[cat[a],with] 
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black cat with a  sees[John,cat[black]] 

cat with a telescope sees[John,cat,with] 

 sees[cat,with[telescope]] 

 sees[John,cat[a]] 

 sees[cat[black],with] 

 sees[with[telescope[a]]] 

Table 4. Traditional and syntactic 5-grams 

Traditional 5-grams Syntactic 5-grams 

John sees a black cat sees[John,cat[black],with] 

sees a black cat with sees[cat[a,black],with] 

a black cat with a sees[John,with[telescope[a]]] 

black cat with a telescope sees[John,cat[a,black]] 

 sees[cat[black],with[telescope]] 

 sees[cat[a],with[telescope]] 

 sees[John,cat,with[telescope]] 

 sees[cat,with[telescope[a]]] 

 sees[John,cat[a],with] 

Table 5. Traditional and syntactic 6-grams 

Traditional 6-grams Syntactic 6-grams 

John sees a black cat with sees[John,cat[a,black],with] 

sees a black cat with a sees[John,cat[a],with[telescope]] 

a black cat with a telescope sees[John,cat,with[telescope[a]]] 

 sees[cat[black],with[telescope[a]]] 

 sees[cat[a],with[telescope[a]]] 

 sees[John,cat[black],with[telescope]] 

 sees[cat[a,black],with[telescope]] 

Table 6. Traditional and syntactic 7-grams 

Traditional 7-grams Syntactic 7-grams 

John sees a black cat with a sees[John,cat[a],with[telescope[a]]] 

sees a black cat with a telescope sees[cat[a,black],with[telescope[a]]] 

 sees[John,cat[black],with[telescope[a]]] 

 sees[John,cat[a,black],with[telescope]] 
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Let us extract all possible traditional n-grams and syntactic n-grams 

of various sizes and types from the example sentence. First, we present 

traditional n-grams of words of various sizes and syntactic n-grams of 

the same sizes in Tables 1-6. We start with bigrams and go till 7-grams. 

Note that in practical tasks of the computational linguistics, we usually 

do not need larger size of n-grams, because they do not repeat any more 

in texts, i.e., their frequency is always equal to 1 in any corpus and they 

are practically useless.  

It can be observed that syntactic n-grams are much more 

linguistically motivated, because for their construction we use very 

important linguistic knowledge: syntactic structure. For example, 

traditional n-grams like “with a” or “sees a” no longer form part of the 

features for machine learning algorithms. A counterargument might be 

that these n-grams can appear consistently in the corpus. The answer to 

this counterargument is that though it is true, these n-grams contain more 

noise than real information, because there is no linguistic reality behind 

them. 

Now let us present syntactic n-grams of SR tags, Tables 7–12. 

Obviously, there are no traditional n-grams using this type of elements. 

Table 7. Syntactic 

bigrams of SR tags 

Syntactic bigrams 

prep[pobj] 

root[nsubj] 

root[prep] 

root[dobj] 

dobj[amod] 

pobj[det] 

dobj[det] 
 

                     Table 8. Syntactic 

trigrams of SR tags 

Syntactic trigrams 

prep[pobj[det]] 

root[dobj,prep] 

root[dobj[amod]] 

root[nsubj,dobj] 

dobj[det,amod] 

root[prep[pobj]] 

root[nsubj,prep] 

root[dobj[det]] 
 

Table 9. Syntactic 4-grams of SR tags 

Syntactic 4-grams 

root[dobj,prep[pobj]] 

root[nsubj,dobj,prep] 

root[prep[pobj[det]]] 
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root[dobj[det],prep] 

root[nsubj,dobj[amod]] 

root[dobj[amod],prep] 

root[nsubj,prep[pobj]] 

root[nsubj,dobj[det]] 

root[dobj[det,amod]] 

Table 10. Syntactic 5-grams of SR tags 

Syntactic 5-grams 

root[dobj[amod],prep[pobj]] 

root[dobj,prep[pobj[det]]] 

root[nsubj,dobj[amod],prep] 

root[dobj[det,amod],prep] 

root[nsubj,dobj[det,amod]] 

root[dobj[det],prep[pobj]] 

root[nsubj,prep[pobj[det]]] 

root[nsubj,dobj,prep[pobj]] 

root[nsubj,dobj[det],prep] 

Table 11. Syntactic 6-grams of SR tags 

Syntactic 6-grams 

root[nsubj,dobj[amod],prep[pobj]] 

root[dobj[amod],prep[pobj[det]]] 

root[dobj[det,amod],prep[pobj]] 

root[nsubj,dobj[det,amod],prep] 

root[dobj[det],prep[pobj[det]]] 

root[nsubj,dobj[det],prep[pobj]] 

root[nsubj,dobj,prep[pobj[det]]] 

Table 12. Syntactic 7-grams of SR tags 

Syntactic 7-grams 

root[nsubj,dobj[det,amod],prep[pobj]] 

root[nsubj,dobj[amod],prep[pobj[det]]] 

root[dobj[det,amod],prep[pobj[det]]] 

root[nsubj,dobj[det],prep[pobj[det]]] 
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In a similar manner, we can construct syntactic n-grams using 

constituency trees, namely, the derivation history, based on 

considerations presented in Section 4. We give the example of bigrams 

of relations based on derivation history in Table 13. The parentheses are 

used for containing the corresponding fragment of the derivation history. 

In this case, we consider that the relation “root” corresponds to the left 

part of the rule with the element “S”. For comparison, we give also the 

syntactic bigrams based on SR tags from Table 7. 

Table 13. Syntactic bigrams of derivation history fragments 

Syntactic bigrams  

based on derivation history 

Syntactic bigrams  

based on SR tags 

(VP,VP,PP)[(PP,NP)] prep[pobj] 

(S)[(NN)] root[nsubj] 

(S)[(VP,VP,PP)] root[prep] 

(S)[(VP,NP,NP)] root[dobj] 

(VP,NP,NP)[(NP)] dobj[amod] 

(PP,NP)[(NP)] pobj[det] 

(VP,NP,NP)[(NP)] dobj[det] 

4   SYNTACTIC N-GRAMS WITH RELATION NAMES  

(SNR-GRAMS) 

We hope that the reader now has clear idea about the concept of syntactic 

n-grams and their types. Among types of syntactic n-grams we 

mentioned that there can be mixed syntactic n-grams. In this sense, we 

already considered the fact that syntactic n-grams can contain names of 

syntactic relations mixed with other elements. Nevertheless, there are 

considerations for drawing attention to this particular type of sn-grams: 

they contain both lexical/morphological elements (words, lemmas, POS 

tags) and at the same time the names of syntactic relations (SR tags). Let 

us call these sn-grams that contain relation names “snr-grams”, when we 

prefer to use the abbreviation.  

It can be observed that snr-grams convey more information than any 

other type of n-grams or sn-grams, and still they can be used as features 

in machine learning tasks, when other n-grams can be used. So, we 

believe that this type of sn-grams deserves special attention. We have 
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preliminary information that snr-grams performed better in the task of 

the periphrasis as compared to n-grams and other types of sn-grams 

(personal communication of Hiram Calvo, to be published soon). 

There is also a certain problem that consists in how to count the 

number of elements in snr-grams. If we count both words/POS tags 

together with SR tags then, say, there will be no bigrams, and in general, 

no n-grams with even values of n. So our suggestion, if we deal with snr-

grams, is counting only the elements different from SR tags. In case that 

we deal with sn-grams of SR tags only, then, obviously, we should count 

these elements (SR tags). In general, if we want to use mixed n-grams, 

when certain elements are word based (words, POS tags) and the other 

elements are relation based (SR tags), we should count SR tags only if 

we do not want to take into account the word based elements. For 

example, if we want to consider syntactic bigrams, where the first 

element is the word and the second one is the SR tag, then we treat the 

SR tags as the proper element of the bigrams. On the other hand, if we 

are working with snr-grams, then SR tags should not be counted for 

determining the snr-gram size.  

Tables 14–16 show snr-grams from the example above using SR 

tags as part of snr-grams. Parentheses before each word contain the 

relation name. Note that it should appear immediately before the word 

because of ambiguities of possible bifurcations.  

Table 14. Snr-grams of size 2 (SR tags) 

Snr-grams 

sees[(prep)with] 

telescope[(det)a] 

sees[(dobj)cat] 

cat[(amod)black] 

with[(pobj)telescope] 

cat[(det)a] 

sees [(nsubj)John] 

Table 15. Snr-grams of size 3 (SR tags) 

Snr-grams 

with[(pobj)telescope[(det)a]] 

sees[(dobj)cat,(prep)with] 
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sees[(nsubj)John,(dobj)cat] 

sees[(nsubj)John,(prep)with] 

sees[(dobj)cat[(det)a]] 

sees[(prep)with[(pobj)telescope]] 

cat[(det)a,(amod)black] 

sees[(dobj)cat[(mod)black]] 

Table 16. Snr-grams of size 4 (SR tags) 

Snr-grams 

sees[(dobj)cat[(det)a,(amod)black]] 

sees[(nsubj)John,(prep)with[(pobj)telescope]] 

sees[(dobj)cat[(det)a],(prep)with] 

sees[(nsubj)John,(dobj)cat[(amod)black]] 

sees[(nsubj)John,(dobj)cat,(prep)with] 

sees[(dobj)cat,(prep)with[(pobj)telescope]] 

sees[(nsubj)John,(dobj)cat[(det)a]] 

sees[(dobj)cat[(amod)black],(prep)with] 

sees[(prep)with[(pobj)telescope[(det)a]]] 

 

There are two possibilities for the first word in an snr-gram:  

1. We can add to the first word of an snr-gram the 

corresponding SR tag (the name of the corresponding 

incoming arrow), because it always exists, or 

2. We can leave the first word in an snr-gram without the SR 

tag, because it does not connect this word to any other 

element of the given snr-gram. 

We choose the second option. For example, instead of the bigram 

(pobj)telescope[(det)a], we write the bigram telescope[(det)a]. 

In the tables above, we used dependency trees for extraction of snr-

grams, but constituency trees can be used as well. There are several 

possibilities related to which part of the derivation history of the 

corresponding constituency tree should be included into the description 

of each relation: 

 Use the derivation history that is below the node vs. above the node 

vs. both parts (above and below). These strategies correspond to 

bottom-up parsing and top-down parsing. 
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 Use only the left part of the rule vs. use the whole rule, 

 Use only the last derivation vs. use the whole derivation chain or 

several last steps (say, two, three, etc.). 

We present the example for (1) the whole derivation chain, 

(2) below the node, and (3) using the left part of the rule. Other 

possibilities should be tried as well in experiments for particular tasks. 

We start from the left element of a constituent, go up to the least common 

node, and then go down to the right element. At each step we take the 

left part of the corresponding rule. In tables 17–19 we present the snr-

grams of sizes 2, 3, and 4 extracted from the example sentence. 

Table 17. Snr-grams of size 2 (derivation history) 

Snr-grams based on constituencies 

sees[(VP,VP,PP)with] 

telescope[(NP)a] 

sees[(VP,NP,NP)cat] 

cat[(NP)black] 

with[(PP,NP)telescope] 

cat[(NP)a] 

sees [(S,VP,VP)John] 

Table 18. Snr-grams of size 3 (derivation history) 

Snr-grams based on constituencies 

with[(PP,NP)telescope[(NP)a]] 

sees[(VP,NP,NP)cat,(VP,VP,PP)with] 

sees[(S,VP,VP)John,(VP,NP,NP)cat] 

sees[(S,VP,VP)John,(VP,VP,PP)with] 

sees[(VP,NP,NP)cat[(NP)a]] 

sees[(VP,VP,PP)with[(PP,NP)telescope]] 

cat[(NP)a,(NP)black] 

sees[(VP,NP,NP)cat[(NP)black]] 

Table 19. Snr-grams of size 4 (derivation history) 

Snr-grams based on constituencies 

sees[(VP,NP,NP)cat[(NP)a,(NP)black]] 

sees[(S,VP,VP)John,(VP,VP,PP)with[(PP,NP)telescope]] 
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sees[(VP,NP,NP)cat[(NP)a],(VP,VP,PP)with] 

sees[(S,VP,VP)John,(VP,NP,NP)cat[(NP)black]] 

sees[(S,VP,VP)John,(VP,NP,NP)cat,(VP,VP,PP)with] 

sees[(VP,NP,NP)cat,(VP,VP,PP)with[(PP,NP)telescope]] 

sees[(S,VP,VP)John,(VP,NP,NP)cat[(NP)a]] 

sees[(VP,NP,NP)cat[(NP)black],(VP,VP,PP)with] 

sees[(VP,VP,PP)with[(PP,NP)telescope[(NP)a]]] 

If we use SR tags, then the usefulness of snr-grams is explained by 

the fact that they allow to distinguish the syntactic role of each element 

in the n-gram, for example, “sees[(nsubj)John]” vs. “sees[(dobj)cat]”, 

when the only difference in the verb-noun combination is the relation 

name. Obviously, it depends on the task if this difference is relevant 

or not. 

In case of derivation history fragments, their function is not so clear 

as in case of SR tags, for example sees[(S,VP,VP)John] vs. 

sees[(VP,NP,NP)cat]. We can deduce that one of the fragments includes 

the tree root (“S”), while the other does not. We can also see how far is 

the distance between these two nodes in terms of the number of the 

applied rules and their types. Future experiments should demonstrate 

how useful this information is. 

5   CONCLUSIONS 

In this paper, we introduced and discussed the concept of the syntactic 

n-grams with relation names, snr-grams, which is a special type of mixed 

syntactic n-grams.  

We have presented examples of snr-grams of various sizes, 

constructed for both tags of names of syntactic relations (SR tags) and 

for fragments of derivation history. We consider that snr-grams can be 

applied in many tasks of the Natural Language Processing as features for 

machine learning algorithms. Future experiments should confirm in 

which tasks their usage is beneficial.  

For having the possibility of discussion of the concept of the snr-

grams, we described the formalisms of dependencies and constituents 

used for the representation of the syntactic information and several 

related algorithms. We also described several issues related to the 

introduced in our previous works concept of syntactic n-grams. 
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Our future work will include analyzing the role of syntactic n-grams 

in different text analysis tasks as textual entailment (Pakray et al. 2010, 

2011), personality detection (Poria, Gelbukh, Agarwal, Cambria & 

Howard 2013), sentiment analysis (Poria, Cambria, Winterstein & 

Huang 20104), and emotion detection (Poria, Gelbukh, Hussain, 

Howard, Das & Bandyopadhyay 2013; Poria, Gelbukh, Cambria, Das & 

Bandyopadhyay 2012). Syntactic n-grams can be very useful for the text 

analysis applications where insufficient training data are available, 

which raises the need of semi-supervised learning (Poria, Gelbukh, 

Hussain, Bandyopadhyay & Howard 2013). 
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