
International Journal of Computational Linguistics and Applications, vol. 5, no. 2, 2014, pp. 25–47

Received 17/02/2014, accepted 23/04/2014, final 2/07/2014.

ISSN 0976-0962, http://ijcla.bahripublications.com

Should Syntactic N-grams Contain

Names of Syntactic Relations?

GRIGORI SIDOROV

Instituto Politécnico Nacional, Mexico

ABSTRACT

In this paper, we discuss a specific type of mixed syntactic n-

grams: syntactic n-grams with relation names, snr-grams. This

type of syntactic n-grams combines lexical elements of the

sentence with the syntactic data, but it keeps the properties of

traditional n-grams and syntactic n-grams. We discuss two

possibilities related to labelling of the relation names for snr-

grams: based on dependencies and based on constituencies.

Examples of various types of n-grams, sn-grams, and snr-grams

are given.

1 INTRODUCTION

In our previous works starting in 2012 we proposed a concept of

syntactic n-grams (Sidorov, Velasquez, Stamatatos, Gelbukh &

Chanona-Hernandez 2012, 2013, 2014; Sidorov 2013a, 2013b, 2013c).

This concept is quite on the agenda of the computational linguistics: say,

our works obtained many positive feedback comments, besides, the same

concept was implemented independently for English language in the

form of a large collection of syntactic n-grams obtained from books by

(Goldberg and Orwant, 2013), while they were working on this project

in Google.

Let us remind that syntactic n-grams are n-grams of textual elements

obtained in a specific non-linear manner based on syntactic relations

(Sidorov 2013c), i.e., instead of using the order of elements in the surface

26 GRIGORI SIDOROV

structure, the syntactic structure is used. For obtaining syntactic n-grams,

we traverse the syntactic tree and use the order of elements in it. It is

equivalent (but probably less clear) to say that we use subtrees of a

syntactic tree as syntactic n-grams. It is obvious that the syntactic

structure is non-linear with respect to the surface structure: the order of

elements is usually changed. We discuss the concept of syntactic n-

grams in greater detail in the next section.

Syntactic n-grams can be used in any task in the field of the Natural

Language Processing, when traditional n-grams can be applied. It is

especially important in the modern paradigm related to application of

machine learning algorithms, because this paradigm is completely based

on the concept of vector space model and feature selection, where the

features are precisely n-grams or syntactic n-grams.

Syntactic n-grams are similar in nature to so-called concepts (Poria,

Agarwal, Gelbukh, Hussain & Howard 2014). Use of concepts in

sentiment analysis has become very popular and set up a new research

field called concept-level sentiment analysis (Poria, Cambria, Ku, Gui &

Gelbukh 2014; Poria, Ofek, Gelbukh, Hussain & Rocach 2014). In

standard sentiment lexicons concepts are usually ignored. However,

modern research shows that concepts carry meaning and sentiment, and

they are more useful for, for example, sentiment analysis than word-level

approaches (Cambria, Poria, Gelbukh & Kwok 2014). Concepts are also

useful to understand emotions (Das, Poria & Bandyopadhyay 2012). For

this and other tasks, concept vectors are used instead of bag of words

(Cambria, Fu, Bisio & Poria 2015; Poria, Gelbukh, Cambria, Hussain &

Huang 2014).

Machine learning simulates human ability for classification of

objects based on their similarity. The best features for similarity

calculation depend on a specific task. For example, for thematic

classification of documents we need to take into account words themati-

cally related to each topic and ignore auxiliary words, while, say, for

analysis of author's writing style we would prefer to focus precisely on

auxiliary words, because they may reflect the style. Both supervised and

unsupervised machine learning algorithms can be applied using syntactic

n-grams as features in the corresponding vector space model.

An alternative to machine learning methods is the paradigm based

on formulation and application of handcrafted rules. This paradigm was

prevalent until the end of the 20th century (Bolshakov, Gelbukh 2004).

In this paradigm, the human evaluators analyze the example data of the

SHOULD SYNTACTIC N-GRAMS CONTAIN... 27

problem, try to propose some hypotheses about the structure and function

of the phenomena related to the problem and after this, extract problem-

dependent features, and formulate rules. These rules usually correspond

to selectional preferences, i.e., the generalized restrictions on

combination between elements. The current state of the art is that

machine learning algorithms—if they have sufficiently large marked

corpus for training—outperform human crafted rules. Note that the

human effort is still present, though it is moved from formulation of the

rules to marking of the corpora (Gelbukh 2013).

The advantage of machine learning algorithms over humans is that

these algorithms are consistent and consider many variants during

feature selection using vast data, while humans are not consistent, cannot

process big volumes of data, and cannot generalize over too many

examples. Obviously, the humans are better than the computers while

marking the corpora using intuition, because they can use the extra

linguistic world knowledge and common sense, which computers do not

possess, for understanding of individual sentences or texts. However, it

seems that given a marked corpus, a machine-learning algorithm can

perform better feature selection than a human can.

The paper is organized as follows. Dependency and constituency

representations of syntactic relations are discussed in Section 2. In

Section 3, we describe the concept of syntactic n-grams and present their

various types. In Section 4 we propose the concept of syntactic n-grams

with relation names (snr-grams) and give some examples of their

extraction using formalisms of dependencies and constituencies. Finally,

conclusions are drawn in Section 5.

2 CONSTITUENCIES VS. DEPENDENCIES AS SYNTACTIC

REPRESENTATIONS

There are two main formalisms for representation of syntactic structure:

dependencies and constituents. The dependency formalism directly

reflects relations between words, usually using arrows. Since one word

in a syntactic relation is the headword, while the other one is the

dependent word, the arrow has the direction: head → dependent. The

arrows are labelled with the types of syntactic relations. If there is no

natural head, like, say, in case of a coordinative relation, some decision

about the head/dependent words should be made anyway.

28 GRIGORI SIDOROV

The constituency formalism represents syntactic relations with

respect to the underlying formal grammar and reflects the history of the

syntactic tree derivation according to this grammar. The syntactic

relations between words are established based on the applied grammar

rules: derivation history. Note that some relations are established not

between words themselves, but between constituents, which represent

the result of the previous application of the rules.

Constituency trees have longer history in usage in the computational

linguistics, because they are directly related to application of generative

grammars (N. Chomsky). Modern approaches pay more attention to

dependency trees, because they are more natural and direct. Besides, they

contain the information about the syntactic roles of words, like “direct

object”, “subject”, etc.

2.1 Example of the Representation of a Syntactic Tree

Let us present an example of the dependency and constituency

formalisms for a syntactic tree, for instance, for the phrase John sees a

black cat with a telescope. The syntactic tree that uses dependency

formalism is shown in Fig. 1. We also show the POS tags of each word

on the next line below the corresponding word.

The example of representation of the same phrase using the

formalism of constituencies is shown in Fig. 2. In this case, we mark with

wider line the part of the constituent that corresponds to the headword.

pobj

prep
dobj

nsubj

amod
det

det

John sees a black cat with a telescope

NNP VBZ DT JJ NN IN DT NN

Fig. 1. Example of a dependency tree

SHOULD SYNTACTIC N-GRAMS CONTAIN... 29

We also show in the tree structure the left parts of the applied rules, i.e.,

the generalization introduced by each rule.

This constituency tree is generated by the following very simple

formal grammar. It is clear that real parsers can use more complex or

more general rules, but for our discussion, this grammar is sufficient. We

mark with “*” the head elements in the rules:

S → NNP VP*

VP → VP* PP

NP → JJ NN*

NP → DT NN*

NP → DT NP*

PP → IN* NP

VP → VBZ* NP

The derivation history of the phrase is the order of application of the

grammar rules. For example, we start with the rules that correspond

directly to words (terminal nodes) “NP → DT NN*”, “NP → JJ NN*”.

After this, the “intermediate” rules like “VP → VBZ* NP” are applied

and finally the “top” rule “S → NNP VP*” is used. This derivation

history corresponds to the analysis strategy “bottom-up”, being the other

possible strategy the reverse order of application of the rules: “top-

down”.

NP

P

PP

VP

VP

NP

NP

NP

S

John sees a black cat with a telescope

NNP VBZ DT JJ NN IN DT NN

Fig. 2. Example of a constituency tree

30 GRIGORI SIDOROV

2.2 Conversion between Constituencies and Dependencies

It is well-known that dependency and constituency formalisms are

equivalent in general, i.e., there exists an algorithm that transforms the

dependency tree structure into the constituency tree structure and vice

versa (Gelbukh, Calvo, Torres 2005). It is not surprising, because both

types of trees reflect the same syntactic reality. Note that this is only

general (structural) conversion, as it does not convert the syntactic labels

in both directions.

The algorithm for constituency to dependency general conversion is

simple. For each word that is a head word (it is marked with “wider”

line) go up in the tree. At each step (while going up following the

constituents) go down to a dependent constituent. After this follow

downwards the head relations only (the “wider” line) and draw the arrow

from the headword to the obtained dependent word. Continue going up

in the tree from the point, when you start going down.

For constituency to dependency general conversion, the formal

grammar should mark the words that are heads on the right side of the

rules, because otherwise we would not know the directions of the

dependency arrows. Note that if the grammar does not mark them, the

marking can be done in a random manner, but obviously with not so good

results: the conversion will be done, but some arrows would have anti-

intuitive directions. It is also clear that the resulting dependency tree does

not contain the names of syntactic relations for the arrows.

The algorithm for dependency to constituency general conversion is

also simple. We start with arrows at the lowest level and go to upper

levels. For each arrow, we establish a constituent relation for the pair of

words, being the headword the starting point of the arrow. If the

headword already forms a constituent, then this constituent should be

used instead of the word itself. Some additional conventions are

necessary, for example, in case of bifurcations, we first process the

arrows that are the closest ones to the word, or that nsubj relation is

processed last.

It is clear that for dependency to constituency general conversion

the resulting constituency tree does not have the interpretation of

constituents (left parts of the rules represented in the tree structure),

because it is precisely what the formal grammar does; in certain sense,

the resulting representation will lack of generalization for constituents.

SHOULD SYNTACTIC N-GRAMS CONTAIN... 31

3 SYNTACTIC N-GRAMS

As we mentioned above, we introduced the concept of syntactic n-grams

in our previous works (Sidorov et al. 2012, 2013, 2014; Sidorov 2013a,

2013b, 2013c). Similar ideas were proposed in (Pado, Lapata 2007;

Gelbukh 1999), but they were treated as very specific methods for certain

tasks of syntactic or semantic analysis. The importance of the concept is

confirmed by the fact that Google obtained and made public syntactic n-

grams for a large set of books in English (Goldberg and Orwant, 2013).

In our earlier works, we preferred to use the term “syntactic

dependency-based n-grams”, adding the words “dependency-based”. It

was important, because there is possible naive misinterpretation of the

term "syntactic n-grams" as "sequence of POS tags", because POS tags

are perceived as carrying some syntactic information. In fact, it is not

true: POS tags are more morphological than syntactic phenomena—the

syntactic information is used only for disambiguation between several

possible POS tags for a word. At most, we can consider them as

morphosyntactic entities. Now, as the term "syntactic n-grams, sn-

grams" is more habitual, we can omit the words "dependency based".

Note that we say "dependency based" (and not "constituency based"),

because syntactic dependencies are much more direct projection of

syntactic paths for construction of sn-grams. Constituencies can be

applied to construction of sn-grams as well, though not so naturally, see

discussion in Sections 2 and 4.

So, while traditional n-grams are sequences of textual elements

(words, POS tags, etc.) taken as they appear in texts, the general idea

behind syntactic n-grams is to take the surface textual elements in a non-

linear order by following paths in syntactic trees. In this case, the order

of textual elements is usually changed in comparison with the surface

structure.

3.1 Types of Syntactic N-grams

In our previous works, we have proposed the classification of syntactic

n-gram types. Depending on the elements that constitute them, there can

be syntactic n-grams of words/lemmas/stems (lexical elements), POS

tags, SR tags (names of Syntactic Relations), multiword expressions

(Gelbukh, Kolesnikova 2013a, 2013b; Ledeneva, Gelbukh, García-

Hernández 2008), and even of characters (Sidorov et al. 2013, 2014).

32 GRIGORI SIDOROV

For obtaining character sn-grams, we first construct sn-gram of

lexical units (words or lemmas) and then character sn-grams are

constructed over this sequence in the same way as for traditional

character n-grams. Note that for this procedure it is preferable to use sn-

grams that contain most number of elements (long sn-grams, n-grams

with large values of n), but each lexical element should be considered at

least once. There is a problem for future research: how to calculate

correctly the frequencies of character sn-grams obtained in this manner,

because many elements in sn-grams are repeated.

There also can be mixed sn-grams, e.g., one element in an sn-gram

is a POS tag and the other one is a lexical unit. Note that character sn-

grams cannot be naturally mixed with other types of sn-grams, because

they have different nature: all other types of sn-grams reflect properties

of words (lexical unit, POS tag), even SR tags reflect the relations of a

word with other word, while character sn-grams are sequences of

characters obtained from already existing sn-grams of lexical units, so

they are derivate, and in a certain sense they are secondary. We insist on

considering them because in certain tasks, like, for example, authorship

attribution, traditional character n-grams quite surprisingly give very

good results, so character sn-grams should be tried as well.

On the other hand, in (Sidorov, 2013a) we have proposed

differentiating between continuous (non-interrupted path, path without

bifurcations) and non-continuous (path with interruptions or returns (or

bifurcations)) syntactic n-grams. It is obvious that continuous sn-grams

are a special type of non-continuous sn-grams, namely sn-grams with no

returns (without bifurcations). Intuitively, we consider that continuous

sn-grams can contain more important linguistic information, but it

should be verified for various tasks in the experimental manner. It is clear

that for syntactic bigrams there is no difference between continuous and

non-continuous sn-grams, because no bifurcations are possible in case of

exactly two elements in an n-gram.

Note that here appears another possible naïve misinterpretation of

the general term “syntactic n-grams” that would be “n-grams of names

of syntactic relations (SR tags)”. It is possible, since these sn-grams can

be obtained only if we apply parsing before. Nevertheless, this interpre-

tation is too narrow: yes, it is the possible type of sn-grams, but there are

other types as well. In general, when speaking about syntactic n-grams

we refer not to a specific type of elements (SR tags, words, etc.) but to

the manner of their construction by following paths in syntactic trees.

SHOULD SYNTACTIC N-GRAMS CONTAIN... 33

Another important consideration is related to the traditional practice

of treatment of stop words (auxiliary words). There are two possibilities:

taking them into account vs. filtering out of stop words. The possibility

of filtering out of stop words can be easily applied to syntactic n-grams:

we should follow syntactic paths and when we encounter with a stop

word, we ignore it and just continue with the next word according to the

path. In fact, this idea was generalized as “filtered n-grams” in (Sidorov

2013c): we can filter out not only stop words, but any words that do not

comply with any chosen criterion, for example, it can be a thresholds

based on tf-idf values.

Finally, we would like to mention that the elements of the same level

in an sn-gram can be taken as they appear in the sentence, or can be

reordered according to some criteria, for example, using the alphabetic

order of the elements. The first possibility takes into account the word

order in the sentences, while the second one tries to ignore possible

(insignificant) changes in the word order.

3.2 Extraction of Syntactic N-grams and their Representation

The software for extraction of syntactic n-grams is available on the Web

page of the author1. It takes as the input the file generated by the Stanford

parser (de Marneffe, MacCartney, Manning 2006) and it produces sn-

grams of the desired size and type.

Note that the software also treats in a practical manner the problem

of exponential growth of the number of sn-grams in case of too many

dependents of a word. This problem consists in the fact that if the number

of the dependent words is large, say, more than six, then the number of

possible combinations (i.e., non-continuous sn-grams) may become too

large. It is very rare situation to have so many dependent words, but it

may appear in real life, especially if something went wrong with parsing

or if we want to treat punctuation (like parenthesis) and the parser

chooses one word as their head.

For the example in Fig. 1 and Fig. 2, the Stanford parser generates

the output presented in Fig. 3 and Fig. 4 correspondingly.

Let us now discuss how to represent syntactic n-grams. If we use

only continuous sn-grams, then we can represent them using the

sequences of words just like in case of the traditional n-grams. But if we

1 http://www.cic.ipn.mx/~sidorov

34 GRIGORI SIDOROV

start considering non-continuous sn-grams, then it turns out that we need

special metalanguage for their representation, namely for distinguishing

the words that form a sequence from the words that have returns in the

path (bifurcations).

For example, if we have three words A, B, C and we want to express

that both B and C are dependent from A, i.e., there is a return in the path

(a bifurcation), then we separate B and C with a comma and put them

into the brackets: “A [B, C]”. If there is no bifurcation that means that C

depends from B and B depends from A, then we just write “A B C”. In

the current version of our software we add more brackets: “[A[B[C]]]”

and “[A[B,C]]”. This notation reflects more consistent use of brackets in

each node and better shows the underlying tree structure. Note that if

used uniformly, it does not affect the identity of sn-grams.

3.3 Example of Extraction of Syntactic N-grams

Let us consider the example presented in Fig. 1. The second line of the

example contains the POS tags for each word. It is obvious that we can

nsubj(sees-2, John-1)

root(ROOT-0, sees-2)

det(cat-5, a-3)

amod(cat-5, black-4)

dobj(sees-2, cat-5)

prep(sees-2, with-6)

det(telescope-8, a-7)

pobj(with-6, telescope-8)

Fig. 3. Results of the analysis using dependencies

(ROOT

 (S

 (NP (NNP John))

 (VP (VBZ sees)

 (NP (DT a) (JJ black) (NN cat))

 (PP (IN with)

 (NP (DT a) (NN telescope))))

))

Fig. 4. Results of the analysis using constituencies

SHOULD SYNTACTIC N-GRAMS CONTAIN... 35

substitute lexical units with their lemmas, for example, use see instead

of sees, as well as with their POS tags, for instance, use VBZ instead of

sees or NN instead of telescope, etc. Thus, we suppose that the reader

understands this possibility and we will not illustrate it in the figure and

in further discussion: we should just remember that while we use words,

they can as well be substituted by lemmas or POS tags, or any

combinations of these elements. As we mentioned in our previous works,

it is a question of future experimental research to determine what types

of sn-grams or mixed sn-grams are useful for particular tasks.

Table 1. Traditional and syntactic bigrams

Traditional bigrams Syntactic bigrams

John sees sees[with]

sees a telescope[a]

a black sees[cat]

black cat cat[black]

cat with with[telescope]

with a cat[a]

a telescope sees[John]

Table 2. Traditional and syntactic trigrams

Traditional trigrams Syntactic trigrams

John sees a with[telescope[a]]

sees a black sees[cat,with]

a black cat sees[John,cat]

black cat with sees[John,with]

cat with a sees[cat[a]]

with a telescope sees[with[telescope]]

 cat[a,black]

 sees[cat[black]]

Table 3. Traditional and syntactic 4-grams

Traditional 4-grams Syntactic 4-grams

John sees a black sees[cat[a,black]]

sees a black cat sees[John,with[telescope]]

a black cat with sees[cat[a],with]

36 GRIGORI SIDOROV

black cat with a sees[John,cat[black]]

cat with a telescope sees[John,cat,with]

 sees[cat,with[telescope]]

 sees[John,cat[a]]

 sees[cat[black],with]

 sees[with[telescope[a]]]

Table 4. Traditional and syntactic 5-grams

Traditional 5-grams Syntactic 5-grams

John sees a black cat sees[John,cat[black],with]

sees a black cat with sees[cat[a,black],with]

a black cat with a sees[John,with[telescope[a]]]

black cat with a telescope sees[John,cat[a,black]]

 sees[cat[black],with[telescope]]

 sees[cat[a],with[telescope]]

 sees[John,cat,with[telescope]]

 sees[cat,with[telescope[a]]]

 sees[John,cat[a],with]

Table 5. Traditional and syntactic 6-grams

Traditional 6-grams Syntactic 6-grams

John sees a black cat with sees[John,cat[a,black],with]

sees a black cat with a sees[John,cat[a],with[telescope]]

a black cat with a telescope sees[John,cat,with[telescope[a]]]

 sees[cat[black],with[telescope[a]]]

 sees[cat[a],with[telescope[a]]]

 sees[John,cat[black],with[telescope]]

 sees[cat[a,black],with[telescope]]

Table 6. Traditional and syntactic 7-grams

Traditional 7-grams Syntactic 7-grams

John sees a black cat with a sees[John,cat[a],with[telescope[a]]]

sees a black cat with a telescope sees[cat[a,black],with[telescope[a]]]

 sees[John,cat[black],with[telescope[a]]]

 sees[John,cat[a,black],with[telescope]]

SHOULD SYNTACTIC N-GRAMS CONTAIN... 37

Let us extract all possible traditional n-grams and syntactic n-grams

of various sizes and types from the example sentence. First, we present

traditional n-grams of words of various sizes and syntactic n-grams of

the same sizes in Tables 1-6. We start with bigrams and go till 7-grams.

Note that in practical tasks of the computational linguistics, we usually

do not need larger size of n-grams, because they do not repeat any more

in texts, i.e., their frequency is always equal to 1 in any corpus and they

are practically useless.

It can be observed that syntactic n-grams are much more

linguistically motivated, because for their construction we use very

important linguistic knowledge: syntactic structure. For example,

traditional n-grams like “with a” or “sees a” no longer form part of the

features for machine learning algorithms. A counterargument might be

that these n-grams can appear consistently in the corpus. The answer to

this counterargument is that though it is true, these n-grams contain more

noise than real information, because there is no linguistic reality behind

them.

Now let us present syntactic n-grams of SR tags, Tables 7–12.

Obviously, there are no traditional n-grams using this type of elements.

Table 7. Syntactic

bigrams of SR tags

Syntactic bigrams

prep[pobj]

root[nsubj]

root[prep]

root[dobj]

dobj[amod]

pobj[det]

dobj[det]

 Table 8. Syntactic

trigrams of SR tags

Syntactic trigrams

prep[pobj[det]]

root[dobj,prep]

root[dobj[amod]]

root[nsubj,dobj]

dobj[det,amod]

root[prep[pobj]]

root[nsubj,prep]

root[dobj[det]]

Table 9. Syntactic 4-grams of SR tags

Syntactic 4-grams

root[dobj,prep[pobj]]

root[nsubj,dobj,prep]

root[prep[pobj[det]]]

38 GRIGORI SIDOROV

root[dobj[det],prep]

root[nsubj,dobj[amod]]

root[dobj[amod],prep]

root[nsubj,prep[pobj]]

root[nsubj,dobj[det]]

root[dobj[det,amod]]

Table 10. Syntactic 5-grams of SR tags

Syntactic 5-grams

root[dobj[amod],prep[pobj]]

root[dobj,prep[pobj[det]]]

root[nsubj,dobj[amod],prep]

root[dobj[det,amod],prep]

root[nsubj,dobj[det,amod]]

root[dobj[det],prep[pobj]]

root[nsubj,prep[pobj[det]]]

root[nsubj,dobj,prep[pobj]]

root[nsubj,dobj[det],prep]

Table 11. Syntactic 6-grams of SR tags

Syntactic 6-grams

root[nsubj,dobj[amod],prep[pobj]]

root[dobj[amod],prep[pobj[det]]]

root[dobj[det,amod],prep[pobj]]

root[nsubj,dobj[det,amod],prep]

root[dobj[det],prep[pobj[det]]]

root[nsubj,dobj[det],prep[pobj]]

root[nsubj,dobj,prep[pobj[det]]]

Table 12. Syntactic 7-grams of SR tags

Syntactic 7-grams

root[nsubj,dobj[det,amod],prep[pobj]]

root[nsubj,dobj[amod],prep[pobj[det]]]

root[dobj[det,amod],prep[pobj[det]]]

root[nsubj,dobj[det],prep[pobj[det]]]

SHOULD SYNTACTIC N-GRAMS CONTAIN... 39

In a similar manner, we can construct syntactic n-grams using

constituency trees, namely, the derivation history, based on

considerations presented in Section 4. We give the example of bigrams

of relations based on derivation history in Table 13. The parentheses are

used for containing the corresponding fragment of the derivation history.

In this case, we consider that the relation “root” corresponds to the left

part of the rule with the element “S”. For comparison, we give also the

syntactic bigrams based on SR tags from Table 7.

Table 13. Syntactic bigrams of derivation history fragments

Syntactic bigrams

based on derivation history

Syntactic bigrams

based on SR tags

(VP,VP,PP)[(PP,NP)] prep[pobj]

(S)[(NN)] root[nsubj]

(S)[(VP,VP,PP)] root[prep]

(S)[(VP,NP,NP)] root[dobj]

(VP,NP,NP)[(NP)] dobj[amod]

(PP,NP)[(NP)] pobj[det]

(VP,NP,NP)[(NP)] dobj[det]

4 SYNTACTIC N-GRAMS WITH RELATION NAMES

(SNR-GRAMS)

We hope that the reader now has clear idea about the concept of syntactic

n-grams and their types. Among types of syntactic n-grams we

mentioned that there can be mixed syntactic n-grams. In this sense, we

already considered the fact that syntactic n-grams can contain names of

syntactic relations mixed with other elements. Nevertheless, there are

considerations for drawing attention to this particular type of sn-grams:

they contain both lexical/morphological elements (words, lemmas, POS

tags) and at the same time the names of syntactic relations (SR tags). Let

us call these sn-grams that contain relation names “snr-grams”, when we

prefer to use the abbreviation.

It can be observed that snr-grams convey more information than any

other type of n-grams or sn-grams, and still they can be used as features

in machine learning tasks, when other n-grams can be used. So, we

believe that this type of sn-grams deserves special attention. We have

40 GRIGORI SIDOROV

preliminary information that snr-grams performed better in the task of

the periphrasis as compared to n-grams and other types of sn-grams

(personal communication of Hiram Calvo, to be published soon).

There is also a certain problem that consists in how to count the

number of elements in snr-grams. If we count both words/POS tags

together with SR tags then, say, there will be no bigrams, and in general,

no n-grams with even values of n. So our suggestion, if we deal with snr-

grams, is counting only the elements different from SR tags. In case that

we deal with sn-grams of SR tags only, then, obviously, we should count

these elements (SR tags). In general, if we want to use mixed n-grams,

when certain elements are word based (words, POS tags) and the other

elements are relation based (SR tags), we should count SR tags only if

we do not want to take into account the word based elements. For

example, if we want to consider syntactic bigrams, where the first

element is the word and the second one is the SR tag, then we treat the

SR tags as the proper element of the bigrams. On the other hand, if we

are working with snr-grams, then SR tags should not be counted for

determining the snr-gram size.

Tables 14–16 show snr-grams from the example above using SR

tags as part of snr-grams. Parentheses before each word contain the

relation name. Note that it should appear immediately before the word

because of ambiguities of possible bifurcations.

Table 14. Snr-grams of size 2 (SR tags)

Snr-grams

sees[(prep)with]

telescope[(det)a]

sees[(dobj)cat]

cat[(amod)black]

with[(pobj)telescope]

cat[(det)a]

sees [(nsubj)John]

Table 15. Snr-grams of size 3 (SR tags)

Snr-grams

with[(pobj)telescope[(det)a]]

sees[(dobj)cat,(prep)with]

SHOULD SYNTACTIC N-GRAMS CONTAIN... 41

sees[(nsubj)John,(dobj)cat]

sees[(nsubj)John,(prep)with]

sees[(dobj)cat[(det)a]]

sees[(prep)with[(pobj)telescope]]

cat[(det)a,(amod)black]

sees[(dobj)cat[(mod)black]]

Table 16. Snr-grams of size 4 (SR tags)

Snr-grams

sees[(dobj)cat[(det)a,(amod)black]]

sees[(nsubj)John,(prep)with[(pobj)telescope]]

sees[(dobj)cat[(det)a],(prep)with]

sees[(nsubj)John,(dobj)cat[(amod)black]]

sees[(nsubj)John,(dobj)cat,(prep)with]

sees[(dobj)cat,(prep)with[(pobj)telescope]]

sees[(nsubj)John,(dobj)cat[(det)a]]

sees[(dobj)cat[(amod)black],(prep)with]

sees[(prep)with[(pobj)telescope[(det)a]]]

There are two possibilities for the first word in an snr-gram:

1. We can add to the first word of an snr-gram the

corresponding SR tag (the name of the corresponding

incoming arrow), because it always exists, or

2. We can leave the first word in an snr-gram without the SR

tag, because it does not connect this word to any other

element of the given snr-gram.

We choose the second option. For example, instead of the bigram

(pobj)telescope[(det)a], we write the bigram telescope[(det)a].

In the tables above, we used dependency trees for extraction of snr-

grams, but constituency trees can be used as well. There are several

possibilities related to which part of the derivation history of the

corresponding constituency tree should be included into the description

of each relation:

 Use the derivation history that is below the node vs. above the node

vs. both parts (above and below). These strategies correspond to

bottom-up parsing and top-down parsing.

42 GRIGORI SIDOROV

 Use only the left part of the rule vs. use the whole rule,

 Use only the last derivation vs. use the whole derivation chain or

several last steps (say, two, three, etc.).

We present the example for (1) the whole derivation chain,

(2) below the node, and (3) using the left part of the rule. Other

possibilities should be tried as well in experiments for particular tasks.

We start from the left element of a constituent, go up to the least common

node, and then go down to the right element. At each step we take the

left part of the corresponding rule. In tables 17–19 we present the snr-

grams of sizes 2, 3, and 4 extracted from the example sentence.

Table 17. Snr-grams of size 2 (derivation history)

Snr-grams based on constituencies

sees[(VP,VP,PP)with]

telescope[(NP)a]

sees[(VP,NP,NP)cat]

cat[(NP)black]

with[(PP,NP)telescope]

cat[(NP)a]

sees [(S,VP,VP)John]

Table 18. Snr-grams of size 3 (derivation history)

Snr-grams based on constituencies

with[(PP,NP)telescope[(NP)a]]

sees[(VP,NP,NP)cat,(VP,VP,PP)with]

sees[(S,VP,VP)John,(VP,NP,NP)cat]

sees[(S,VP,VP)John,(VP,VP,PP)with]

sees[(VP,NP,NP)cat[(NP)a]]

sees[(VP,VP,PP)with[(PP,NP)telescope]]

cat[(NP)a,(NP)black]

sees[(VP,NP,NP)cat[(NP)black]]

Table 19. Snr-grams of size 4 (derivation history)

Snr-grams based on constituencies

sees[(VP,NP,NP)cat[(NP)a,(NP)black]]

sees[(S,VP,VP)John,(VP,VP,PP)with[(PP,NP)telescope]]

SHOULD SYNTACTIC N-GRAMS CONTAIN... 43

sees[(VP,NP,NP)cat[(NP)a],(VP,VP,PP)with]

sees[(S,VP,VP)John,(VP,NP,NP)cat[(NP)black]]

sees[(S,VP,VP)John,(VP,NP,NP)cat,(VP,VP,PP)with]

sees[(VP,NP,NP)cat,(VP,VP,PP)with[(PP,NP)telescope]]

sees[(S,VP,VP)John,(VP,NP,NP)cat[(NP)a]]

sees[(VP,NP,NP)cat[(NP)black],(VP,VP,PP)with]

sees[(VP,VP,PP)with[(PP,NP)telescope[(NP)a]]]

If we use SR tags, then the usefulness of snr-grams is explained by

the fact that they allow to distinguish the syntactic role of each element

in the n-gram, for example, “sees[(nsubj)John]” vs. “sees[(dobj)cat]”,

when the only difference in the verb-noun combination is the relation

name. Obviously, it depends on the task if this difference is relevant

or not.

In case of derivation history fragments, their function is not so clear

as in case of SR tags, for example sees[(S,VP,VP)John] vs.

sees[(VP,NP,NP)cat]. We can deduce that one of the fragments includes

the tree root (“S”), while the other does not. We can also see how far is

the distance between these two nodes in terms of the number of the

applied rules and their types. Future experiments should demonstrate

how useful this information is.

5 CONCLUSIONS

In this paper, we introduced and discussed the concept of the syntactic

n-grams with relation names, snr-grams, which is a special type of mixed

syntactic n-grams.

We have presented examples of snr-grams of various sizes,

constructed for both tags of names of syntactic relations (SR tags) and

for fragments of derivation history. We consider that snr-grams can be

applied in many tasks of the Natural Language Processing as features for

machine learning algorithms. Future experiments should confirm in

which tasks their usage is beneficial.

For having the possibility of discussion of the concept of the snr-

grams, we described the formalisms of dependencies and constituents

used for the representation of the syntactic information and several

related algorithms. We also described several issues related to the

introduced in our previous works concept of syntactic n-grams.

44 GRIGORI SIDOROV

Our future work will include analyzing the role of syntactic n-grams

in different text analysis tasks as textual entailment (Pakray et al. 2010,

2011), personality detection (Poria, Gelbukh, Agarwal, Cambria &

Howard 2013), sentiment analysis (Poria, Cambria, Winterstein &

Huang 20104), and emotion detection (Poria, Gelbukh, Hussain,

Howard, Das & Bandyopadhyay 2013; Poria, Gelbukh, Cambria, Das &

Bandyopadhyay 2012). Syntactic n-grams can be very useful for the text

analysis applications where insufficient training data are available,

which raises the need of semi-supervised learning (Poria, Gelbukh,

Hussain, Bandyopadhyay & Howard 2013).

ACKNOWLEDGMENTS This work was done under partial support of the

Mexican Government (CONACYT, SNI, COFAA-IPN, SIP-IPN

20144274) and FP7-PEOPLE-2010-IRSES: “Web Information Quality–

Evaluation Initiative (WIQ-EI)” European Commission project 269180.

References

1. Bolshakov, I.A., Gelbukh, A.: Computational linguistics: Models,

resources, applications. IPN–UNAM–FCE, 187 pp. (2004)

2. Calvo, H., Gelbukh, A. Improving Prepositional Phrase Attachment

Disambiguation Using the Web as Corpus. Lecture Notes in Computer

Science, vol. 2905, pp. 604–610 (2003)

3. Cambria, E., Fu, J., Bisio, F., Poria, S.: AffectiveSpace 2: Enabling affective

intuition for concept-level sentiment analysis. In: Twenty-Ninth AAAI

Conference on Artificial Intelligence, pp. 508–514 (2015)

4. Cambria, E., Poria, S., Gelbukh, A., Kwok, K.: Sentic API: A common-

sense based API for concept-level sentiment analysis. In: #Microposts2014,

4th Workshop on Making Sense of Microposts at WWW 2014, CEUR

Workshop Proceedings, vol. 1141, pp. 19–24 (2014)

5. Das, D., Poria, S., Bandyopadhyay, S.: A classifier based approach to

emotion lexicon construction. In Natural Language Processing and

Information Systems, Springer, pp. 320–326 (2012)

6. de Marneffe, M.C., MacCartney, B. Manning, C.D.: Generating typed

dependency parses from phrase structure parses. In: Proceedings of LREC

2006 (2006)

7. Gelbukh, A.: Natural language processing: Perspective of CIC-IPN. In:

Proceedings of the International Conference on Advances in Computing,

Communications and Informatics, ICACCI 2013, IEEE, pp. 2112–2121

(2013)

http://www.gelbukh.com/
http://www.gelbukh.com/clbook
http://www.gelbukh.com/clbook
http://www.ipn.mx/
http://www.unam.mx/

SHOULD SYNTACTIC N-GRAMS CONTAIN... 45

8. Gelbukh, A.: Syntactic disambiguation with weighted extended

subcategorization frames. In: Proceedings of PACLING-99, Pacific

Association for Computational Linguistics, University of Waterloo,

Canada, pp. 244–249 (1999)

9. Gelbukh, A., Calvo, H. Torres, S.: Transforming a Constituency Treebank

into a Dependency Treebank. Procesamiento de Lenguaje Natural, vol. 35,

pp. 145–152 (2005)

10. Gelbukh, A., Kolesnikova, O.: Multiword Expressions in NLP: General

Survey and a Special Case of Verb-Noun Constructions. In: Emerging

Applications of Natural Language Processing: Concepts and New Research.

IGI Global, pp. 1–21 (2013)

11. Gelbukh, A., Kolesnikova, O.: Semantic Analysis of Verbal Collocations

with Lexical Functions. Studies in Computational Intelligence, vol. 414,

Springer, 146 pp. (2013)

12. Goldberg, Y., Orwant, J.: A Dataset of Syntactic-Ngrams over Time from a

Very Large Corpus of English Books. Available: http://googleresearch.

blogspot.mx/2013/05/syntactic-ngrams-over-time.html (2013)

13. Ledeneva, Y., Gelbukh, A., García-Hernández, R.A.: Terms Derived from

Frequent Sequences for Extractive Text Summarization. In: Proceedings of

the International Conference on Intelligent Text Processing and

Computational Linguistics, CICLing 2008. Computational Linguistics and

Intelligent Text Processing, Lecture Notes in Computer Science, vol. 4919,

pp. 593–604 (2008)

14. Pado, S., Lapata, M.: Dependency-based construction of semantic space

models. Computational Linguistics, vol. 33, no. 2, pp. 161–199 (2007)

15. Padró, L., Collado, M., Reese, S., Lloberes, M., Castellón, I.: Freeling 2.1:

Five years of open-source language processing tools. In: Proceedings of 7th

Language Resources and Evaluation Conference (LREC 2010), ELRA

(2010)

16. Pakray, P., Pal, S., Poria, S., Bandyopadhyay, S., Gelbukh, A.:

JU_CSE_TAC: Textual entailment recognition system at TAC RTE-6. In

System Report, Text Analysis Conference Recognizing Textual Entailment

Track (TAC RTE) Notebook (2010)

17. Pakray, P., Poria, S., Bandyopadhyay, S., Gelbukh, A.: Semantic textual

entailment recognition using UNL. Polibits, vol. 43, pp. 23–27 (2011)

18. Poria, S., Agarwal, B., Gelbukh, A., Hussain, A., Howard, N.: Dependency-

based semantic parsing for concept-level text analysis. In: Proceedings of

the International Conference on Intelligent Text Processing and

Computational Linguistics, CICLing 2014. Computational Linguistics and

Intelligent Text Processing, Lecture Notes in Computer Science, vol. 8403,

Springer, pp. 113–127 (2014)

19. Poria, S., Cambria, E., Ku, L. W., Gui, C., Gelbukh, A.: A rule-based

approach to aspect extraction from product reviews. In: Proceedings of the

46 GRIGORI SIDOROV

Second Workshop on Natural Language Processing for Social Media,

SocialNLP 2014, pp. 28–37 (2014)

20. Poria, S., Cambria, E., Winterstein, G., Huang, G.B.: Sentic patterns:

Dependency-based rules for concept-level sentiment analysis. Knowledge-

Based Systems, vol. 69, pp. 45–63 (2014)

21. Poria, S., Gelbukh, A., Agarwal, B., Cambria, E., Howard, N.: Common

sense knowledge based personality recognition from text. In: Advances in

Soft Computing and Its Applications, MICAI 2013, Lecture Notes in

Artificial Intelligence, vol. 8266, Springer, pp. 484-496 (2013)

22. Poria, S., Gelbukh, A., Cambria, E., Das, D., Bandyopadhyay, S.: Enriching

SenticNet polarity scores through semi-supervised fuzzy clustering. In:
Workshop on Sentiment Elicitation from Natural Text for Information

Retrieval and Extraction, SENTIRE 2012, 2012 IEEE 12th International

Conference on Data Mining Workshops (ICDMW), IEEE CS Press, pp.

709–716 (2012)

23. Poria, S., Gelbukh, A., Cambria, E., Hussain, A., Huang, G.B.:

EmoSenticSpace: A novel framework for affective common-sense

reasoning. Knowledge-Based Systems, vol. 69, pp. 108–123 (2014)

24. Poria, S., Gelbukh, A., Hussain, A., Bandyopadhyay, S., Howard, N.: Music

genre classification: A semi-supervised approach. In Pattern Recognition,

Lecture Notes in Computer Science, vol. 7914, Springer, pp. 254–263

(2013)

25. Poria, S., Gelbukh, A., Hussain, A., Howard, N., Das, D., Bandyopadhyay,

S.: Enhanced SenticNet with affective labels for concept-based opinion

mining. IEEE Intelligent Systems, vol. 28, no. 2, 31–38 (2013)

26. Poria, S., Ofek, N., Gelbukh, A., Hussain, A., Rokach, L.: Dependency tree-

based rules for concept-level aspect-based sentiment analysis. In: Semantic

Web Evaluation Challenge, SemWebEval 2014 at ESWC 2014, Greece,

Revised Selected Papers. Communications in Computer and Information

Science, vol. 475, Springer, pp. 41–47 (2014)

27. Sidorov, G: Syntactic Dependency Based N-grams in Rule Based

Automatic English as Second Language Grammar Correction. International

Journal of Computational Linguistics and Applications, vol. 4, no. 2,

pp. 169–188 (2013)

28. Sidorov, G.: Non-continuous Syntactic N-grams. Polibits, vol. 48, pp. 67–

75 (2013)

29. Sidorov, G.: Non-linear construction of n-grams in computational

linguistics: syntactic, filtered and generalized n-grams. (in Spanish)

Mexico, 166 pp. (2014)

30. Sidorov, G., Velasquez, F., Stamatatos, E., Gelbukh, A., Chanona-

Hernandez, L.: Syntactic dependency-based n-grams as classification

features. Lecture Notes in Artificial intelligence, vol. 7630, pp. 1–11 (2012)

31. Sidorov, G., Velasquez, F., Stamatatos, E., Gelbukh, A., Chanona-

Hernandez, L.: Syntactic dependency-based n-grams: More evidence of

http://www.cic.ipn.mx/~sidorov/Polibits_48_2013_Sidorov.pdf

SHOULD SYNTACTIC N-GRAMS CONTAIN... 47

usefulness in classification. In: Proceedings of the International Conference

on Intelligent Text Processing and Computational Linguistics,

CICLing 2013. . Computational Linguistics and Intelligent Text Processing,

Lecture Notes in Computer Science, vol. 7816, Springer, pp. 13–24 (2013)

32. Sidorov, G., Velasquez, F., Stamatatos, E., Gelbukh, A., Chanona-

Hernandez, L. Syntactic N-grams as machine learning features for natural

language processing. Expert Systems with Applications, vol. 41, no. 3,

pp. 853–860 (2014)

GRIGORI SIDOROV

NATURAL LANGUAGE AND TEXT PROCESSING LABORATORY,

CENTRO DE INVESTIGACIÓN EN COMPUTACIÓN,

INSTITUTO POLITÉCNICO NACIONAL (IPN),

MEXICO CITY, MEXICO

WEB: <WWW.CIC.IPN.MX/~SIDOROV>

http://www.informatik.uni-trier.de/~ley/db/journals/eswa/eswa41.html#SidorovVSGC14

