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Abstract
When it comes to deploying deep vision models, the be-

havior of these systems must be explicable to ensure confi-
dence in their reliability and fairness. A common approach
to evaluate deep learning models is to build a labeled test
set with attributes of interest and assess how well it per-
forms. However, creating a balanced test set (i.e., one that
is uniformly sampled over all the important traits) is of-
ten time-consuming, expensive, and prone to mistakes. The
question we try to address is: can we evaluate the sensi-
tivity of deep learning models to arbitrary visual attributes
without an annotated test set?

This paper argues the case that Zero-shot Model Diag-
nosis (ZOOM) is possible without the need for a test set nor
labeling. To avoid the need for test sets, our system relies
on a generative model and CLIP. The key idea is enabling
the user to select a set of prompts (relevant to the prob-
lem) and our system will automatically search for seman-
tic counterfactual images (i.e., synthesized images that flip
the prediction in the case of a binary classifier) using the
generative model. We evaluate several visual tasks (classi-
fication, key-point detection, and segmentation) in multiple
visual domains to demonstrate the viability of our method-
ology. Extensive experiments demonstrate that our method
is capable of producing counterfactual images and offering
sensitivity analysis for model diagnosis without the need for
a test set.

1. Introduction

Deep learning models inherit data biases, which can be
accentuated or downplayed depending on the model’s ar-
chitecture and optimization strategy. Deploying a computer
vision deep learning model requires extensive testing and
evaluation, with a particular focus on features with poten-
tially dire social consequences (e.g., non-uniform behav-
ior across gender or ethnicity). Given the importance of
the problem, it is common to collect and label large-scale
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Figure 1. Given a differentiable deep learning model (e.g., a
cat/dog classifier) and user-defined text attributes, how can we de-
termine the model’s sensitivity to specific attributes without us-
ing labeled test data? Our system generates counterfactual images
(bottom right) based on the textual directions provided by the user,
while also computing the sensitivity histogram (top right).

datasets to evaluate the behavior of these models across
attributes of interest. Unfortunately, collecting these test
datasets is extremely time-consuming, error-prone, and ex-
pensive. Moreover, a balanced dataset, that is uniformly
distributed across all attributes of interest, is also typically
impractical to acquire due to its combinatorial nature. Even
with careful metric analysis in this test set, no robustness
nor fairness can be guaranteed since there can be a mis-
match between the real and test distributions [25]. This
research will explore model diagnosis without relying on
a test set in an effort to democratize model diagnosis and
lower the associated cost.

Counterfactual explainability as a means of model diag-
nosis is drawing the community’s attention [5,20]. Counter-
factual images visualize the sensitive factors of an input im-
age that can influence the model’s outputs. In other words,
counterfactuals answer the question: “How can we modify
the input image x (while fixing the ground truth) so that the
model prediction would diverge from y to ŷ?”. The param-
eterization of such counterfactuals will provide insights into
identifying key factors of where the model fails. Unlike ex-
isting image-space adversary techniques [4,18], counterfac-
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tuals provide semantic perturbations that are interpretable
by humans. However, existing counterfactual studies re-
quire the user to either collect uniform test sets [10], anno-
tate discovered bias [15], or train a model-specific explana-
tion every time the user wants to diagnose a new model [13].

On the other hand, recent advances in Contrastive
Language-Image Pretraining (CLIP) [24] can help to over-
come the above challenges. CLIP enables text-driven ap-
plications that map user text representations to visual man-
ifolds for downstream tasks such as avatar generation [7],
motion generation [37] or neural rendering [22, 30]. In
the domain of image synthesis, StyleCLIP [21] reveals that
text-conditioned optimization in the StyleGAN [12] latent
space can decompose latent directions for image editing,
allowing for the mutation of a specific attribute without dis-
turbing others. With such capability, users can freely edit
semantic attributes conditioned on text inputs. This paper
further explores its use in the scope of model diagnosis.

The central concept of the paper is depicted in Fig. 1.
Consider a user interested in evaluating which factors con-
tribute to the lack of robustness in a cat/dog classifier (target
model). By selecting a list of keyword attributes, the user is
able to (1) see counterfactual images where semantic vari-
ations flip the target model predictions (see the classifier
score in the top-right corner of the counterfactual images)
and (2) quantify the sensitivity of each attribute for the tar-
get model (see sensitivity histogram on the top). Instead of
using a test set, we propose using a StyleGAN generator
as the picture engine for sampling counterfactual images.
CLIP transforms user’s text input, and enables model diag-
nosis in an open-vocabulary setting. This is a major advan-
tage since there is no need for collecting and annotating im-
ages and minimal user expert knowledge. In addition, we
are not tied to a particular annotation from datasets (e.g.,
specific attributes in CelebA [16]).

To summarize, our proposed work offers three major im-
provements over earlier efforts:

• The user requires neither a labeled, balanced test
dataset, and minimal expert knowledge in order to
evaluate where a model fails (i.e., model diagnosis). In
addition, the method provides a sensitivity histogram
across the attributes of interest.

• When a different target model or a new user-defined
attribute space is introduced, it is not necessary to re-
train our system, allowing for practical use.

• The target model fine-tuned with counterfactual im-
ages not only slightly improves the classification per-
formance, but also greatly increases the distributional
robustness against counterfactual images.

2. Related Work
This section reviews prior work on attribute editing with

generative models and recent efforts on model diagnosis.

2.1. Attribute Editing with Generative Models
With recent progress in generative models, GANs sup-

ports high-quality image synthesis, as well as semantic at-
tributes editing [35]. [1, 6] edit the images by perturbing
the intermediate latent space encoded from the original im-
ages. These methods rely on images to be encoded to la-
tent vectors to perform attribute editing. On the contrary,
StyleGAN [12] can produce images by sampling the la-
tent space. Many works have explored ways to edit at-
tributes in the latent space of StyleGAN, either by rely-
ing on image annotations [27] or in an unsupervised man-
ner [8, 28]. StyleSpace [34] further disentangles the latent
space of StyleGAN and can perform specific attribute ed-
its by disentangled style vectors. Based upon StyleSpace,
StyleCLIP [21] builds the connection between the CLIP
language space and StyleGAN latent space to enable arbi-
trary edits specified by the text. Our work adopts this con-
cept for fine-grained attribute editing.

2.2. Model Diagnosis

To the best of our knowledge, model diagnosis without
a test set is a relatively unexplored problem. In the ad-
versarial learning literature, it is common to find methods
that show how image-space perturbations [4, 18] flip the
model prediction; however, such perturbations lack visual
interpretability. [36] pioneers in synthesizing adversaries by
GANs. More recently, [9, 23, 26] propose generative meth-
ods to synthesize semantically perturbed images to visual-
ize where the target model fails. However, their attribute
editing is limited within the dataset’s annotated labels. In-
stead, our framework allows users to easily customize their
own attribute space, in which we visualize and quantify the
biased factors that affect the model prediction. On the bias
detection track, [13] co-trains a model-specific StyleGAN
with each target model, and requires human annotators to
name attribute coordinates in the Stylespace. [3,14,15] syn-
thesize counterfactual images by either optimally travers-
ing the latent space or learning an attribute hyperplane, af-
ter which the user will inspect the represented bias. Un-
like previous work, we propose to diagnose a deep learning
model without any model-specific re-training, new test sets,
or manual annotations/inspections.

3. Method
This section firstly describes our method to generate

counterfactual images guided by CLIP in a zero-shot man-
ner. We then introduce how we perform the sensitivity anal-
ysis across attributes of interest. Fig. 2 shows the overview
of our framework.
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Figure 2. The ZOOM framework. Black solid lines stand for forward passes, red dashed lines stand for backpropagation, and purple dashed
lines stand for inference after the optimization converges. The user inputs single or multiple attributes, and we map them into edit directions
with the method in Sec. 3.2. Then we assign to each edit direction (attribute) a weight, which represents how much we are adding/removing
this attribute. We iteratively perform adversarial learning on the attribute space to maximize the counterfactual effectiveness.

3.1. Notation and Problem Definition

Let fθ, parameterized by θ, be the target model that we
want to diagnose. In this paper, fθ denotes two types of
deep nets: binary attribute classifiers and face keypoint de-
tectors. Note that our approach is extendable to any end-
to-end differentiable target deep models. Let Gϕ, parame-
terized by ϕ, be the style generator that synthesizes images
by x = Gϕ(s) where s is the style vector in Style Space
S [34]. We denote a counterfactual image as x̂, which
is a synthesized image that misleads the target model fθ,
and denote the original reference image as x. a is defined
as a single user input text-based attribute, with its domain
A = {ai}Ni=1 for N input attributes. x̂ and x differs only
along attribute directions A. Given a set of {fθ,Gϕ,A},
our goal is to perform counterfactual-based diagnosis to
interpret where the model fails without manually collect-
ing nor labeling any test set. Unlike traditional approaches
of image-space noises which lack explainability to users,
our method adversarially searches the counterfactual in the
user-designed semantic space. To this end, our diagno-
sis will have three outputs, namely counterfactual images
(Sec. 3.3), sensitivity histograms (Sec. 3.4), and distribu-
tionally robust models (Sec. 3.5).

3.2. Extracting Edit Directions
This section examines the terminologies, method, and

modification we adopt in ZOOM to extract suitable global
directions for attribute editing. Since CLIP has shown
strong capability in disentangling visual representation
[19], we incorporate style channel relevance from Style-
CLIP [21] to find edit directions for each attribute.

Given the user’s input strings of attributes, we want to
find an image manipulation direction ∆s for any s ∼ S ,
such that the generated image Gϕ(s+∆s) only varies in the
input attributes. Recall that CLIP maps strings into a text
embedding t ∈ T , the text embedding space. For a string

attribute description a and a neutral prefix p, we obtain the
CLIP text embedding difference ∆t by:

∆t = CLIPtext(p⊕ a)− CLIPtext(p) (1)

where ⊕ is the string concatenation operator. To
take ‘Eyeglasses’ as an example, we can get ∆t =
CLIPtext(‘a face with Eyeglasses’)− CLIPtext(‘a face’).

To get the edit direction, ∆s, we need to utilize a style
relevance mapper M ∈ RcS×cT to map between the CLIP
text embedding vectors of length cT and the Style space
vector of length cS . StyleCLIP optimizes M by iteratively
searching meaningful style channels: mutating each chan-
nel in S and encoding the mutated images by CLIP to assess
whether there is a significant change in T space. To prevent
undesired edits that are irrelevant to the user prompt, the
edit direction ∆s will filter out channels that the style value
change is insignificant:

∆s = (M ·∆t)⊙ 1((M ·∆t) > λ), (2)

where λ is the hyper-parameter for the threshold value. 1(·)
is the indicator function, and ⊙ is the element-wise product
operator. Since the success of attribute editing by the ex-
tracted edit directions will be the key to our approach, Ap-
pendix A will show the capability of CLIP by visualizing
the global edit direction on multiple sampled images, con-
ducting the user study, and analyzing the effect of λ.

3.3. Style Counterfactual Synthesis

Identifying semantic counterfactuals necessitates a man-
ageable parametrization of the semantic space for effec-
tive exploration. For ease of notation, we denote (∆s)i as
the global edit direction for ith attribute ai ∈ A from the
user input. After these N attributes are provided and the
edit directions are calculated, we initialize the control vec-
tors w of length N where the ith element wi controls the



strength of the ith edit direction. Our counterfactual edit
will be a linear combination of normalized edit directions:
sedit =

∑N
i=1 wi

(∆s)i
||(∆s)i|| .

The black arrows in Fig. 2 show the forward inference to
synthesize counterfactual images. Given the parametriza-
tion of attribute editing strengths and the final loss value,
our framework searches for counterfactual examples in the
optimizable edit weight space. The original sampled image
is x = Gϕ(s), and the counterfactual image is

x̂ = Gϕ(s+ sedit) = Gϕ

(
s+

N∑
i=1

wi
(∆s)i

||(∆s)i||

)
, (3)

which is obtained by minimizing the following loss, L, that
is the weighted sum of three terms:

L(s,w) = αLtarget(x̂) + βLstruct(x̂) + γLattr(x̂). (4)

We back-propagate to optimize L w.r.t the weights of the
edit directions w, shown as the red pipeline in Fig. 2.

The targeted adversarial loss Ltarget for binary at-
tribute classifiers minimizes the distance between the cur-
rent model prediction fθ(x̂) with the flip of original predic-
tion p̂cls = 1 − fθ(x). In the case of an eyeglass classifier
on a person wearing eyeglasses, Ltarget will guide the op-
timization to search w such that the model predicts no eye-
glasses. For a keypoint detector, the adversarial loss will
minimize the distance between the model keypoint predic-
tion with a set of random points p̂kp ∼ N :

(binary classifier) Ltarget(x̂) = LCE(fθ(x̂), p̂cls), (5)
(keypoint detector) Ltarget(x̂) = LMSE(fθ(x̂), p̂kp). (6)

If we only optimize Ltarget w.r.t the global edit direc-
tions, it is possible that the method will not preserve im-
age statistics of the original image and can include the par-
ticular attribute that we are diagnosing. To constrain the
optimization, we added a structural loss Lstruct and an at-
tribute consistency loss Lattr to avoid generation collapse.
Lstruct [32] aims to preserve global image statistics of the
original image x including image contrasts, background, or
shape identity during the adversarial editing. While Lattr

enforces that the target attribute (perceived ground truth) be
consistent on the style edits. For example, when diagnos-
ing the eyeglasses classifier, ZOOM preserves the original
status of eyeglasses and precludes direct eyeglasses addi-
tion/removal.

Lstruct(x̂) = LSSIM (x̂,x) (7)
Lattr(x̂) = LCE(CLIP(x̂),CLIP(x)) (8)

Given a pretrained target model fθ, a domain-specific
style generator Gϕ, and a text-driven attribute space A, our

goal is to sample an original style vector s for each image
and search its counterfactual edit strength ŵ:

ŵ = argmin
w

L(s,w). (9)

Unless otherwise stated, we iteratively update w as:

w = clamp[−ϵ,ϵ](w − η∇wL), (10)

where η is the step size and ϵ is the clamp bound to avoid
synthesis collapse caused by exaggerated edit. Note that the
maximum counterfactual effectiveness does not indicate the
maximum edit strength (i.e., wi = ϵ), since the attribute
edit direction does not necessarily overlap with the target
classifier direction. The attribute change is bi-directional,
as the wi can be negative in Eq. 3. Details of using other
optimization approaches (e.g., linear approximation [18])
will be discussed in Appendix C.

3.4. Attribute Sensitivity Analysis

Single-attribute counterfactual reflects the sensitivity of
target model on the individual attribute. By optimizing in-
dependently along the edit direction for a single attribute
and averaging the model probability changes over images,
our model generates independent sensitivity score hi for
each attribute ai:

hi = Ex∼P(x),x̂=ZOOM(x,ai)|fθ(x)− fθ(x̂)|. (11)

The sensitivity score hi is the probability difference be-
tween the original image x and generated image x̂, at the
most counterfactual point when changing attribute ai.

We synthesize a number of images from Gϕ, then itera-
tively compute the sensitivity for each given attribute, and
finally normalize all sensitivities to draw the histogram as
shown in Fig. 4. The histogram indicates the sensitivity
of the evaluated model fθ on each of the user-defined at-
tributes. Higher sensitivity of one attribute means that the
model is more easily affected by that attribute.

3.5. Counterfactual Training

The multi-attribute counterfactual approach visualizes
semantic combinations that cause the model to falter, pro-
viding valuable insights for enhancing the model’s robust-
ness. We naturally adopt the concept of iterative adversar-
ial training [18] to robustify the target model. For each
iteration, ZOOM receives the target model parameter and
returns a batch of mutated counterfactual images with the
model’s original predictions as labels. Then the target
model will be trained on the counterfactually-augmented
images to achieve the robust goal:

θ∗ = argmin
θ

Ex∼P(x),x̂=ZOOM(x,A)LCE(fθ(x̂), fθ(x)) (12)
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Figure 3. Effect of progressively generating counterfactual images on (left) cat/dog classifier (0-Cat / 1-Dog), and (right) perceived age
classifier (0-Senior / 1-Young). Model probability prediction during the process is attached at the top right corner.
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(a) Model diagnosis histograms generated by ZOOM on four facial attribute classifiers.
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(b) Model diagnosis histograms generated by ZOOM on four classifiers trained on manually-crafted imbalance data.

Figure 4. Model diagnosis histograms generated by ZOOM. The vertical axis values reflect the attribute sensitivities calculated by averaging
the model probability change over all sampled images. The horizontal axis is the attribute space input by user.

where batches of x are randomly sampled from the Style-
GAN generator Gϕ. In the following, we abbreviate the pro-
cess as Counterfactual Training (CT). Note that, although
not explicitly expressed in Eq. 12, the CT process is a min-
max game. ZOOM synthesizes counterfactuals to maximize
the variation of model prediction (while persevering the per-
ceived ground truth), and the target model is learned with
the counterfactual images to minimize the variation.

4. Experimental Results
This section describes the experimental validations on

the effectiveness and reliability of ZOOM. First, we de-
scribe the model setup in Sec. 4.1. Sec. 4.2 and Sec. 4.3
visualize and validate the model diagnosis results for the
single-attribute setting. In Sec. 4.4, we show results on syn-
thesized multiple-attribute counterfactual images and apply
them to counterfactual training.

4.1. Model Setup

Pre-trained models: We used Stylegan2-ADA [11] pre-
trained on FFHQ [12] and AFHQ [1] as our base genera-

tive networks, and the pre-trained CLIP model [24] which
is parameterized by ViT-B/32. We followed StyleCLIP [21]
setups to compute the channel relevance matrices M.

Target models: Our classifier models are ResNet50 with
single fully-connected head initialized by TorchVision1. In
training the binary classifiers, we use the Adam optimizer
with learning rate 0.001 and batch size 128. We train binary
classifiers for Eyeglasses, Perceived Gender, Mustache, Per-
ceived Age attributes on CelebA and for cat/dog classifica-
tion on AFHQ. For the 98-keypoint detectors, we used the
HR-Net architecture [31] on WFLW [33].

4.2. Visual Model Diagnosis: Single-Attribute

Understanding where deep learning model fails is an es-
sential step towards building trustworthy models. Our pro-
posed work allows us to generate counterfactual images
(Sec. 3.3) and provide insights on sensitivities of the target
model (Sec. 3.4). This section visualizes the counterfactual
images in which only one attribute is modified at a time.

1https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-
torchvision-latest-primitives/



Fig. 3 shows the single-attribute counterfactual images.
Interestingly (but not unexpectedly), we can see that re-
ducing the hair length or joyfulness causes the age classi-
fier more likely to label the face to an older person. Note
that our approach is extendable to multiple domains, as we
change the cat-like pupil to dog-like, the dog-cat classi-
fication tends towards the dog. Using the counterfactual
images, we can conduct model diagnosis with the method
mentioned in Sec. 3.4, on which attributes the model is sen-
sitive to. In the histogram generated in model diagnosis,
a higher bar means the model is more sensitive toward the
corresponding attribute.

Fig. 4a shows the model diagnosis histograms on
regularly-trained classifiers. For instance, the cat/dog clas-
sifier histogram shows outstanding sensitivity to green eyes
and vertical pupil. The analysis is intuitive since these are
cat-biased traits rarely observed in dog photos. Moreover,
the histogram of eyeglasses classifier shows that the muta-
tion on bushy eyebrows is more influential for flipping the
model prediction. It potentially reveals the positional corre-
lation between eyeglasses and bushy eyebrows. The advan-
tage of single-attribute model diagnosis is that the score of
each attribute in the histogram are independent from other
attributes, enabling unambiguous understanding of exact se-
mantics that make the model fail. Diagnosis results for ad-
ditional target models can be found in Appendix B.

4.3. Validation of Visual Model Diagnosis

Evaluating whether our zero-shot sensitivity histograms
(Fig. 4) explain the true vulnerability is a difficult task, since
we do not have access to a sufficiently large and balanced
test set fully annotated in an open-vocabulary setting. To
verify the performance, we create synthetically imbalanced
cases where the model bias is known. We then compare our
results with a supervised diagnosis setting [17]. In addition,
we will validate the decoupling of the attributes by CLIP.

4.3.1 Creating imbalanced classifiers

In order to evaluate whether our sensitivity histogram is
correct, we train classifiers that are highly imbalanced to-
wards a known attribute and see whether ZOOM can de-
tect the sensitivity w.r.t the attribute. For instance, when
training the perceived-age classifier (binarized as Young in
CelebA), we created a dataset on which the trained classi-
fier is strongly sensitive to Bangs (hair over forehead). The
custom dataset is a CelebA training subset that consists of
20, 200 images. More specifically, there are 10, 000 images
that have both young people that have bangs, represented as
(1, 1), and 10, 000 images of people that are not young and
have no bangs, represented as (0, 0). The remaining combi-
nations of (1, 0) and (0, 1) have only 100 images. With this
imbalanced dataset, bangs is the attribute that dominantly
correlates with whether the person is young, and hence the

0

0.1

0.2

0.3

0.4

0.5

Sm
ili

ng

Ba
ng

s

Be
ar

d

Bl
on

d
H

ai
r

Bu
sh

y
Ey

eb
ro

w
s

Li
ps

tic
k

Pa
le

 S
ki

n

Se
ns

iti
vi

ty
 (O

ur
s)

 

Age Classifier (Imbalanced Bangs)

0

0.3

0.6

0.9

Sm
ili

ng

B
an

gs

B
ea

rd

B
lo

nd
H

ai
r

B
us

hy
E

ye
br

ow
s

L
ip

st
ic

k

Pa
le

 S
ki

n

Se
ns

iti
vi

ty
 (A

ttG
A

N
) 

Age Classifier (Imbalanced Bangs)

(Young, Bangs) (1, 1) (1, 0) (0, 1) (0, 0)
Training Samples 10000 100 100 10000

0

0.05

0.1

0.15

0.2

0.25

Sm
ili

ng

Ba
ng

s

Be
ar

d

Bl
on

d
H

ai
r

Bu
sh

y
Ey

eb
ro

w
s

Li
ps

tic
k

Pa
le

 S
ki

n

Se
ns

iti
vi

ty
 (O

ur
s)

 

Age Classifier (Imbalanced Lipsticks)

0

0.05

0.1

0.15

0.2

0.25

Sm
ili

ng

B
an

gs

B
ea

rd

B
lo

nd
H

ai
r

B
us

hy
E

ye
br

ow
s

L
ip

st
ic

k

Pa
le

 S
ki

n

Se
ns

iti
vi

ty
 (A

ttG
A

N
) 

Age Classifier (Imbalanced Lipsticks) 

(Young, Lipstick) (1, 1) (1, 0) (0, 1) (0, 0)
Training Samples 10000 100 100 10000

Figure 5. The sensitivity of the age classifier is evaluated with
ZOOM (right) and AttGAN (left), achieving comparable results.
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Figure 6. Confusion matrix of CLIP score variation (vertical axis)
when perturbing attributes (horizontal axis). This shows that at-
tributes in ZOOM are highly decoupled.

perceived-age classifier would be highly sensitive towards
bangs. See Fig. 5 (the right histograms) for an illustration
of the sensitivity histogram computed by our method for the
case of an age classifier with bangs (top) and lipstick (bot-
tom) being imbalanced.

We trained multiple imbalanced classifiers with this
methodology, and visualize the model diagnosis histograms
of these imbalanced classifiers in Fig. 4b. We can ob-
serve that the ZOOM histograms successfully detect the
synthetically-made bias, which are shown as the highest
bars in histograms. See the caption for more information.

4.3.2 Comparison with supervised diagnosis

We also validated our histogram by comparing it with the
case in which we have access to a generative model that
has been explicitly trained to disentangle attributes. We
follow the work on [17] and used AttGAN [6] trained on



Eyeglasses Classifier (0-No Eyeglasses / 1-Eyeglasses) 

O
rig
in
al

C
ou
nt
er
fa
ct
ua
l

Perceived Age Classifier (0-Senior / 1-Young) Facial Keypoint Detector (WFLW) 

Figure 7. Multi-attribute counterfactual in faces. The model probability is documented in the upper right corner of each image.

the CelebA training set over 15 attributes2. After the train-
ing converged, we performed adversarial learning in the at-
tribute space of AttGAN and create a sensitivity histogram
using the same approach as Sec. 3.4. Fig. 5 shows the re-
sult of this method on the perceived-age classifier which is
made biased towards bangs. As anticipated, the AttGAN
histogram (left) corroborates the histogram derived from
our method (right). Interestingly, unlike ZOOM, AttGAN
show less sensitivity to remaining attributes. This is likely
because AttGAN has a latent space learned in a supervised
manner and hence attributes are better disentangled than
with StyleGAN. Note that AttGAN is trained with a fixed
set of attributes; if a new attribute of interest is introduced,
the dataset needs to be re-labeled and AttGAN retrained.
ZOOM, however, merely calls for the addition of a new text
prompt. More results in Appendix B.

4.3.3 Measuring disentanglement of attributes
Previous works demonstrated that the StyleGAN’s latent
space can be entangled [2,27], adding undesired dependen-
cies when searching single-attribute counterfactuals. This
section verifies that our framework can disentangle the at-
tributes and mostly edit the desirable attributes.

We use CLIP as a super annotator to measure attribute
changes during single-attribute modifications. For 1, 000
images, we record the attribute change after performing
adversarial learning in each attribute, and average the at-
tribute score change. Fig. 6 shows the confusion matrix
during single-attribute counterfactual synthesis. The hori-
zontal axis is the attribute being edited during the optimiza-
tion, and the vertical axis represents the CLIP prediction
changed by the process. For instance, the first column of
Fig. 6a is generated when we optimize over bangs for the
mustache classifier. We record the CLIP prediction varia-
tion. It clearly shows that bangs is the dominant attribute
changing during the optimization. From the main diagonal
of matrices, it is evident that the ZOOM mostly perturbs the
attribute of interest. The results indicate reasonable disen-
tanglement among attributes.

2Bald, Bangs, Black Hair, Blond Hair, Brown Hair, Bushy Eyebrows,
Eyeglasses, Male, Mouth Slightly Open, Mustache, No Beard, Pale Skin,
Young, Smiling, Wearing Lipstick.

Cat / Dog Classifier (0-Cat / 1-Dog)

O
rig
in
al

C
ou
nt
er
fa
ct
ua
l

Figure 8. Multi-attribute counterfactual on Cat/Dog classifier. The
number in each image is the predicted probability of being a dog.

Original Reference Multiple-Attribute
Counterfactual

SAC by Beard SAC by Pale Skin SAC by Black Hair

Original Reference Multiple-Attribute
Counterfactual

SAC by Lips Color SAC by Smiling SAC by Bangs

Figure 9. Multiple-Attribute Counterfactual (MAC, Sec. 4.4) com-
pared with Single-Attribute Counterfactual (SAC, Sec. 4.2). We
can see that optimization along multiple directions enable the gen-
eration of more powerful counterfactuals.

4.4. Visual Model Diagnosis: Multi-Attributes

In the previous sections, we have visualized and val-
idated single-attribute model diagnosis histograms and
counterfactual images. In this section, we will assess
ZOOM’s ability to produce counterfactual images by con-
currently exploring multiple attributes within A, the domain
of user-defined attributes. The approach conducts multi-
attribute counterfactual searches across various edit direc-
tions, identifying distinct semantic combinations that result
in the target model’s failure. By doing so, we can effectively
create more powerful counterfactuals images (see Fig. 9).

Fig. 7 and Fig. 8 show examples of multi-attribute coun-
terfactual images generated by ZOOM, against human and
animal face classifiers. It can be observed that multiple face
attributes such as lipsticks or hair color are edited in Fig. 7,
and various cat/dog attributes like nose pinkness, eye shape,
and fur patterns are edited in Fig. 8. These attribute ed-
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(a) Sensitivity histograms generated by ZOOM on attribute combinations.
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(b) Model diagnosis by ZOOM over 19 attributes. Our framework is gen-
eralizable to analyze facial attributes of various domains.

Figure 10. Customizing attribute space for ZOOM.

its are blended to affect the target model prediction. Ap-
pendix B further illustrates ZOOM counterfactual images
for semantic segmentation, multi-class classification, and
a church classifier. By mutating semantic representations,
ZOOM reveals semantic combinations as outliers where the
target model underfits.

In the following sections, we will use the Flip Rate (the
percentage of counterfactuals that flipped the model predic-
tion) and Flip Resistance (the percentage of counterfactuals
for which the model successfully withheld its prediction) to
evaluate the multi-attribute setting.

4.4.1 Customizing attribute space
In some circumstances, users may finish one round of model
diagnosis and proceed to another round by adding new at-
tributes, or trying a new attribute space. The linear nature of
attribute editing (Eq. 3) in ZOOM makes it possible to eas-
ily add or remove attributes. Table 1 shows the flip rates
results when adding new attributes into A for perceived
age classifier and big lips classifier. We can observe that
a different attribute space will results in different effective-
ness of counterfactual images. Also, increasing the search
iteration will make counterfactual more effective (see last
row). Note that neither re-training the StyleGAN nor user-
collection/labeling of data is required at any point in this
procedure. Moreover, Fig. 10a shows the model diagnosis
histograms generated with combinations of two attributes.
Fig. 10b demonstrates the capability of ZOOM in a rich vo-
cabulary setting where we can analyze attributes that are not
labeled in existing datasets [16, 29].

4.4.2 Counterfactual training results

This section evaluates regular classifiers trained on
CelebA [16] and counterfactually-trained (CT) classifiers
on a mix of CelebA data and counterfactual images as de-
scribed in Sec. 3.5. Table 2 presents accuracy and flip re-
sistance (FR) results. CT outperforms the regular classifier.

Method AC Flip Rate (%) BC Flip Rate (%)

Initialize ZOOM by A 61.95 83.47
+ Attribute: Beard 72.08 90.07
+ Attribute: Smiling 87.47 96.27
+ Attribute: Lipstick 90.96 94.07
+ Iterations increased to 200 92.91 94.87

Table 1. Model flip rate study. The initial attribute space A =
{Bangs, Blond Hair, Bushy Eyebrows, Pale Skin, Pointy Nose}.
AC is the perceived age classifier and BC is the big lips classifier.

Attribute Metric Regular (%) CT (Ours) (%)

Perceived Age
CelebA Accuracy 86.10 86.29

ZOOM FR-25 19.54 97.36
ZOOM FR-100 9.04 95.65

Big Lips
CelebA Accuracy 74.36 75.39

ZOOM FR-25 14.12 99.19
ZOOM FR-100 5.93 88.91

Table 2. Results of network inference on CelebA original images
and ZOOM-generated counterfactual. The CT classifier is signifi-
cantly less prone to be flipped by counterfactual images, while test
accuracy on CelebA remains performant.

FR is assessed over 10,000 counterfactual images, with FR-
25 and FR-100 denoting Flip Resistance after 25 and 100
optimization iterations, respectively. Both use η = 0.2 and
ϵ = 30. We can observe that the classifiers after CT are
way less likely to be flipped by counterfactual images while
maintaining a decent accuracy on the CalebA testset. Our
approach robustifies the model by increasing the tolerance
toward counterfactuals. Note that CT slightly improves the
CelebA classifier when trained on a mixture of CelebA im-
ages (original images) and the counterfactual images gen-
erated with a generative model trained in the FFHQ [12]
images (different domain).

5. Conclusion and Discussion
In this paper, we present ZOOM, a zero-shot model diag-

nosis framework that generates sensitivity histograms based
on user’s input of natural language attributes. ZOOM as-
sesses failures and generates corresponding sensitivity his-
tograms for each attribute. A significant advantage of our
technique is its ability to analyze the failures of a target deep
model without the need for laborious collection and anno-
tation of test sets. ZOOM effectively visualizes the cor-
relation between attributes and model outputs, elucidating
model behaviors and intrinsic biases.

Our work has three primary limitations. First, users
should possess domain knowledge as their input (text of at-
tributes of interest) should be relevant to the target domain.
Recall that it is a small price to pay for model evaluation
without an annotated test set. Second, StyleGAN2-ADA
struggles with generating out-of-domain samples. Never-
theless, our adversarial learning framework can be adapted
to other generative models (e.g., stable diffusion), and the



generator can be improved by training on more images. We
have rigorously tested our generator with various user in-
puts, confirming its effectiveness for regular diagnosis re-
quests. Currently, we are exploring stable diffusion models
to generate a broader range of classes while maintaining the
core concept. Finally, we rely on a pre-trained model like
CLIP which we presume to be free of bias and capable of
encompassing all relevant attributes.
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A. Validation for CLIP-guided Editing
Our methodology relies on CLIP-guided fine-grained

image editing to provide adequate model diagnostics. It is
critical to verify CLIP’s ability to link language and visual
representations. This section introduces two techniques for
validating CLIP’s capabilities.

A.1. Visualization for edited images

In this section, we analyze the decoupling of attribute
editing used in StyleCLIP [21] in our domain.

Effect of λ. Fig. 17 shows the effect of λ in Equation
2 of the main text [21] . Originally in StyleCLIP, this filter
parameter (denoted as β in [21]) helps the style disentangle-
ment for editing. As we have normalized the edit vectors,
which contributes to disentanglement in our framework, the
impact of λ on style disentanglement is reduced. Conse-
quently, λ primarily influences intensity control and denois-
ing.

Single-attribute editing. Fig. 18 and Fig. 19 show a set
of images of different object categories by editing different
attributes extracted with the global edit directions method
(as described in Section 3.2 of the main text). By analyzing
the user’s input attribute string, we can see that the modified
image only alters in the attribute direction while maintain-
ing the other attributes.

Multiple-attribute editing. We demonstrate the validity
of our method for editing multiple attributes through linear
combination (as outlined in Equation 3 of the main text) by
presenting illustrations of combined edits in Figure 20.

A.2. User study for edited images

To validate that our counterfactual image synthesis pre-
serve fine-grained details and authenticity, we conducted a
user study validating two aspects: synthesis fidelity and at-
tribute consistency.

User study for synthesis fidelity. The classification of
the counterfactual synthesis image vs real images by the
user is employed to confirm that no unrealistic artifacts are
introduced throughout the process of our model Fig. 15a
shows sample questions of this study. In theory, the worst-
case scenario is that users can accurately identify the se-
mantic modification and achieve a user recognition rate of
100%. Conversely, the best-case scenario would be that
users are unable to identify any counterfactual synthesis and
make random guesses, resulting in a user recognition rate of
50%.

User study for attribute consistency. We ask users
whether they agree that the counterfactual and original im-
ages are consistent on the ground truth w.r.t. the target clas-
sifier. For example, during the counterfactual synthesis for
the cat/dog classifier, a counterfactual cat image should stay
consistent as a cat. Fig. 15b shows another sample ques-
tions. The worst case is that the counterfactual changes the

ground truth label to affect the target model, which makes
the user agreement rate very low (even to zero).

The user study statistics are presented in Table 3. The
study involved 34 participants with at least an undergrad-
uate level of education, who were divided into two groups
using separate collector links. The participants themselves
randomly selected their group (i.e., the link clicked), and
their responses were collected.

The production of high-quality counterfactual images is
supported by the difficulty users had in differentiating them.
Additionally, the majority of users concurred that the coun-
terfactual images do not change the ground truth concern-
ing the target classifier, confirming that our methodology
generates meaningful counterfactuals. However, it should
be noted that due to the nature of our recognition system,
human volunteers are somewhat more responsive to human
faces. As a result, we observed a slightly higher recognition
rate in the human face (FFHQ) domain than in the animal
face (AFHQ) domain.

A.3. Stability across CLIP phrasing/wording:

It is worth noting that the resulting counterfactual image
is affected by the wording of the prompt used. In our frame-
work, we subtract the neutral phrase (such as ”a face”) after
encoding in CLIP space to ensure that the attribute edit di-
rection is unambiguous enough. Our experimentation has
shown that as long as the prompt accurately describes the
object, comparable outcomes can be achieved. For instance,
we obtained similar sensitivity results on the perceived-age
classifier using prompts like ”a picture of a person with X,”
”a portrait of a person with X,” or other synonyms. Exam-
ples of this are presented in Figure 13.

Name of Study Domain Group 1 Group 2

Synthesis Fidelity (
Recognition Rate ↓, %)

FFHQ 62.12 71.79
AFHQ 51.30 50.55

Attribute Consistency (
Agreement Rate ↑, %)

FFHQ 94.12 90.76
AFHQ 89.92 88.26

Table 3. User study results. We can see from the table that our
counterfactual synthesis preserves the visual quality and maintains
the ground truth labels from the user’s perspective.

B. Additional Results of Model Diagnosis
B.1. Additional counterfactual images

Fig. 11 shows more examples of single-attribute counter-
factual images on the Cat/Dog and Perceived Gender classi-
fiers. The output prediction is shown in the top-right corner.
It shows that the model prediction is flipped without chang-
ing the actual target attribute. In addition to binary classi-
fication and key-point detection in our manuscript, we fur-
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Figure 11. Effect of progressively generating counterfactual images on the Cat/Dog classifier (0-Cat / 1-Dog), and the Perceived Gender
classifier (0-Female / 1-Male). Model probability prediction during the process is attached at the top right corner.
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Figure 12. ZOOM counterfactuals on more tasks (segmentation, multi-class classifier) and additional visual domains (cars, churches).
Zoom in for better visibility.

ther illustrate the extension of ZOOM counterfactuals on se-
mantic segmentation, multi-class classification, and binary
church classifier (BCC) in Fig. 12. Fig. 16 shows more ex-
amples of multiple-attribute counterfactual images.

B.2. Additional histograms

Fig. 14 shows more histograms on the classifiers trained
on CelebA (top) and the classifiers that are intentionally bi-
ased (bottom). The models and datasets are created using
the same method described in Section 4 of the main text.

C. Ablation of the Adversarial Optimization
Method

When there are multiple attributes (i.e., N > 1) to opti-
mize, linearizing the cost function as grid in high dimen-
sional space will help to efficiently approximate conver-
gence in limited epochs. Specifically, we have the option
to adopt PGD [18] (i.e., update using η · sign(∇wL)) for
efficient optimization. We compared generating counterfac-
tuals with and without projected gradients. Table 4 shows
the visual quality and flip rate of the generated counterfactu-
als. We can observe that ZOOM-PGD image quality is finer
under Structured Similarity Indexing Method (SSIM) [32],
while ZOOM-SGD has a higher flip rate. The images from
ZOOM-PGD is finer since the signed method stabilizes the

optimization by eliminating problems of gradient vanishing
and exploding.

Optimization Classifier SSIM (↑) Flip Rate (%, ↑)

SGD
Perceived Age 0.5732 67.24
Perceived Gender 0.5815 49.40
Mustache 0.5971 36.33

PGD
Perceived Age 0.8065 50.19
Perceived Gender 0.7035 42.84
Mustache 0.7613 25.10

Table 4. The comparison of counterfactuals generated with
stochastic gradient descent (SGD) and projected gradient descent
(PGD) method. We can observe that ZOOM-PGD image quality
is finer under SSIM (Structured Similarity Indexing Method) [32]
metrics, while ZOOM-SGD has a higher flip rate.

Our empirical observation during the experiment is that
ZOOM-PGD frequently oscillates around a local minima of
edit weights and fails to reach an optimal counterfactual.
We hypothesize that the reason of lower flip rates from the
signed method is that the edit weight search is constrained
on nodes of a grid space (the grid unit length is step-size
η), which loses precision and underperforms during coun-
terfactual search.
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Figure 13. Sensitivity histograms when using four instances of phrases with a similar concept. Zoom in for better visibility.
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Perceived Attractiveness Classifier
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Lipstick Classifier 
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Perceived Gender Classifier
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Blond Hair Classifier (Imbalanced Pale Skin) 
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Perceived Gender Classifier (Imbalanced Pale Skin)
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Perceived Gender Classifier (Imbalanced Smiling)

Figure 14. The above histograms show ZOOM on three regularly trained classifiers on CelebA, and the bottom histograms show ZOOM
successfully detects the bias in the manually-crafted imbalanced classifiers.

(a) Evaluating visual fidelity. We show two images and
let users choose the one that they think is edited. The
counterfactuals are generated on Eyeglasses classifier
and Cat/Dog classifier.

(b) Evaluating attribute consistency. The user
classifies whether the ground truth is flipped.
Example of counterfactual images on Cat/Dog
classifier and Eyeglasses classifier is shown
above.

Figure 15. Sample questions in the user study. Each user answers 10 questions for each of the two user studies.
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(a) Multiple-attribute counterfactual for cat/dog classifier.
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(b) Multiple-attribute counterfactual for eyeglasses classifier.
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(c) Multiple-attribute counterfactual for perceived gender classifier.
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(d) Multiple-attribute counterfactual for mustache classifier.
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(e) Multiple-attribute counterfactual for perceived age classifier.

Figure 16. Multi-attribute counterfactual in the human face and animal face domain. The right-up corner of each image records the model
output prediction.
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(a) Effect of λ values for editing beard.
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(b) Effect of λ values for editing pale skin.

Figure 17. Visualization of the effect of different λ values.



(a) Attribute editing: a cat with green eyes. (b) Attribute editing: a cute cat.

(c) Attribute editing: a dog with round face. (d) Attribute editing: a cute dog.

(e) Attribute editing: a cat with round face. (f) Attribute editing: a cat with pointed ears.

(g) Attribute editing: a dog with open mouth. (h) Attribute editing: a black dog.

Figure 18. Visualization of global edit directions by utilizing the StyleCLIP channel relevance matrix. Images are sampled from the AFHQ
domain using StyleGAN2-ADA. Every column demonstrates an edited image from edit weight w = −30 to w = 30. Weights of five
images are linearly interpolated as {−30,−15, 0, 15, 30}. We can see that global edit directions are generalizable on multiple images.



(a) Attribute editing: an angry face. (b) Attribute editing: a face with eyeglasses.

(c) Attribute editing: a cute face. (d) Attribute editing: a face with blond hair.

(e) Attribute editing: a face with bangs. (f) Attribute editing: a smiling face.

(g) Attribute editing: a happy face. (h) Attribute editing: a face with curly hair.



(i) Attribute editing: a face with beard. (j) Attribute editing: a face with lipstick.

(k) Attribute editing: a tired face. (l) Attribute editing: a skinny face.

(m) Attribute editing: a male face. (n) Attribute editing: a surprised face.

(o) Attribute editing: a face with long hair. (p) Attribute editing: a face with pale skin.

Figure 19. Visualization of global edit directions by utilizing the StyleCLIP channel relevance matrix. Images are sampled from the FFHQ
domain using StyleGAN2-ADA. Every column demonstrates an edited image from edit weight w = −30 to w = 30. Weights of five
images are linearly interpolated as {−30,−15, 0, 15, 30}. We can see that global edit directions are generalizable on multiple images.
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(a) Combination of smiling (w1) and lipstick (w2).
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(b) Combination of pale skin (w1) and blond hair (w2).

Figure 20. Visualization of traversing on directional (attribute) style vectors to validate the effectiveness of multiple attribute editing.


