
DEWS2008 B9-4

多様に変化するユーザの興味を考慮したウェブサイト推薦システム
中本 レン† 中島 伸介† 宮崎 純† 植村 俊亮†† 加藤 博一†

† 奈良先端科学技術大学院大学情報科学研究科
†† 奈良産業大学情報学部情報学科

E-mail: †{reyn-n,shin,miyazaki,kato}@is.naist.jp, ††UemuraShunsuke@nara-su.ac.jp

あらまし 本研究では，リアルタイムに更新されるウェブサイト推薦において，ユーザの興味が多様に変化すること
を考慮したウェブサイト推薦システムを提案する．ユーザの現在の興味を考慮に入れるため，現在ユーザが参照して
いるウェブサイトに付与されているタグ情報と，そのユーザの嗜好情報とのマッチングに基づく，タグベースコンテ
キスト依存型協調フィルタリングを拡張する．被験者実験の結果，我々の提案システムは，従来一般に使われている
検索・推薦技術よりも，関連性のより高い情報を提供することができることを確認した．この結果から，ユーザの多
種多様な興味に対応するためには，推薦情報提供時のユーザの興味を考慮することが重要であるといえる．
キーワード 協調フィルタリング、タグ情報、情報推薦、情報検索

Live-Updating Website Recommendations

Using Reasonable Tag-based Collaborative Filtering

Reyn NAKAMOTO†, Shinsuke NAKAJIMA†, Jun MIYAZAKI†, Shunsuke UEMURA††, and

Hirokazu KATO†

† Graduate School of Information Science, Nara Institute of Science and Technology
†† Department of Informatics, Faculty of Informatics, Nara Sangyo University

E-mail: †{reyn-n,shin,miyazaki,kato}@is.naist.jp, ††UemuraShunsuke@nara-su.ac.jp

Abstract In this paper, we present a tag-based collaborative filtering recommendation method for use with re-

cently popular online social tagging systems. Combining the information provided by tagging systems with the

effective recommendation abilities given by collaborative filtering, we present a website recommendation system

which provides live-updating personalized recommendations that update to match the user’s changing interests as

well as the user’s bookmarking profile. Based upon user testing, our system provides a higher level of relevant

recommendation over other commonly used search and recommendation methods. We describe this system as well

as the relevant user testing results and its implication towards use in online social tagging systems.

Key words collaborative filtering, tagging, recommendation systems, information retrieval

1. Introduction

As the Internet continues to mature and becomes more

accessible to the common user, the amount of information

available increases exponentially. Accordingly, finding useful

and relevant information is becoming progressively difficult.

Moreover, a lot of the information available–blogs, various

types of reviews, and so forth–are highly subjective and thus,

hard to evaluate purely through machine algorithms. Being

subjective in nature, one person may absolutely love some-

thing while the next may loathe the same–no single author-

ity exists. It is in these cases where people–more so than the

current ability of machine algorithms–are greatly effective in

evaluating and filtering this information.

For this reason, the idea of tag-based contextual collab-

orative filtering or TCCF was created and described in [13]

and found to be effective in providing explicit recommenda-

tions in [12]. This method combines the strengths of both

Collaborative Filtering (CF) as well as tagging information

from social tagging services to provide effective, personalized

recommendations to the user. We now enhance this one step

further–to provide implicit recommendations which consider

— 1 —

the user’s current interest–and provide only recommenda-

tions which are related to this.

Indeed, many users often go right ahead and search using

their favorite search engine to find whatever website they

are looking for. However, there are times when implicit web-

site recommendations are effective. Websites that they never

knew existed and maybe never bothered to search for could

be discovered and enjoyed by the user. However, these rec-

ommendations must be relevant to not only the user’s pref-

erences but also the topic the user is currently interested in.

Thus, this is the motivation for our system: providing live-

updating effective website recommendations for use in online

social tagging systems–namely social bookmarking services

like del.icio.us [4].

Our method, Reasonable Tag-Based Collaborative Filter-

ing or RCF–does just this. Using the tagging-information

from the currently viewed website, we provide effective web-

site recommendations relevant to both the current page and

the user’s past bookmarking profile. RCF considers the rea-

sons for liking their previously bookmarked websites and also

the reasons why they are viewing the current webpage to pro-

vide “reasonable” recommendations to the end user.

In comparison to other basic search methods, we tested

four methods–including our own–of generating recommen-

dations based upon the user’s current page. While each of

the other methods provide good results in normal document

search–our method was found to be most effective when con-

sidering implicit live-updating recommendations. In this pa-

per, we describe these results and its corresponding implica-

tions.

2. Related Work

2. 1 Collaborative Filtering Systems

Collaborative Filtering (CF) is the process whereby the

community of users is used to sort out relevant or important

information from the non-relevant or non-important informa-

tion. The process is based upon the idea that if users prefer

the same item or items, then their preference will be similar

for other items liked by the similar users. In other words, a

user should enjoy the same items that their similar users like.

From a wider perspective, once users have recorded their

preferences within the system, subsequent users can benefit

from the previous users’ knowledge, hence the collaborative

aspect of the system.

CF has been proven to work well under certain domains–

mainly entertainment domains–such as usenet recommenda-

tions [14], movie recommendations [7], product recommenda-

tions [1], and so forth. Many CF systems rely upon a matrix

of numerical ratings of resources by users [14]. Once enough

ratings are in place, a similarity score is calculated between

the user and other users. These similarity scores are multi-

plied by the ratings other users recorded and then averaged.

Those resources with an average score above a certain thresh-

old are recommended.

The main draw of CF is that it only attempts to under-

stand if a user like some product or not. However, it does

not consider the reasons why a user likes something.

2. 2 Social Tagging Systems

Tagging has been around for sometime, albeit known by

other terms such as metadata, categorization, labels, and

so forth. Tagging is the process of attaching natural lan-

guage words as metadata to describe some resource like a

movie, photo, book, etc. Tagging vocabulary is usually un-

controlled, whereby the user themselves can decide what

word or combination of words are appropriate.

The current main use of tagging is for the purpose of re-

trieval [11], whereby users can search for a tag and the re-

sources with that tag attached will be returned to the user.

The user who added it can use the same tags for later re-

trieval. For other users, tags serve as a way to discover new

resources by searching for whatever tag they are interested

in.

In recent years, the advent of Social Tagging Systems have

brought tagging back into the limelight. Currently, there

are several online social tagging systems that are popular

and are the subject of continuing research [11] [9]: they range

from website bookmarking such as del.icio.us [4], photo shar-

ing [5], research paper searching [2], to even people rating [3]!

All of these sites use tagging for many purposes, but in ad-

dition to that, they focus on the social networking aspects of

tagging to enhance the experience for end users. However, in

their present form, tags are generally used for tag searching;

user profile matching and subsequent recommendations are

yet to be implemented. As mentioned before, tags provide

the clues as to why a user liked something. They are the

who, what, when, where, and why of the user’s reason for

tagging something [9]. Because of this, as well as the similar

use of social networking, social tagging systems provide an

ideal choice for combination with CF systems.

In terms of analyzing, [15] use a statistical approach to-

wards deriving the emergent semantics of social tagging sys-

tems, namely del.icio.us. They use the Expectation Maxi-

mization algorithm (EM) algorithm [8] to automatically clus-

ter documents, users, and tags. They explored the optimal

number of domain clusters as well as the number of iterative

steps to get satisfactory cluster sizes and document classi-

fication. Lastly, they explored creating a personalized tag

search engine based upon their findings.

2. 3 TCCF Website Recommendation System

TCCF is the combination of traditional CF systems and

social tagging systems to allow for personalized recommen-

dation. The essential idea is that CF provides personaliza-

tion, and tags provide the reasons why users liked something.

Unlike traditional CF models which use numeric ratings, our

TCCF model uses tags as the indicator of why a user likes

something. For example, say we have a website bookmark-

— 2 —

ing system where users can come in and bookmark websites

that they enjoy using tags. Normally, the act of bookmark-

ing a website is a strong indicator of whether something is

liked. However, the used tags provide the key distinguishing

factor from traditional CF systems–the tags attached to the

resource can be seen as the reason in which the user likes

the resource. Usually, the user will use tags to describe the

resource as the user themselves see it, and in most cases it

would be the reason why they liked something. Thus, lies

the key difference between traditional CF and TCCF: In ad-

dition to considering whether or not a user likes a resource,

it also attempts to consider why a users likes something by

using the information provided by tagging systems.

In the TCCF Website Recommendation System, users

bookmark websites they like using tags, and subsequently,

they can easily retrieve their bookmarks by just searching by

the tags. Once the the user has added enough bookmarks,

the first step is finding similar users. This is then followed

by calculating a score prediction–the level that the system

thinks the user will like something–based upon similar users’

bookmarks. Both of these steps consider bookmarking as

well as the attached tags when generating recommendation

candidates. This method is subsequently improved and will

be further explained in section 3..

2. 4 Topic-Based Vector Space Model

A type of Topic-based Vector Space Model is described

in [10]. This model uses topics instead of terms as the param-

eters to form vectors of each of the documents within the set.

Thus, when comparing documents with each other, each doc-

ument is expressed in terms of how pertinent they are in each

of the topic areas rather than in their individual term vectors.

In doing so, you avoid some natural language problems–such

as comparing synonyms, etc–that occur when doing a tra-

ditional tf-idf vector space model. Additionally, calculation

complexity can be reduced depending on the number of pa-

rameters you choose. In [10], They suggest such methods as

the k-nearest neighbor algorithm to cluster the documents.

However, for our needs, k-nearest neighbor is inappropriate

as documents and tags used in our system often exist un-

der many domains. We instead adopt an approach similar

to [15].

3. Reasonable Tag-Based Collaborative
Filtering For Social Tagging Systems

The basis of our recommendation system is a website book-

marking system not unlike del.icio.us. A sample usage pat-

tern would be as shown in figure 1.

Here, an arrow indicates a user has bookmarked a page

and the tags above the arrow indicate the tags used while

bookmarking. User A is bookmarking website 1 with the

tags ‘japanese’ and ‘dictionary’. Similarly, user B is book-

marking website 2 with the tags ‘apple’ and ‘news’. Based

upon this type of social bookmarking system, our system

D

B

C

4

2

3

app
le, t
ech
, ne
ws

apple, rumors

apple, news

tennis, sports

1A

games, reviews

dictionary

tennis, hobby

Users Websites

Figure 1 Website Bookmarking System Overview

generates effective recommendations based upon the user’s

bookmarking profile as well as their currently viewed page.

We draw from the idea that a bookmark is an indicator of lik-

ing something, and moreover, that the tags are synonymous

with the reasons the like it for.

That being said, our recommendation algorithm is heavily

based upon comparing website’s topic parameters, so first,

we explain how we generate topic domain vectors for each

website for use in our algorithm.

3. 1 Clustering Documents into Topic Domains

using EM

One of the drawbacks of TCCF was that it was purely

based upon tag vector comparison when determining how

similar two webpages were. This tag vector was basically a

feature vector with the tags used as the parameters of their

respective vectors. For example, in figure 1, website 1’s vec-

tor would have a value of one for ‘japanese’ and ‘dictionary’.

Website 2 would have ‘apple’, ‘news’, ‘games, ‘reviews’, and

‘tech’, with the respective values of two, two, one, one, and

one.

This has the inherent problems that are associated with

natural language problems. For example, vectors contain-

ing two synonyms, such as ‘funny’ or ‘humourous’, should

be similar; however, when comparing only tags, these syn-

onyms are considered different terms, and thus, their vector

similarity will be low. To deal with this, we apply a simi-

lar approach to that of [15], by using the EM algorithm to

cluster the websites into domains.

Our data consists of 3 months worth of mining of del.icio.us

RSS feeds. In total, we have over 100,000 users, 2.5 million

webpages, 3.6 million bookmarks, and 870,000 distinct tags.

After mining the data, we subsequently stemmed the tags

using the well-known Porter stemming algorithm [6] . Then,

— 3 —

D1 mac (0.69) software (0.68) osx (0.66) tool (0.59) apple (0.58)

D2 program (0.78) develop (0.56) refer (0.52) code (0.34) software (0.29)

D3 music (0.37) audio (0.30) mp3 (0.28) blog (0.26) web2.0 (0.23)

D4 photography (0.58) photo (0.57) image (0.42) design (0.41) art (0.38)

D5 design (0.65) art (0.49) graphic (0.45) inspire (0.38) refer (0.34)

Figure 2 Probability of term given a topic domain, P (t|D)

the number of unique stemmed tags was about 780,000. Over

this data, we ran the EM algorithm for 50 iterations over

20,000 of the top bookmarked documents and the top 20,000

used tags and clustered them into 100 domains. The number

of domains was chosen after a subjective comparison of the

term vector they produced–sufficient enough to separate the

documents enough, while avoiding making the topic vectors

too sparse. Finding the optimal number of domains is de-

scribed in [15] and is beyond the scope of our research. That

being said, a sample set of domains and their conditional tag

probabilities are shown in figure 2. Here, we list five sample

domains, and the condition probabilities of the top five terms

given that domain.

Following this, website feature vectors based on these topic

domain clusters were created for each document as shown in

equation 1 for webpage k. We will from now refer to these

as ‘topic domain vectors’ or ‘domain vectors’ and abbreviate

it as DV .

DVk = (dw1,k, dw2,k, dw3,k, ...dw100,k) (1)

Here, dwj,k is the topic domain weight of website k for

topic domain j. In other words, it is how strongly the doc-

ument belongs in a given topic. This is calculated by sum-

ming the product of the conditional probability and tag term

weight for all tags attached to website k. This is calculated

as shown in equation 2.

dwj,k =

n
X

i=0

P (ti|Dj) · tfi,k · idfi (2)

In this case, n is the number of distinct tags attached to

website k by all users. P (ti|Dj) is the conditional proba-

bility of tag term i (shown as ti) given domain j (shown

as Dj). tfi,k · idfi is as calculated by standard tf-idf, where

tfi,k is the number of times any user bookmarked a website k

with tag i divided by the total number of times that website

is bookmarked. Similar the idfi is determined by the total

number of websites in the entire set divided by the number

of websites bookmarked with tag i. So, instead of the web-

site vector being described in terms of tag term weights, a

website’s domain vector parameters are now its topic domain

weight value, i.e. how much the document belongs to that

particular topic domain. An example calculation is shown in

figure 3.

In this case, apple.com has three tags attached by all users:

‘apple’, ‘mac’, and ‘software’. Using the conditional proba-

bilities shown in figure 2, the calculations of domain 1 and 2

 apple
mac
software

attached tags

D1

mac (0.69)
software (0.68)
osx (0.66)
tool (0.59)
apple (0.58)
....

D2

program(0.78)
develop(0.56)
refer(0.52)
code(0.34)
software(0.29)

....

+0.58 * 0.81
+0.69 * 0.51
+0.58 * 0.07

tf * idf

apple (0.81)
mac (0.51)
software (0.07)

+0.29 * 0.07

dw = 0.86
1,k

dw = 0.02
2,k

DVk = (0.86, 0.02, ...)

Figure 3 Calculation of k = apple.com’s website topic domain

vector

are shown.

Similarly, a bookmark topic domain vector created from

user A bookmarking website k, DVA→k, would be calculated

in the same fashion as shown in equation 3.

DVA→k = (dw1,A→k, dw2,A→k, dw3,A→k, ...dw100,A→k)

(3)

The only exception is that the domain tag weight only

considers the tags that user A used on website k as shown in

equation 4.

dwj,A→k =

n
X

i=0

P (ti|Dj) · idfi,A→k (4)

Since a user can only apply atmost one of the same tag term

to a bookmark, only the idf is used here.

3. 2 RCF Recommendations

We now describe our Reasonable Tag-based Collaborative

Filtering (RCF) algorithm. The process to generate recom-

mendations follows these steps:

（ 1） Finding similar users.

（ 2） Finding recommendation candidates.

（ 3） Providing live-updating recommendations based

upon the user’s current interest.

We now describe these steps.

3. 2. 1 Finding Similar Users

We start off by finding similar users. Like normal collab-

orative filtering, it is based upon commonly liked items–in

this case, commonly bookmarked websites. However, it dif-

fers in that we also consider the used tags–which we assume

to be the reason why a user liked a resource. For example,

from our previously shown system in figure 1, say we want

to find the similar users of user B. It would be calculated as

— 4 —

shown in figure 4.

B

C

2

apple
, tech

, new
s

apple, news

A games, reviews common bookmark, k

Figure 4 Example User Similarity Calculation

Since user B and C have bookmarked the same website

with similar tags–indicated by the dotted arrow–their simi-

larity score is higher. In this case, C becomes a similar user,

indicated by the star. On the other hand, users B and A

have bookmarked the same site, but they do not use simi-

lar tags–indicated by the crossed-out dotted arrow–and thus

their similarity score is lower.

User similarity for a user A and a user B is calculated as

shown in equation 5.

simrcf (A, B) = α · 1

n

n
X

1

{sim(DVA→k, DVB→k)}

+ (1 − α) · log2(1 + n) (5)

Here, user similarity is the average of the cosine of A and B’s

domain vectors for each commonly bookmarked website, k.

In other words, if they bookmarked the same websites with

similar tags, we assume that they liked the website for the

same reasons, and thus, they are similar users. The first half

of the equation gives value to bookmarks liked for the same

reason. The second half of the equation gives value to the

existence of common bookmarks regardless of the reasons for

liking it.

Also, n is the number of bookmarks that user A and user

B have in common. Lastly, α is the weight given to topic

domain vector comparison, which for our experiments was

set to 0.9. Additionally, sim(DVA→k, DVB→k) is the cosine

of user A’s bookmark domain vector on website k and user

B’s bookmark domain vector on a website k as shown in

equation 6.

sim(DVA→k, DVB→k) =
DVA→k · DVA→k

|DVA→k||DVB→k|
(6)

As can be seen, our algorithm tries to make sure that the

users have like the same resource for the same reason in addi-

tion to having only the same website liked. This is useful for

mainly larger sites, such as Yahoo! or Slashdot which tend

to cover many topics and thus, users may like those sites for

differing reasons.

3. 2. 2 Finding Recommendation Candidates

Next, we try to find recommendation candidates for a user

through score prediction calculation, i.e. predicting how

much a user will like a resource. Again, similar to traditional

collaborative filtering, we attempt to find websites that the

similar users like, except now we also additionally match the

topic domain that the original user and the similar user have

a common interest on. The thinking being that users often

have multiple interests, and therefore we can only recom-

mend websites that match the topic that the two users were

similar on.

For example, in the system shown in figure 1, we try to find

recommendation candidates for user B who has a similar user

C as shown in figure 5. They both liked website 2 for the rea-

son that the website is about apple technology news. Thus,

we try to find websites that match this topic. In this case,

similar user C has two other bookmarks. Since only website

3’s domain vector matches the commonly bookmarked web-

site 2’s domain vector–indicated by the dotted arrow–it has a

high score prediction, and thus, becomes a recommendation

candidate (denoted by a star). On the other hand, website 4

does not match–marked by the crossed-out dotted line–and

thus, its score prediction is lower.

C2

3

apple, tech, news
apple, ru

mors

4

tennis, sports

common bookmark, k

target website, x

Figure 5 Example score prediction calculation

The score prediction algorithm is shown in equation 7.

Here, we are finding the score prediction for a target web-

site x for a user A. We first take all bookmarks from all

similar users Sk with a user similarity above a certain user

similarity threshold–in our case, 0.75. We then compare each

of those bookmark domain vector DVSk→x with the book-

mark domain vector on the commonly bookmarked website

k, DVSk→k. We average these scores from all users and then

those webpages with scores above a certain threshold–0.50 in

our tests–become recommendation candidates. Additionally,

we associate this recommendation to the commonly book-

marked webpage k whose domain vector generated the score.

This is used in the final score calculation described in follow-

ing section.

Also, α is the weight given to the domain vector compar-

ison, and in this case, it is 0.90. Additionally, while the left

side attempts to match the topic, the right side of the equa-

tion is to give value to the mere existence of a similar user’s

bookmark regardless of the matching tags.

— 5 —

scorepred(A, x) = α ·
Pn

k=1{simrcf (A, Sk) · sim(DVSk→k, DVSk→x)}
Pn

k=1{simrcf (A, Sk)}
+ (1 − α) · log2(1 +

n
X

k=1

{simrcf (A, Sk)} (7)

3. 2. 3 Providing Live-Updating Recommendations Based

Upon User’s Current Interest

The last step in the process of generating recommenda-

tions is determining which of the recommendation candi-

dates match the current interest. In our case, we assume

the user’s current interest to be the topic of the website they

are presently viewing. So again from our example system,

we want to provide recommendations for user B as shown in

figure 6.

Here, B is looking at a site which has the tags ‘apple’,

‘mac’, and ‘software’ attached to it by bookmarks from all

users. B also has two recommendation candidates, website

3 and 6 (6 is an arbitary webpage not shown in the exam-

ple system from figure 1) which were generated from section

3. 2. 2. Website 3 has been associated with commonly book-

marked website 2 and website 6 has been with website 5. We

then compare the user’s currently viewed webpage’s domain

vector to all of B’s bookmarks. If we find one that is above

a certain threshold, then we take the recommendation can-

didates that are attached to it and calculate its final score as

shown in equation 8. All websites above a certain threshold

are then recommended to the end user. So in this case, since

B bookmark domain vector matches the current website’s

domain vector, its attached website, 3, is used for final score

calculation. If its score is high enough, it is recommended. B

also has an arbitrary recommendation candidate, website 6.

However, since B’s bookmark on website 5 does not match

the currently viewed website, it is not recommended at this

time. If the current website were to change to something

about sports or tennis, website 6 would be recommended if

its final score was high enough.

In equation 8, user A is viewing webpage cur, k is the a

commonly bookmarked website, and x is a recommendation

candidate. Lastly, β is the weight given to the part of the

equation which determines how similar the recommendation

candidate should be to the current page. For our experi-

ments, this was set to 1. All resultant final scores higher

than a threshold of 0.50 are shown to the user in the de-

scending order of the score.

3. 3 Live-Updating Website Recommendation

Our system was created to provide live-updating website

recommendations that automatically update based on the

page that they are currently viewing. Thus, it was designed

to be viewable along during the user’s normal browsing activ-

ity. It is currently implemented as a Firefox sidebar plugin.

The recommendation interface is show in figure 7. Here, the

generated recommendations are shown in the sidebar. If they

feel the recommendations are useful, they can click on it and

the browser will be redirected to the recommended website.

Figure 7 System Interface

4. Experiment

We tested our algorithm against other popular search

methods to gauge the effectiveness of the algorithm as well

as observe how users react to generated recommendations.

We tested our method as described in the previous section

as well as three other different methods:

• topic - This method takes the top five domains from

the currently viewed webpage and then pulls all the book-

marks from the database with high values for those domains.

All website above a cosine value of 0.75 are then ranked by

the same cosine value and shown to the user

• tag-bookmark-count (tbc) - This method takes the

top three stemmed tags from the currently viewed webpage

and then pulls all bookmarks from the database with these

tags. The results are then ranked by the number of book-

marks in descending order.

• cf-topic - All bookmarks of all users with common

bookmarks with the current user were stored as recommen-

dation candidates. Then we take the currently viewed web-

site’s domain vector and those stored bookmarks’ domain

vectors and calculate the cosine. They are then ranked by

cosine value. This has similarity to our method, but it does

not consider tagging when calculating the score predictions

of the recommendation candidates

4. 1 Procedure

Users were asked to create a profile of twenty or more book-

marks with whatever tags they felt like. After this, the sys-

tem would generate recommendation candidates as described

in section 3. 2. After this, they followed this recommendation

evaluation procedure:

（ 1） Users would select fifteen or more webpages and

browse them.

— 6 —

B

C2

apple
, new

s

common bookmark, k

3

mac, rumors

cur

E
5

tennis, sports
6

tennis

all users attached tags

apple, mac, software

recommendation
candidates, x

Figure 6 Example Final Score Calculation

scorefinal(A, cur, x) = sim(DVcur, DVA→k) · scorepred(DV, x) · sim(DVcur, DVA→x)β (8)

（ 2） The system would randomly select one of the above

described algorithms and generate up to six recommenda-

tions from it.

（ 3） Users would then look at the website’s screenshot

thumbnail, top tags, and title. If they thought the page was

interesting and related to the page they were browsing, they

would click on it.

（ 4） If they did click on a recommendation, they were

asked to evaluate the webpage as either ‘Good’, ‘Fair’, or

‘Bad’ in terms of how interesting the page was and also

whether the website was related to the page that they were

currently viewing.

4. 2 Testing Results

Here are the results of our experiment.

4. 2. 1 How effective are the recommendations?

Next we examine how effective each method was for rec-

ommendation. Figure 8 shows the precision of each of the

recommendation methods.

topic

tbc

cf-topic

RCF

0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 8 Precision (Good / Total)

Precision is defined as the number of ‘Good’ ratings over

the total number of ratings. Here, each method’s precision is

shown. As can be seen here our method RCF, provides the

highest level among all the recommendation methods. It is

followed by cf-topic, topic, and then finally tbc.

Additionally, we also take a look at the average ratings

for the top scores per recommendation request as shown in

figure 9.

0.4

0.5

0.6

0.7

0.8

to
p
1

to
p
2

to
p
3

RCF tagbctopiccf-topic

Figure 9 Average Score of the Top Results per Request

Here, we have the average rating the top listed result, fol-

lowed by the top two, and finally top three results per rec-

ommendation request. The ratings were given the following

values: ‘Good’ = 1, ‘Fair’ = 0.5, and ‘Poor’ = 0. Again, RCF

beats all the other methods and more so when considering

the top ranked result per request.

4. 3 Results Discussion

Looking at the precision data, our RCF method provides

the most effective recommendations to the user in terms of

the precision of the recommendation results. This is due

to that RCF attempts to understand the reasons involved

when a user bookmarks a website. Additionally, considering

that users have multiple interests, it is important to under-

stand what they are currently interested in by using their

presently viewed webpage as a guide. In contrast to this, the

other methods do not do this.

— 7 —

Topic searching is in effect similar to what RCF does in

the final score step. It considers the current page to some ex-

tent. However, since topic search does not consider the user

bookmarking preferences, it most likely causes the score to

lower.

For tbc, it’s strength lies in the fact that it takes website

popularity into consideration as its ranking method orders

by bookmark count. However, again, since this too does not

consider the user’s bookmarking profile, it is rendered less

effective than others.

Lastly, cf-topic is a rather basic implementation of col-

laborative filtering; but being so, it does consider the user’s

profile to some degree. However, it does not effectively un-

derstand the reasons why a user liked something as it does

not consider the tagging information. Being so, it probably

causes its score to be lower. However, as can be seen in the

results, it is more effective than the methods that do not.

Regarding the top results’ values, we can see that our

method provides better recommendations for the top ranking

results. This is important as it requires less effort on behalf

of the user in finding relevant results. Additionally, in rec-

ommendation systems, there is simply a limit on how many

recommendations you can provide to the end user. Thus, it

is important to lower the number of recommendations, while

at the same time, maintain a high level of precision. Any-

thing less would reduce the usefulness of a recommendation

system.

5. Conclusions and Future Work

We have described our Reasonable Tag-Based Collabora-

tive Filtering method for use in social tagging systems. Ad-

ditionally, we have described its place in our live-updating

website recommendation system which provides recommen-

dations based upon both the reasons they used for book-

marks and their current interest. Through our user testing,

we have shown that live-updating implicit recommendation is

possible through the use of a website’s tags. Our method was

more effective than other tested methods, and additionally

provided higher results for the top results per recommenda-

tion request.

We believe it is an effective method that can be employed

in all sorts of online tagging systems. Social tagging systems

and CF rely heavily on the people using this systems, so

combining them–such as done in our method–seems like the

next logical step.

In the future, we plan to further refine the recommenda-

tion method. One issue is when a currently viewed webpage

is not in the database. Since our algorithm is based solely

upon bookmarking data, if the website is not in the database,

the system cannot make recommendations. This is especially

true for websites with continuously updating webpages such

as newsites or blogs. A basic fallback method based on web-

sites contents as well as other standard search methods could

be implemented.

Additionally, we are evaluating what the optimal threshold

is for our system–one that finds the balance between giving

good recommendations, versus giving enough number of rec-

ommendations for the user to choose from.

Lastly, we also intend to add relevance feedback into our

method. Currently, it is based solely on bookmarks. How-

ever, it would make sense to incorporate both positive or

negative feedback of the recommendations generated so that

we can provide better recommendations to the user.

Additionally, we plan to add recommendations grouping,

where as the results are group by topic. This way, the user

can then have a better idea of which aspect of the website

they are viewing as well as be able to choose what topic that

they wish to see more of.

We also plan to do wider testing to gather data in more

uncontrolled environments in order to determine users’ ac-

tual usage patterns. Many users are usually not confident

opening pages that they do not understand how it relates to

them. Thus, we must determine how to get over this barrier

and at the same time provide effective recommendations.

Acknowledgments

This research was partly supported by MEXT (Grant-in-

Aid for Scientific Research on Priority Areas #19024058).

References

[1] Amazon.com. http://www.amazon.com/.

[2] Citeulike. http://www.citeulike.org/.

[3] Consumating.com. http://www.consumating.com/.

[4] del.icio.us. http://del.icio.us/.

[5] Flickr. http://www.flickr.com/.

[6] http://www.tartarus.org/ martin/porterstemmer/.

[7] movielens. http://www.movielens.umn.edu/.

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum

likelihood from Incomplete Data via the EM Algorithm, vol-

ume B 39. J. Royal Stat. Society, 1977.

[9] S. Golder and B. Huberman. The structure of collaborative

tagging systems.

[10] D. K. J. Becker. Topic-based vector space model. In Busi-

ness Information Systems, 2003.

[11] C. Marlow, M. Naarman, D. Boyd, and M. Davis. Position

paper, tagging, taxonomy, flickr, article, toread. 2006.

[12] R. Nakamoto, S. Nakajima, J. Miyazaki, and H. K. S. Ue-

mura. Evaluation of tag-based contextual collaborative fil-

tering effectiveness in website recommendation. Technical

Report 131, IEICE, 2007.

[13] R. Nakamoto, S. Nakajima, J. Miyazaki, and S. Uemura.

Tag-based contextual collaborative filtering. In 18th IEICE

Data Engineering Workshop, 2007.

[14] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and

J. Riedl. GroupLens: An Open Architecture for Collabora-

tive Filtering of Netnews. In Proceedings of ACM 1994 Con-

ference on Computer Supported Cooperative Work, pages

175–186, Chapel Hill, North Carolina, 1994. ACM.

[15] X. Wu, L. Zhang, and Y. Yu. Exploring social annotations

for the semantic web. In WWW ’06: Proceedings of the

15th international conference on World Wide Web, pages

417–426, New York, NY, USA, 2006. ACM.

— 8 —

