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Feature and Region Selection for Visual Learning
Ji Zhao∗, Liantao Wang∗, Ricardo Cabral, Fernando De la Torre

Abstract—Visual learning problems such as object classifi-
cation and action recognition are typically approached using
extensions of the popular bag-of-words (BoW) model. Despite its
great success, it is unclear what visual features the BoW model
is learning: Which regions in the image or video are used to
discriminate among classes? Which are the most discriminative
visual words? Answering these questions is fundamental for
understanding existing BoW models and inspiring better models
for visual recognition.

To answer these questions, this paper presents a method for
feature selection and region selection in the visual BoW model.
This allows for an intermediate visualization of the features and
regions that are important for visual learning. The main idea is
to assign latent weights to the features or regions, and jointly
optimize these latent variables with the parameters of a classifier
(e.g., SVM). There are four main benefits of our approach: (1)
Our approach accommodates non-linear additive kernels such as
the popular χ2 and intersection kernel; (2) our approach is able
to handle both regions in images and spatio-temporal regions
in videos in a unified way; (3) the feature selection problem
is convex, and both problems can be solved using a scalable
reduced gradient method; (4) we point out strong connections
with multiple kernel learning and multiple instance learning
approaches. Experimental results in the PASCAL VOC 2007,
MSR Action Dataset II and YouTube illustrate the benefits of
our approach.

Index Terms—Bag-of-words, feature selection, multiple kernel
learning, multiple instance learning, weakly-supervised localiza-
tion.

I. INTRODUCTION

THE last decade has witnessed great advances in machine
learning and computer vision that have largely improved

the performance and reduced the computational complexity
of visual learning algorithms. Although there has been much
progress in supervised visual learning, two main limitations
still exist: (1) the reliance on human labeling limits the
application of supervised methods in problems involving many
categories; (2) these discriminative models lack interpretability
because they do not produce mid-level representations (e.g.,
what are the most important visual features for discrimina-
tion?).

For instance, consider Fig. 1, where there are a set of images
that contain a car (Fig. 1 (a)) and a set of images that do not
contain a car (Fig. 1 (b)). Given these sets, the goal of a
weakly-trained classifier is to discover discriminative regions
and use them to train a car detector. Most of the successful
approaches for weakly-supervised localization (WSL) [1], [2],
[3], [4], [5] rely on bag-of-words (BoW). BoW approaches
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build a vocabulary of visual words to encode the visual
representation and then use it to learn a binary classifier
(e.g., kernel SVM). Although these techniques achieve state-
of-the-art performance, the feature spaces induced by kernels
obfuscate the understanding of which are the visual features
that are most important for discrimination in the image space.
The aim of this paper is to develop algorithms that learn in
a weakly-supervised manner which are the discriminative fea-
tures and regions. We aim to answer the following questions:
Which visual words are used to discriminate cars versus non-
cars (Fig. 1(c))? Which are the discriminative regions in the
image (e.g., car in Fig. 1(d))? In addition to still images, we
also apply our method to find discriminative spatio-temporal
regions for activity recognition from video (Fig. 1 (e)-(h)).

WSL methods can partially solve the problem of localiza-
tion of discriminative features, avoiding the time-consuming
and error-prone manual localization process. Moreover, the se-
lected regions are more informative to train detectors [1]. Due
to its importance, WSL has been a popular topic researched
in the last few years. Existing algorithms for WSL rely on
multiple instance learning (MIL) and have mostly been applied
to linear classifiers. A major challenge is how to extend these
methods to cope with kernel representations while allowing
for region and feature selection, which is a non-trivial task.

This paper proposes a feature and a region selection method
for visual learning in the kernel space. The feature selection
method is suitable for the family of additive kernels, and the
region selection is valid for all kernels. The contributions of
our work include: (1) a convex model for feature selection
in the kernel space, and its application to find discriminative
visual words; (2) a method for region selection using non-
linear kernels, which can be used for the discovery and
visualization of discriminative regions in images and spatio-
temporal volumes in videos; (3) connections of our work with
existing approaches including multiple kernel learning (MKL)
and multiple instance learning (MIL). Experimental results in
the PittCar dataset, PASCAL VOC 2007, MSR Action Dataset
II and YouTube dataset illustrate the benefits of our approach.

II. RELATED WORK

A. Feature Selection in Kernel Space

Selecting relevant features in kernel spaces has been a
challenging problem addressed by several researchers. Cao et
al. [6] developed a feature selection method by learning feature
weights in the kernel space. This procedure is done as a data
processing step, independently of the classifier construction.
There also exist methods that perform feature selection and
classifier construction jointly by inducing sparsity, such as
[7], [8], [9]. Here the sparsity means sparse weight, which
is usually realized by imposing L1 norm constraints. We will
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Fig. 1. Given a set of images containing a car (a) and images without a car (b), this paper proposes an algorithm to select the visual features (c) and regions
(d) that are most discriminative in the kernel space. Similarly, given a set of videos containing hand-waving actions (e) and actions that are not hand-waving
(f), we find the most discriminative spatio-temporal features (g) and spatio-temporal regions (h).

build on previous work by Nguyen et al. [10] who proposed a
convex feature weighting method for linear SVM. Our work,
however, extends [10] by adding non-linear additive kernels
whose effectiveness have been validated in computer vision
[11], [12].

B. Multiple Instance Learning (MIL)

In the MIL setting, each image is modeled as a bag of
regions, and each region is an instance. With two classes,
the negative bag only contains negative instances and the
positive bag at least one positive. The goal of MIL is to label
the positive instances within the positive bags. Many MIL
algorithms have been successfully used for weakly-supervised
learning, such as MILboost [13], MI-SVM [14], [1], [15],
[4] and SparseMIL [16]. A convex MIL method named key-
instance SVM (KI-SVM) is proposed in [17]. In addition to
predicting bag labels, our approach can also locate regions of
interest and it has been used in content-based image retrieval.
MIL has been applied to object detection for images [15], [1],
time series [1] and videos [2], [5], [18].

Among these methods, MI-SVM is arguably the most
popular for WSL. However, current WSL methods based on
MI-SVM have two main limitations: (1) most approaches
use bounding boxes for localization (e.g., [1], [3]) instead of
arbitrary shapes, and (2) most methods are limited to linear
kernels. In this paper, our region selection method follows
the idea of efficient region search (ERS) [19]: an object is a
certain combination of several over-segmented regions, so it
can localize objects with with arbitrary shape. Moreover, our
region selection can take advantage of non-linear kernels.

C. Weakly Supervised Object Localization

Our region selection method aims to discover the discrim-
inative regions in the positive images/videos, which turns out
to be a way of weakly-supervised localization. In related work,
Raptis et al. [20] used a latent SVM to classify videos using
spatio-temporal patterns. Ghodrati et al. [21] improved action
classification by refining the recognition and video segmen-
tation iteratively in a coupled learning framework. CRANE

[5] modified MIL by iterating through all of the negative seg-
ments, and each negative segment penalizes nearby segment
in a positive video, improving existing algorithms. Weakly
supervised localization also has a close relationship with the
common pattern discovery from images that share common
contents, such as co-segmentation and feature matching for
sematic similar images [22], [23].

There are some works that enable bag-of-words to discover
informative regions automatically, which are essential for
visualization and image classification. For example, our work
is most related to Liu and Wang [24], who proposed a region
of support to visualize what the BoW model has learned.
However, their method uses a linear SVM and it is unclear
how to extend it to the kernel domain. Bilen et al. [25]
proposed a semantic representation of an object and a new
latent SVM to learn the spatial location of an object for
enhanced image classification. However, this method is limited
to linear kernel, and depends on a careful initialization. In
addition, the localization is still limited to bounding-box, while
our method yields arbitrary shape, the superiority of which has
been stated in [19].

III. FEATURE SELECTION FOR ADDITIVE KERNELS

This section proposes a convex feature selection method for
additive kernels. Let S = {(xi, yi)}ni=1 (see footnote1 for an
explanation of the notation used in this work) be a training set
of n samples, where xi ∈ RD is the histogram of BoW for the
ith image, D is the number of visual words in the codebook,
and yi ∈ {−1,+1} are the corresponding labels.

Popular choices of kernels for visual learning are additive,
such as the χ2 and the histogram intersection kernels [12].
Formally, a kernel K(·, ·) on RD×RD is additive if it satisfies
K(xi,xj) =

∑D
k=1 κ(xik, xjk) for any samples xi,xj ∈ RD,

where xik is the kth bin of the BoW histogram for the ith

image. That is, the kernel function κ(xik, xjk) is defined on
one bin of the histogram.

1Bold lowercase letters, such as p, denote column vectors. pi represents the
ith entry of the column vector p. Non-bold letters represent scalar variables.
Calligraphic uppercase letters denote sets (e.g., S, B).
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Given an additive kernel, the goal of feature selection is
to weigh the features with a weight vector in the kernel
space. We parameterize the feature space with a weight
vector p. That is, we construct a mapping φ(xi,p) =
[
√
p1ψ

>(xi1), · · · ,√pDψ>(xiD)]>, that assigns differen-
t weights to different feature maps, where ψ(xik) is the feature
map for the kth bin of the ith histogram, p = [p1, · · · , pD]> are
the feature weights, and pk ≥ 0 ∀k. In the maximum margin
framework, we would like to find the separating hyperplane
of a SVM and the feature weighting vector p that has the
largest margin between classes. However, different values of
p correspond to different feature spaces, and the margins in
two different feature spaces cannot be directly compared, it is
necessary to normalize the margin.

A. Normalized Margin SVM

Nguyen et al. [10] defined normalized margin as the ratio of
the margin M over the square root of sum of squared distances
(in the feature space) between same-class data instances.
Formally, the normalized margin is defined as

M√∑n
i,j=1

1+yiyj
2 ‖φ(xi,p)− φ(xj ,p)‖2

. (1)

Observe that the normalized margin is invariant to scale
and translation in the feature space. The problem of finding
the parameter p for the mapping and the parameters of the
separating hyperplane that provides the largest normalized
margin can be stated as

max
w,b̄,M,p

M√∑n
i,j=1

1+yiyj
2 ‖φ(xi,p)− φ(xj ,p)‖2

(2)

s.t. yi(w
>φ(xi,p) + b̄) ≥M ∀i;

‖w‖ = 1.

We can see that if p is fixed, finding the hyperplane with
the maximum normalized margin is equivalent to finding the
hyperplane that maximizes the normal margin M .

Let w = w/M , b = b/M , and denote the normalization
factor

ϕ(p) =

n∑
i,j=1

1 + yiyj
2

‖φ(xi,p)− φ(xj ,p)‖2. (3)

Then M = ‖w‖/‖w‖ = 1/‖w‖. Substituting ϕ(p) into
problem (2), we obtain an equivalent problem

max
w,b,p

1√
ϕ(p) ‖w‖

s.t. yi(w
>φ(xi,p) + b) ≥ 1 ∀i.

The above problem is again equivalent to

min
w,b,p

1

2
ϕ(p)‖w‖2

s.t. yi(w
>φ(xi,p) + b) ≥ 1 ∀i.

Using soft-margin instead of hard-margin, the above formula-
tion can be converted to

min
w,b,p,ξ

1

2
ϕ(p)‖w‖2 + C

n∑
i=1

ξi (4)

s.t. yi(w
>φ(xi,p) + b) ≥ 1− ξi ∀i; ξ ≥ 0.

Here, ξ = [ξ1, · · · , ξn] are slack variables which allow for
penalized constraint violation, and C is the parameter that
controls the trade-off between generalization and training
error.

B. Normalized Margin SVM with Additive Kernels

In [10], they only solve the SVM with normalized margin
for linear kernels. In this paper, we propose a method to
solve the SVM with normalized margin for additive kernels in
problem (4).

In order to transform problem (4) into a convex optimization
problem and solve it efficiently, we make use of two properties
of additive kernels. First, as we have mentioned, φ(xi,p) =
[
√
p1ψ

>(xi1), · · · ,√pDψ>(xiD)]> for additive kernel, so the
normalization factor ϕ(p) in Eq. (3) can be re-written as

ϕ(p) =

D∑
k=1

akpk, (5)

where

ak =

n∑
i,j=1

1 + yiyj
2

‖ψ(xik)−ψ(xjk)‖2 (6)

=

n∑
i,j=1

1 + yiyj
2

[κ(xik, xik)− 2κ(xik, xjk) + κ(xjk, xjk)]

Note that ak can be interpreted as the total distance of the
kth bin in kernel space, and it can be computed from the
training data a priori. Other normalization factors can also
be utilized without additional innovation. In [26], it provides
a rather encyclopedic list of alternatives.

Second, the hyperplane w can be re-written as a vertical
concatenation of D column vectors as w = [w>1 , · · · ,w>D]>,
where each wk weighs the feature map for each bin ψ(xik).
Then the following two equations hold: w>φ(xi,p) =∑D
k=1

√
pkw

>
k ψ(xik), and ‖w‖2 =

∑D
k=1 ‖wk‖2.

Since ϕ(p) is homogeneous in p, we can always scale p
appropriately to get ϕ(p) = 1. Using this constraint, and
making a variable substitution wk ←

√
pkwk, problem (4)

can be written as

min
w,b,p,ξ

1

2

D∑
k=1

‖wk‖2

pk
+ C

n∑
i=1

ξi (7)

s.t. yi

[
D∑
k=1

w>k ψ(xik) + b

]
≥ 1− ξi ∀i;

D∑
k=1

akpk = 1; p ≥ 0; ξ ≥ 0.

where we use the convention that t
0 = 0 if t = 0 and ∞

otherwise. Problem (7) is convex, and we propose a scalable
optimization strategy in Section III-D.
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C. Relation to Multiple Kernel Learning

We note the remarkable relationship between our feature
selection formulation in problem (7) and multiple kernel
learning (MKL) [27], [28], [29], with the main difference
being the constraints on p. In MKL, the constraint is that p lies
on the probability simplex, i.e.,

∑D
k=1 pk = 1 and pk > 0 ∀k.

In our feature selection formulation, the constraint is data-
driven and adaptive, i.e.,

∑D
k=1 akpk = 1 and pk > 0 ∀k.

Weighing each bin differently will result in increased accuracy
because normalized margin SVM is expected to assign higher
weights to more informative bins. Besides, feature weighting
can avoid the mis-domination of the bins with larger numeric
ranges to those with smaller numeric ranges.

Our feature selection method used a normalized SVM mar-
gin for feature selection with additive kernels. By leveraging
the properties of additive kernels, the normalized SVM margin
is converted to a MKL alike problem. As a result, problem (7)
can also be interpreted as a MKL with normalized margin
to handle the feature scaling problem. There are some works
that incorporate the radius of minimum enclosing ball (MEB)
into MKL to address kernel scaling issue [30], [31]. Liu et
al. [32] incorporated the radius information in a more robust
and efficient way to avoid complex learning structure and high
computational cost.

D. Optimization with the Reduced Gradient Method

The connection between our feature selection method and
MKL allows us to exploit the existing algorithms for MKL.
We can derive a scalable algorithm with proven convergence
properties by optimizing problem (7) with a reduced gradient
method [27]. For fixed w, b, ξ, problem (7) can be reformu-
lated as a non-linear objective function with constraints over
the simplex on p. Formally,

min
p
J(p) such that

D∑
k=1

akpk = 1, pk ≥ 0, (8)

where

J(p) =


min
w,b,ξ

1

2

D∑
k=1

‖wk‖2

pk
+ C

n∑
i=1

ξi

s.t. yi

[
D∑
k=1

w>k ψ(xik) + b

]
≥ 1− ξi;∀i

ξ ≥ 0.
(9)

To use a reduced gradient algorithm to optimize this problem,
we first computed the gradient ∂J∂p and then calculate reduced
gradient ∇redJ and descent direction r based on the gradient
and constraints on p.

To solve the problem, we introduced Lagrange multipliers
αi and βi for the first and second constraints in problem (9),
respectively. By setting the derivatives of the Lagrangian of
problem (9) with respect to the primal variables w, b, ξ to

zero, we get the associated dual problem

max
α

− 1

2

n∑
i,j=1

αiαjyiyj

D∑
k=1

pkκ(xik, xjk) +

n∑
i=1

αi (10)

s.t.
n∑
i=1

αiyi = 0; 0 ≤ αi ≤ C ∀i.

This dual problem is identified as the standard SVM d-
ual problem using the combined kernel K(xi,xj) =∑D
k=1 pkκ(xik, xjk). Because of strong duality, the objective

value of this dual problem (10) is also J(p). Existence and
computation of derivatives of J(p) have been discussed in
previous literature [27]. Taking advantage of these previous
works, the differentiation of the dual function with respect to
pk is

∂J

∂pk
= −1

2

n∑
i,j=1

α∗iα
∗
jyiyjκ(xik, xjk) ∀k, (11)

where α∗ maximizes the objective function in problem (10).
Once the gradient of J(p) is computed, p is updated using

a descent direction ensuring that the equality constraint and
the non-negativity constraints on p are satisfied. Let pµ be
the largest entry of p. The reduced gradient of J(p), denoted
∇redJ , can be written as

[∇redJ ]k =


∂J

∂pk
− ak
aµ

∂J

∂pµ
if k 6= µ;∑

v 6=µ

(
a2
v

a2
µ

∂J

∂pµ
− av
aµ

∂J

∂pv

)
if k = µ.

(12)

Descent direction is in the opposite direction with reduced
gradient. However, the positivity constraints should be tak-
en into account in the descent direction. If pk = 0 and
[∇redJ ]k > 0, using this descent direction would violate the
positivity constraint for pk. Thus, the descent direction for that
component should be set to 0. Therefore, the descent direction
for updating p is

rk =



0 if pk = 0 and
∂J

∂pk
− ak
aµ

∂J

∂pµ
> 0;

− ∂J

∂pk
+
ak
aµ

∂J

∂pµ
if pk > 0 and k 6= µ;∑

v 6=µ,pv>0

(
−a

2
v

a2
µ

∂J

∂pµ
+
av
aµ

∂J

∂pv

)
if k = µ.

(13)

The usual updating scheme is p← p + γr, where γ is the
step size. γ is calculated using a line search method. For each
γ during the line search, we obtained a new p and used an
SVM solver to calculate problem (10).

We summarize the training of feature selection with additive
kernels in Algorithm 1. For testing, the prediction function is

f(z) =

n∑
i=1

yiαiK(z,xi) + b =

n∑
i=1

yiαi

D∑
k=1

pkκ(zk, xik) + b.
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Algorithm 1: Feature Selection: Normalized Margin SVM
with Additive Kernels
Input: Training set S = {(xi, yi)}ni=1; kernel for each

bin κ(xik, xjk) = 〈ψ(xik),ψ(xjk)〉; penalty
coefficient C.

Output: Weight p; SVM parameters α and b.
Initialize pk = 1/

∑D
i=1 ai,∀k;1

Calculate ak by Eq. (6);2

while stopping criterion not met do3

Solve problem (10) by an SVM solver to update α4

and b;
Calculate ∂J

∂p by Eq. (11);5

Set µ = argmaxµ pµ;6

Calculate the descent direction r by Eq. (12)(13);7

Line search along r to find the optimal step γ;8

Update p← p + γr;9

end10

IV. REGION SELECTION FOR WEAKLY SUPERVISED
VISUAL LEARNING

In the previous section, we have proposed a feature selection
method in the kernel space for additive kernels. However,
visual features are typically very sparse and it is difficult
to assess which regions the classifier uses for learning. In
this section, we propose a method for selecting discriminative
regions in images and videos. Prior to applying our method,
we over-segment the images and videos into regions, i.e.
superpixels [33] or spatio-temporal regions [34]. Once the
regions are segmented, we encoded each region using the
BoW codebook learned from all training images/videos. We
assumed an additive property of the classifier for region
selection so that the classifier score of an image is a weighted
sum of the score for each of the regions.

A. Weakly Supervised Localization as Region Selection

Given an over-segmentation for each image (or video) into
mi regions, hik and sik represent the BoW histogram and the
importance (weight) for the kth region in the ith image. Our
SVM for region selection minimizes

min
w,b,{si},ξ

1

2
‖w‖2 + C1

∑
i∈B+

ξ+
i + C2

∑
i∈B−

mi∑
k=1

ξ−ik (14)

s.t.
mi∑
k=1

sikw
>φ(hik) + b ≥ 1− ξ+

i ∀i ∈ B
+;

−w>φ(hik)− b ≥ 1− ξ−ik ∀i ∈ B
−,

∀k ∈ {1, · · · ,mi};
‖si‖1 = 1, si ≥ 0 ∀i ∈ B+; ξ ≥ 0.

where φ(·) is the kernel feature map. B+ and B− are index
sets of training samples with label +1 and −1, respectively. C1

and C2 trade-off the model complexity and empirical losses on
the positive and negative bags, respectively. The first constraint
is imposed on the positive bags, and enforces that, for positive
images, a combination of its segments’ scores is expected

to be positive or it will be penalized. The second constraint
enforces that all the segments’ scores of the negative images
should be negative. The third constraint enforces that si lies
on the probability simplex. Thus the solution tends to be
sparse and can be used for region selection2. If we impose
Lq norm constraint with q > 1 on si, it will generate non-
sparse solutions [29].

Prediction Once the SVM parameters are learned, the
classification and localization for new test images can be
performed simultaneously. Given the ith image and its over-
segmented regions (indexed by k), we can provide an initial
estimate if a region belongs to a discriminative region or not by
computing the decision value w>φ(hik) + b. The final score
of the image is the weighed average score of its regions, that
is,
∑
k sikw

>φ(hik) + b. The weights sik are learned during
training.

B. Relation to Multiple Instance Learning

The proposed region selection method has closed connec-
tion to multiple instance learning (MIL) algorithms. MIL
makes the assumption that a negative bag contains only
negative instances, whereas and a positive bag has at least one
positive instance. However, in our region selection method, the
bag label is determined by a combination of regions. This is
a more reasonable assumption for visual learning because it
is difficult to determine which region triggers a label for an
image, considering that the segmentation may not yield perfect
results. Generally speaking, in MIL, the label is determined by
the maximum of the instances scores, while in our method, the
label is determined by the weighted mean of all the instances’
scores.

Our formulation is different from previous key-instance
SVM (KI-SVM), where it is assumed that there is only one
positive instance in each positive bag [17]. Our formulation is
also different from kernel latent SVM (KLSVM) [4], which
also relies on a single instance to determine the label for
positive bags. In [35], the method scores an image using the
combination of regions, but it is limited to the linear kernel
case. Note that our region selection method in this section is
compatible with any kernel.

C. Optimization with the Reduced Gradient Method

Similar to the feature selection problem (7), the region
selection problem (14) can also be reformulated as a non-
linear objective function with constraints over the simplex. We
used the reduced gradient method to solve it with a coordinate
descent strategy. First, we fixed the weights s, and optimized
the object function w.r.t. w, b and ξ. Second, we used the
reduced gradient method to update s.

In order to simplify the notation, we took each region in
a negative image as a negative bag that contains only one

2In the paper, we refer to region as a set of superpixels in images or spatio-
temporal regions in videos. The problem of (14) is one of region weighting.
We call it region selection since the solution is sparse and only a few regions
have non-zero weights.
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instance. We set C2 equal to C1, and reformulate problem (14)
as

min
{si}

J({si}) such that ‖si‖1 = 1, si ≥ 0 ∀i, (15)

where

J({si}) =


min
w,b,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

s.t. yi

[
w>

mi∑
k=1

sikφ(hik) + b

]
≥ 1− ξi ∀i

ξ ≥ 0.
(16)

By setting the derivatives of the Lagrangian of problem (16)
to zero, we get the associated dual problem

max
α

− 1

2

n∑
i,j=1

αiαjyiyj

(
mi∑
k=1

mj∑
l=1

siksjlK(hik,hjl)

)

+

n∑
i=1

αi (17)

s.t.
n∑
i=1

αiyi = 0; 0 ≤ αi ≤ C ∀i.

This is the standard dual formulation for SVM with the
combined kernel K(hi,hj) =

∑mi

k=1

∑mj

l=1 siksjlK(hik,hjl).
Because of strong duality, J({si}) is also the objective value
of this dual problem. By differentiating the dual function with
respect to sik, we have

∂J

∂sik
= −1

2

n∑
j=1

α∗iα
∗
jyiyj

mj∑
l=1

sjlK(hik,hjl), (18)

where α∗ maximizes problem (17). After the gradient ∂J
∂sik

has
been calculated, we can get the reduced gradient and descent
direction using the way in Section III-D.

At first glance, computing the gradient in Eq. (18) seems
to be computationally expensive. However, this calculation is
efficient for the following reasons. First, we can reformulate
it as a compact matrix formulation when calculating ∂J

∂si
.

Second, since α is sparse, the complexity of calculating
gradient is largely reduced. The region selection method is
sumarized in Table of Algorithm 2.

V. EXPERIMENTAL RESULTS

This section validated the performance of our feature se-
lection and region selection algorithms by comparing them
with other state-of-the-art approaches on the following four
datasets:
PittCar Dataset [1] contains 400 images of which 200 are
positive and 200 negative, see Fig. 2a. There is only one
object in each positive image. Half of the positive and negative
images were used as training data, and the rest were used
for testing. For each image, we extracted SIFT features [36]
densely and selected 10000 of them randomly. All the SIFT
descriptors were quantized into 1000 visual words, obtained
by applying K-means to 100000 training samples.

Algorithm 2: Region Selection Algorithm
Input: Training set ({(xik)}mi

k=1, yi)i, i = 1, · · · , n;
kernel K(·, ·); penalty coefficient C.

Output: Region annotation {(sik)}mi

k=1, i = 1, · · · , n;
SVM parameters α and b.

Initialize sik = 1/mi,∀i, k;1

Construct block kernel matrix K̃. The (k, l)-th element of2

the (i, j)-th block is defined as [K̃(i, j)]kl = K(xik,xjl);
while stopping criterion not met do3

Calculate kernel matrix K with its element4

Kij = s>i K̃(i, j)sj ;
Calculate J({si}) in (16) by an SVM solver with5

kernel matrix K, get SVM parameters α and b;
Calculate ∂J

∂si
for i = 1, · · · , n by Eq. (18);6

Calculate reduced gradient and descent direction7

ri,∀i;
Line search to find optimal step γi for si ∀i;8

Update si ← si + γiri, i = 1, · · · , n;9

end10

PASCAL VOC 2007 consists of 9963 images. For examples
see Fig. 2b. There are 20 object categories, with some images
containing multiple objects. This dataset has been previously
split into training and testing sets, which contained 5011 and
4952 images respectively. We proceeded as in the PittCar
Dataset, extracting SIFT features and building a codebook of
1000 dimensions.
MSR Action Dataset II [37] comprises 54 video sequences
of crowded environments, see Fig. 2c. There are 3 action
categories: hand waving, handclapping, and boxing. Each
video sequence contains multiple actions. Following [18], we
split each video to contain only one action and randomly
selected 135 videos as training data and 46 for test data.
During this random division, the videos containing multiple
actions that could not be split temporally were always included
in the testing set. We extracted STIP features [38] densely for
each video. All the feature points were then quantized into
2000 words, which were obtained by applying K-means to
100000 training descriptors.
YouTube-Objects (YTO) [39] consists of videos collected
from YouTube, see Fig. 2d. It contains 10 of the 20 classes in
the PASCAL VOC. Tang et al [5] generated a ground truth
set of 151 shots by manually annotating segments after the
segmentation. We used the features in [5] that include his-
tograms of dense-SIFT, histograms of RGB color, histograms
of local binary patterns, histograms of dense optical flow, and
heat maps.

A. Feature Selection Experiments

To validate the effectiveness of the proposed feature selec-
tion method, we compared our feature selection with χ2 kernel
with the following baselines: (i) Linear SVM; (ii) χ2 kernel
SVM; (iii) feature selection with linear SVM [10]; (iv) MKL
using χ2 kernel [27], due to their connection with our method
explained in Section III. For MKL, each kernel is defined on
one bin of the histograms.
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Fig. 2. Some examples of the datasets. (a) PittCar; (b) PASCAL VOC; (c) MSR Action II; (d) YouTube Objects.

For each method, parameters (e.g., C in the SVM) were
chosen via cross-validation and we measured the classifica-
tion performance using average precision (AP). To assess
the complexity reduction achieved by feature selection, we
also measured the number of selected features (i.e., non-zero
weight). In this case, the features are the bins (clusters) in the
BoW model. The results are presented in Table I for PittCar
and MSR II datasets. We can see that our feature selection with
χ2 kernel (FS-χ2) achieved the best average precision (AP) in
all cases except ‘Boxing’, where it is outperformed only by
the linear kernel, while the number of our selected features
is significantly smaller than the original feature dimension. In
Table II for PASCAL VOC 2007 dataset, the feature selection
for χ2 kernel SVM achieved comparable mean AP than χ2

SVM (0.373 vs 0.375) over 20 classes, but used much less
features (265 vs 1000).

A major goal of the paper is to illustrate that by performing
feature and region selection, we can achieve a better inter-
pretability of the BoW model. We visualized the selected
visual words in the codebook for PittCar and PASCAL VOC
2007 datasets, in Fig. 3. From the feature selection results on
the PittCar dataset, we can see that the most discriminative fea-
tures mainly come from the wheels and doors of the cars. Note
that the visual word with the fourth largest weight corresponds
to the trunks of trees and fences. This is because trees occur
more frequently in negative images than in positive images.
As a result, this visual word is selected as a discriminative.
For the cat and dog classes in PASCAL VOC dataset, several
words latch on to cat and dog faces, while other visual words
represent context (e.g., carpets) in which these animals usually
appear. Since our method allows us to visualize the patches
of visual words with their weights, the irrelevant words can
be easily interpret by looking at the images in the dataset.
From this example, we can see that feature selection can reveal
which context the classifier is using for discriminating among
classes.

B. Region Selection Experiments

As mentioned in Setion IV, region selection requires over-
segmenting the images and videos first. For images, we used a
hierarchical image segmentation to obtain superpixels [33]. For
action localization on the MSR Action II, we followed [34] and
used a regular voxel segmentation. For object localization on
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Fig. 5. Localization performance on the PittCar dataset.

YTO dataset, we used the streaming hierarchical segmentation
method of [40] to get supervoxels.

PittCar: Due to the connection of region selection to MIL
approaches, we compared our region selection using linear and
χ2 kernels with three popular MIL methods, MILboost [13],
KI-SVM [17] and MI-SVM [1], on the PittCar dataset. We
visualized the localization results in Fig. 4, from which we can
see our region selection is visually best among these methods.
In contrast, MILboost locates fewer regions, KI-SVM usually
includes disperse background regions, and MI-SVM tends to
include much background even though the size constraint has
been imposed [1].

To provide a quantitative measure for the localization perfor-
mance, we compared all methods using precision-recall curves,
as shown in Fig. 5. We used the area of overlap (AO) measure
to evaluate the correctness of localization. For this criterion,
a threshold t should be defined for AO to imply a correct
detection. Usually, t is set as 0.5 [41]. However, this is unfair
for methods that localize arbitrary shape, because the ground
truth is a bounding box and such methods provide a shape
mask, which can yield more accurate localization. We thus
also set t to 0.4. The PR curves of different t values are shown
in Fig. 5. We can see that our method and MI-SVM perform
comparably when t = 0.5. For t = 0.4, the region selection
method performs significantly better than the baselines. Also,
our region selection method using χ2 kernel performs better
than with a linear kernel, which reinforces the usefulness of
kernels in visual learning.

MSR Action II: Since it is unclear how to apply the MI-
SVM proposed in [1] to video, we used the state-of-the-art
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TABLE I
THE COMPARISON OF CLASSIFICATION PERFORMANCE FOR FEATURE SELECTION

METHODS AND MKL ON THE PITTCAR AND MSR ACTION II DATASETS.

PittCar MSR Action II
Hand Clapping Hand Waving Boxing

AP #Feat AP #Feat AP #Feat AP #Feat
linear SVM 0.833 1000 0.528 2000 0.630 2000 0.716 2000
χ2 SVM 0.959 1000 0.563 2000 0.699 2000 0.680 2000
MKL-χ2 [27] 0.961 120 0.687 102 0.741 96 0.810 112
FS-linear [10] 0.967 112 0.717 72 0.832 87 0.897 83
FS-χ2 (ours) 0.988 56 0.717 79 0.847 56 0.852 45

TABLE II
THE COMPARISON OF CLASSIFICATION PERFORMANCE FOR FEATURE SELECTION

METHODS AND MKL ON THE PITTCAR AND MSR ACTION II DATASETS.

aeroplane bicycle bird boat bottle bus car
AP #Feat AP #Feat AP #Feat AP #Feat AP #Feat AP #Feat AP #Feat

linear SVM 0.501 1000 0.274 1000 0.255 1000 0.418 1000 0.120 1000 0.249 1000 0.468 1000
χ2 SVM 0.516 1000 0.384 1000 0.295 1000 0.456 1000 0.193 1000 0.358 1000 0.548 1000
MKL-χ2 [27] 0.484 68 0.356 56 0.280 691 0.416 351 0.190 675 0.298 511 0.554 62
FS-linear [10] 0.392 364 0.314 397 0.241 661 0.323 358 0.147 396 0.239 350 0.535 422
FS-χ2 (ours) 0.517 63 0.397 54 0.277 690 0.443 67 0.198 491 0.304 62 0.565 75

cat chair cow diningtable dog horse motorbike
AP #Feat AP #Feat AP #Feat AP #Feat AP #Feat AP #Feat AP #Feat

linear SVM 0.290 1000 0.343 1000 0.114 1000 0.245 1000 0.278 1000 0.427 1000 0.289 1000
χ2 SVM 0.375 1000 0.338 1000 0.200 1000 0.308 1000 0.337 1000 0.587 1000 0.358 1000
MKL-χ2 [27] 0.381 472 0.316 195 0.199 471 0.265 559 0.342 527 0.535 614 0.315 616
FS-linear [10] 0.315 665 0.355 384 0.186 443 0.228 665 0.306 769 0.431 379 0.295 376
FS-χ2 (ours) 0.384 284 0.366 64 0.215 474 0.264 569 0.347 423 0.525 78 0.378 82

person pottedplant sheep sofa train TV monitor AVERAGE
AP #Feat AP #Feat AP #Feat AP #Feat AP #Feat AP #Feat AP #Feat

linear SVM 0.648 1000 0.122 1000 0.235 1000 0.225 1000 0.449 1000 0.252 1000 0.310 1000
χ2 SVM 0.689 1000 0.176 1000 0.225 1000 0.272 1000 0.566 1000 0.330 1000 0.376 1000
MKL-χ2 [27] 0.726 231 0.102 219 0.204 163 0.262 584 0.502 385 0.280 595 0.350 402
FS-linear [10] 0.697 484 0.113 420 0.226 282 0.243 596 0.420 525 0.294 372 0.315 465
FS-χ2 (ours) 0.741 63 0.176 526 0.236 179 0.259 589 0.516 428 0.341 54 0.373 265

(a) car (b) cat (c) dog
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Fig. 3. Patch visualization of top 6 visual words with highest weights in the feature selection. (a) Car in PittCar dataset, (b) Cat in PASCAL VOC 2007,
(c) Dog in PASCAL VOC 2007. Each row line has 10 randomly selected patches corresponding to the visual word. From top to bottom, the weight changes
from high to low.

method of Siva and Xiang [18] as a baseline.

As in the previous experiment, we used precision-recall
curve to evaluate the localization performance quantitatively.
To ensure comparability, we replicate the setup of [18] and set
the temporal overlap to 1/8 [34]. Qualitative and quantitative
results are shown in Fig. 6 and Fig. 7 respectively. We can

see that our region selection method using χ2 kernel (RS-
chi2) performs better than linear kernel (RS-linear). The region
selection with a χ2 kernel outperforms both MILboost and KI-
SVM significantly and yields comparable results to Siva and
Xiang [18]. Note, however, that our method is independent
of the video-segmentation methods, whilst the method of Siva
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Fig. 4. Region selection for Pittsburgh Car dataset. For our method (rows three and four) the color encodes the weights of the selected regions (warmer
means higher); only regions with positive weights are colored. Images best seen in color.

Fig. 6. Localization examples on MSR action II dataset. Each row corresponds to randomly selected 10 frames in a video. Yellow bounding boxes are the
localized actions in the videos.

explicitly assumes the use of human detector.

YouTube-Objects: We also compared our region selection
with CRANE [5] which is the state-of-the-art for object
localization in videos. Here we use the χ2 kernel in our
method. The average precision for each class is shown in
Tab. III. We can see that our method gets better results on
most of the vehicle categories and gets worse results on animal
categories. The reason may lie in the pre-segmentation. Since

animals are often small in these videos and perform non-rigid
motion, the segmentation method we used can not provide as
good segmentation as that used in [5]. In general, however,
our result is comparable to CRANE, which can be seen from
the averaged PR curve over classes in Fig. 8. However, it is
important to note that our method reported comparable results
despite the fact that we used a worse segmentation algorithm.
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Fig. 7. Localization performance on MSR Action II.

TABLE III
AVERAGE PRECISION ON YOUTUBE-OBJECTS DATASET.

aeroplane bird boat car cat cow dog horse motorbike train AVERAGE

CRANE [5] 0.365 0.363 0.271 0.446 0.250 0.334 0.345 0.286 0.158 0.204 0.292
Ours 0.426 0.279 0.268 0.612 0.204 0.203 0.283 0.148 0.202 0.263 0.289
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Fig. 8. Localization performance on YouTube-Objects dataset.

VI. CONCLUSIONS

This paper proposes a feature and region selection method
for visualization and understanding of the bag-of-words model.
These methods can also be used for image/video classification
and weakly-supervised localization. A major advantage of our
feature selection is that we can select features in the kernel
space by solving a convex problem. This feature selection
method achieves comparable accuracy to the state-of-the-art
methods using significantly fewer number of features. In ad-
dition, our region selection method provides a tool to visualize
the regions that the image/video classifier is weighting more
aggressively to differentiate between class labels. The code is
publicly available at https://sites.google.com/site/drjizhao.

While the method for feature selection is applicable to
additive kernels, more research needs to be done to find
convex solutions for non-additive kernels. In addition, other
algorithms that can reduce the computational load of the
optimization in space and time would be desirable. On the
other hand, our region selection method can localize arbitrary
shapes, beyond bounding-boxes; however, our method depends
on the algorithm for over-segmentation and the object must be
connected. These issues will remain to be explored in further

research.
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