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ABSTRACT
Advances in computer vision andmachine learning techniques have
led to significant development in 2D and 3D human pose estimation
from RGB cameras, LiDAR, and radars. However, human pose esti-
mation from images is adversely affected by occlusion and lighting,
which are common in many scenarios of interest. Radar and LiDAR
technologies, on the other hand, need specialized hardware that is
expensive and power-intensive. Furthermore, placing these sensors
in non-public areas raises significant privacy concerns.

To address these limitations, recent research has explored the use
of WiFi antennas (1D sensors) for body segmentation and key-point
body detection. This paper further expands on the use of the WiFi
signal in combination with deep learning architectures, commonly
used in computer vision, to estimate dense human pose correspon-
dence. We developed a deep neural network that maps the phase
and amplitude of WiFi signals to UV coordinates within 24 human
regions. The results of the study reveal that our model can estimate
the dense pose of multiple subjects, with comparable performance
to image-based approaches, by utilizing WiFi signals as the only
input. This paves the way for low-cost, broadly accessible, and
privacy-preserving algorithms for human sensing.

CCS CONCEPTS
• Computing methodologies → Neural networks; Artificial
intelligence;Machine Learning; •Hardware→ Communica-
tion hardware, interfaces and storage; Robustness.

KEYWORDS
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dinates, Phase and Amplitude, Phase Sanitization, Channel State
Information, Domain Translation, Deep Neural Network, Mask-
RCNN

1 INTRODUCTION
Much progress has been made in human pose estimation using
2D [7, 8, 12, 22, 28, 33] and 3D [17, 32] sensors in the last few
years (e.g., RGB sensors, LiDARs, radars), fueled by applications
in autonomous driving and augmented reality. These traditional
sensors, however, are constrained by both technical and practical
considerations. LiDAR and radar sensors are frequently seen as
being out of reach for the average household or small business due
to their high cost. For example, the medium price of one of the
most common COTS LiDAR, Intel L515, is around 700 dollars, and
the prices for ordinary radar detectors range from 200 dollars to
600 dollars. In addition, these sensors are too power-consuming for
daily and household use. As for RGB cameras, narrow field of view
and poor lighting conditions, such as glare and darkness, can have
a severe impact on camera-based approaches. Occlusion is another

obstacle that prevents the camera-based model from generating
reasonable pose predictions in images. This is especially worrisome
for indoors scenarios, where furniture typically occludes people.

More importantly, privacy concerns prevent the use of these
technologies in non-public places. For instance, most people are
uncomfortable with having cameras recording them in their homes,
and in certain areas (such as the bathroom) it will not be feasible
to install them. These issues are particularly critical in healthcare
applications, that are increasingly shifting from clinics to homes,
where people are being monitored with the help of cameras and
other sensors. It is important to resolve the aforementioned prob-
lems in order to better assist the aging population, which is the
most susceptible (especially during COVID) and has a growing
demand to keep them living independently at home.

We believe that WiFi signals can serve as a ubiquitous substitute
for RGB images for human sensing in certain instances. Illumination
and occlusion have little effect on WiFi-based solutions used for
interior monitoring. In addition, they protect individuals’ privacy
and the required equipment can be bought at a reasonable price. In
fact, most households in developed countries already have WiFi at
home, and this technology may be scaled to monitor the well-being
of elder people or just identify suspicious behaviors at home.

The issue we are trying to solve is depicted in Fig. 1 (first row).
Given three WiFi transmitters and three aligned receivers, can
we detect and recover dense human pose correspondence in clut-
tered scenarios with multiple people (Fig. 1 fourth row). It should
be noted that many WiFi routers, such as TP-Link AC1750, come
with 3 antennas, so our method only requires 2 of these routers.
Each of these router is around 30 dollars, which means our entire
setup is still way cheaper than LiDAR and radar systems. Many
factors make this a difficult task to solve. First of all, WiFi-based
perception[11, 30] is based on the Channel-state-information (CSI)
that represents the ratio between the transmitted signal wave and
the received signal wave. The CSIs are complex decimal sequences
that do not have spatial correspondence to spatial locations, such
as the image pixels. Secondly, classic techniques rely on accurate
measurement of time-of-fly and angle-of-arrival of the signal be-
tween the transmitter and receiver [13, 26]. These techniques only
locate the object’s center; moreover, the localization accuracy is
only around 0.5 meters due to the random phase shift allowed by
the IEEE 802.11n/ac WiFi communication standard and potential
interference with electronic devices under similar frequency range
such as microwave oven and cellphones.

To address these issues, we derive inspiration from recent pro-
posed deep learning architectures in computer vision, and propose
a neural network architecture that can perform dense pose estima-
tion from WiFi. Fig 1 (bottom row) illustrates how our algorithm
is able to estimate dense pose using onlyWiFi signal in scenarios
with occlusion and multiple people.
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Figure 1: The first row illustrates the hardware setup. The second and third rows are the clips of amplitude and phase of the
input WiFi signal. The fourth row contains the dense pose estimation of our algorithm from only the WiFi signal.

2 RELATEDWORK
This section briefly describes existing work on dense estimation
from images and human sensing from WiFi.

Our research aims to conduct dense pose estimation via WiFi. In
computer vision, the subject of dense pose estimation from pictures
and video has received a lot of attention [6, 8, 18, 40]. This task
consists of finding the dense correspondence between image pixels
and the dense vertices indexes of a 3D human body model. The
pioneering work of Güler et al. [8] mapped human images to dense
correspondences of a human mesh model using deep networks.
DensePose is based on instance segmentation architectures such as
Mark-RCNN [9], and predicts body-wise UV maps for each pixel,
where UV maps are flattened representations of 3d geometry, with
coordinate points usually corresponding to the vertices of a 3d
dimensional object. In this work, we borrow the same architecture
as DensePose [8]; however, our input will not be an image or video,
but we use 1D WiFi signals to recover the dense correspondence.

Recently, there have been many extensions of DensePose pro-
posed, especially in 3D human reconstructionwith dense body parts
[3, 35, 37, 38]. Shapovalov et al.’s [24] work focused on lifting dense
pose surface maps to 3D human models without 3D supervision.
Their network demonstrates that the dense correspondence alone
(without using full 2D RGB images) contains sufficient information
to generate posed 3D human body. Compared to previous works on

reconstructing 3D humans with sparse 2D keypoints, DensePose
annotations are much denser and provide information about the
3D surface instead of 2D body joints.

While there is a extensive literature on detection [19, 20], track-
ing [4, 34], and dense pose estimation [8, 18] from images and
videos, human pose estimation from WiFi or radar is a relatively
unexplored problem. At this point, it is important to differentiate
the current work on radar-based systems and WiFi. The work of
Adib et.al. [2] proposed a Frequency Modulated Continuous Wave
(FMCW) radar system (broad bandwidth from 5.56GHz to 7.25GHz)
for indoor human localization. A limitation of this system is the
specialized hardware for synchronizing the transmission, refrac-
tion, and reflection to compute the Time-of-Flight (ToF). The system
reached a resolution of 8.8 cm on body localization. In the following
work [1], they improved the system by focusing on a moving per-
son and generated a rough single-person outline with depth maps.
Recently, they applied deep learning approaches to do fine-grained
human pose estimation using a similar system, named RF-Pose [39].
These systems do not work under the IEEE 802.11n/ac WiFi com-
munication standard (40MHz bandwidth centered at 2.4GHz). They
rely on additional high-frequency and high-bandwidth electromag-
netic fields, which need specialized technology not available to the
general public. Recently, significant improvements have been made
to radar-based human sensing systems. mmMesh [36] generates



3D human mesh from commercially portable millimeter-wave de-
vices. This system can accurately localize the vertices on the human
mesh with an average error of 2.47 cm. However, mmMesh does
not work well with occlusions since high-frequency radio waves
cannot penetrate objects.

Unlike the above radar systems, the WiFi-based solution [11, 30]
used off-the-shelf WiFi adapters and 3dB omnidirectional antennas.
The signal propagate as the IEEE 802.11n/ac WiFi data packages
transmitting between antennas, which does not introduce addi-
tional interference. However, WiFi-based person localization using
the traditional time-of-flight (ToF) method is limited by its wave-
length and signal-to-noise ratio. Most existing approaches only
conduct center mass localization [5, 27] and single-person action
classification [25, 29]. Recently, Fei Wang et.al. [31] demonstrated
that it is possible to detect 17 2D body joints and perform 2D se-
mantic body segmentation mask using only WiFi signals. In this
work, we go beyond [31] by estimating dense body pose, with
much more accuracy than the 0.5m that the WiFi signal can pro-
vide theoretically. Our dense posture outputs push above WiFi’s
signal constraint in body localization, paving the road for complete
dense 2D and possibly 3D human body perception through WiFi.
To achieve this, instead of directly training a randomly initialized
WiFi-based model, we explored rich supervision information to
improve both the performance and training efficiency, such as uti-
lizing the CSI phase, adding keypoint detection branch, and transfer
learning from the image-based model.

3 METHODS
Our approach produces UV coordinates of the human body sur-
face from WiFi signals using three components: first, the raw CSI
signals are cleaned by amplitude and phase sanitization. Then, a
two-branch encoder-decoder network performs domain translation
from sanitized CSI samples to 2D feature maps that resemble im-
ages. The 2D features are then fed to a modified DensePose-RCNN
architecture [8] to estimate the UV map, a representation of the
dense correspondence between 2D and 3D humans. To improve the
training of our WiFi-input network, we conduct transfer learning,
where we minimize the differences between the multi-level fea-
ture maps produced by images and those produced by WiFi signals
before training our main network.

The raw CSI data are sampled in 100Hz as complex values over
30 subcarrier frequencies (linearly spaced within 2.4GHz±20MHz)
transmitting among 3 emitter antennas and 3 reception antennas
(see Figure 2). Each CSI sample contains a 3 × 3 real integer matrix
and a 3 × 3 imaginary integer matrix. The inputs of our network
contained 5 consecutive CSI samples under 30 frequencies, which
are organized in a 150×3×3 amplitude tensor and a 150×3×3 phase
tensor respectively. Our network outputs include a 17 × 56 × 56
tensor of keypoint heatmaps (one 56 × 56 map for each of the 17
kepoints) and a 25 × 112 × 112 tensor of UV maps (one 112 × 112
map for each of the 24 body parts with one additional map for
background).

3.1 Phase Sanitization
The raw CSI samples are noisy with random phase drift and flip (see
Figure 3(b)). Most WiFi-based solutions disregard the phase of CSI

(a) Layout of WiFi devices
and human bodies

(b) The 3 × 3 dimensions
of the CSI tensor

Figure 2: CSI samples from Wifi. (a) the layout of WiFi de-
vices and human bodies, and (b) the 3 × 3 tensor dimen-
sion corresponds to the 3 × 3 transmitter-receiver antenna
pairs. For instance, 𝐸1 denotes the first emitter and 𝑅1 de-
notes the first receiver, etc. By incorporating the 5 consecu-
tive complex-valued CSI samples (100 samples/second) un-
der 30 subcarrier frequencies, the two input tensors to our
network are a 150 × 3 × 3 amplitude tensor and a 150 × 3 × 3
phase tensor.

signals and rely only on their amplitude (see Figure 3 (a)). As shown
in our experimental validation, discarding the phase information
have a negative impact on the performance of our model. In this
section, we perform sanitization to obtain stable phase values to
enable full use of the CSI information.

In raw CSI samples (5 consecutive samples visualized in Fig-
ure 3(a-b)), the amplitude (𝐴) and phase (Φ) of each complex ele-
ment 𝑧 = 𝑎+𝑏𝑖 are computed using the formulation𝐴 =

√︁
(𝑎2 + 𝑏2)

and Φ = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑏/𝑎). Note that the range of the arctan function is
from −𝜋 to 𝜋 and the phase values outside this range get wrapped,
leading to a discontinuity in phase values. Our first sanitization
step is to unwrap the phase following [10]:

Δ𝜙𝑖, 𝑗 = Φ𝑖, 𝑗+1 − Φ𝑖, 𝑗

if Δ𝜙𝑖, 𝑗 > 𝜋,Φ𝑖, 𝑗+1 = Φ𝑖, 𝑗 + Δ𝜙𝑖, 𝑗 − 2𝜋
if Δ𝜙𝑖, 𝑗 < −𝜋,Φ𝑖, 𝑗+1 = Φ𝑖, 𝑗 + Δ𝜙𝑖, 𝑗 + 2𝜋,

(1)

where 𝑖 denotes the index of the measurements in the five consecu-
tive samples, and 𝑗 denotes the index of the subcarriers(frequencies).
Following unwrapping, each of the flipping phase curves in Fig-
ure 3(b) are restored to continuous curves in Figure 3(c).

Observe that among the 5 phase curves captured in 5 consecutive
samples in Figure 3(c), there are random jiterings that break the
temporal order among the samples. To keep the temporal order of
signals, previous work [23] mentioned linear fitting as a popular
approach. However, directly applying linear fitting to Figure 3(c)
further amplified the jitering instead of fixing it (see the failed
results in Figure 3(d)).

From Figure 3(c), we use median and uniform filters to eliminate
outliers in both the time and frequency domain which leads to
Figure 3(e). Finally, we obtain the fully sanitized phase values by
applying the linear fitting method following the equations below:

𝛼1 =
Φ𝐹 − Φ1
2𝜋𝐹

𝛼0 =
1
𝐹

∑︁
1≤𝑓 ≤𝐹

𝜙 𝑓

𝜙 𝑓 = 𝜙 𝑓 − (𝛼1 𝑓 + 𝑎0),

(2)



(a) Original CSI Amplitude (b) Original CSI Phase (c) Phase after unwrapping

(d) Phase after unwrapping + linear fitting (e) Phase after unwrapping + filtering (f) Phase after unwrapping + filtering + linear
fitting

Figure 3: Sanitization steps of CSI sequences described in Section 3.1. In each subfigure, we plot five consecutive samples (five
colored curves) each containing CSI data of 30 IEEE 802.11n/ac sub-Carrier frequencies (horizontal axis).

Figure 4: Modality Translation Network. Two encoders extract the features from the amplitude and phase in the CSI domain.
Then the features are fused and reshaped before going through an encoder-decoder network. The output is a 3 × 720 × 1280
feature map in the image domain.

where 𝐹 denotes the largest subcarrier index (30 in our case) and
𝜙 𝑓 is the sanitized phase values at subcarrier 𝑓 (the 𝑓 th frequency).
In Figure 3(f), the final phase curves are temporally consistent.

3.2 Modality Translation Network
In order to estimate the UV maps in the spatial domain from the
1D CSI signals, we first transform the network inputs from the
CSI domain to the spatial domain. This is done with the Modality
Translation Network (see Figure 4). We first extract the CSI latent
space features using two encoders, one for the amplitude tensor



and the other for the phase tensor, where both tensors have the
size of 150× 3× 3 (5 consecutive samples, 30 frequencies, 3 emitters
and 3 receivers). Previous work on human sensing with WiFi [30]
stated that Convolutional Neural Network (CNN) can be used to
extract spatial features from the last two dimensions (the 3 × 3
transmitting sensor pairs) of the input tensors. We, on the other
hand, believe that locations in the 3×3 feature map do not correlate
with the locations in the 2D scene. More specifically, as depicted
in Figure 2(b), the element that is colored in blue represents a 1D
summary of the entire scene captured by emitter 1 and receiver 3 (E1
- R3), instead of local spatial information of the top right corner of
the 2D scene. Therefore, we consider that each of the 1350 elements
(in both tensors) captures a unique 1D summary of the entire scene.
Following this idea, the amplitude and phase tensors are flattened
and feed into two separate multi-layer perceptrons (MLP) to obtain
their features in the CSI latent space. We concatenated the 1D
features from both encoding branches, then the combined tensor is
fed to another MLP to perform feature fusion.

The next step is to transform the CSI latent space features to
feature maps in the spatial domain. As shown in Figure 4, the fused
1D feature is reshaped into a 24 × 24 2D feature map. Then, we
extract the spatial information by applying two convolution blocks
and obtain amore condensedmapwith the spatial dimension of 6×6.
Finally, four deconvolution layers are used to upsample the encoded
feature map in low dimensions to the size of 3 × 720 × 1280. We set
such an output tensor size to match the dimension commonly used
in RGB-image-input network. We now have a scene representation
in the image domain generated by WiFi signals.

3.3 WiFi-DensePose RCNN
After we obtain the 3×720×1280 scene representation in the image
domain, we can utilize image-based methods to predict the UV
maps of human bodies. State-of-the-art pose estimation algorithms
are two-stage; first, they run an independent person detector to
estimate the bounding box and then conduct pose estimation from
person-wise image patches. However, as stated before, each element
in our CSI input tensors is a summary of the entire scene. It is not
possible to extract the signals corresponding to a single person
from a group of people in the scene. Therefore, we decide to adopt
a network structure similar to DensePose-RCNN [8], since it can
predict the dense correspondence of multiple humans in an end-to-
end fashion.

More specifically, in the WiFi-DensePose RCNN (Figure 5), we
extract the spatial features from the obtained 3 × 720 × 1280 image-
like feature map using the ResNet-FPN backbone [14]. Then, the
output will go through the region proposal network [20]. To bet-
ter exploit the complementary information of different sources,
the next part of our network contains two branches: DensePose
head and Keypoint head. Estimating keypoint locations is more
reliable than estimating dense correspondences, so we can train our
network to use keypoints to restrict DensePose predictions from
getting too far from the body joints of humans. The DensePose
head utilizes a Fully Convolutional Network (FCN) [16] to densely
predict human part labels and surface coordinates (UV coordinates)
within each part, while the keypoint head uses FCN to estimate the
keypoint heatmap. The results are combined and then fed into the

refinement unit of each branch, where each refinement unit con-
sists of two convolutional blocks followed by an FCN. The network
outputs a 17× 56× 56 keypoint mask and a 25× 112× 112 IUV map.
The process is demonstrated in Figure 5. It should be noted that the
modality translation network and the WiFi-DensePose RCNN are
trained together.

3.4 Transfer Learning
Training the Modality Translation Network and WiFi-DensePose
RCNN network from a random initialization takes a lot of time
(roughly 80 hours). To improve the training efficiency, we conduct
transfer learning from an image-based DensPose network to our
WiFi-based network (See Figure 6 for details).

The idea is to supervise the training of the WiFi-based network
with the pre-trained image-based network. Directly initializing the
WiFi-based network with image-based network weights does not
work because the two networks get inputs from different domains
(image and channel state information). Instead, we first train an
image-based DensePose-RCNN model as a teacher network. Our
student network consists of the modality translation network and
the WiFi-DensePose RCNN. We fix the teacher network weights
and train the student network by feeding them with the synchro-
nized images and CSI tensors, respectively. We update the student
network such that its backbone (ResNet) features mimic that of
our teacher network. Our transfer learning goal is to minimize
the differences of multiple levels of feature maps generated by the
student model and those generated by the teacher model. There-
fore we calculate the mean squared error between feature maps.
The transfer learning loss from the teacher network to the student
network is:

𝐿𝑡𝑟 = 𝑀𝑆𝐸 (𝑃2, 𝑃∗2 )+𝑀𝑆𝐸 (𝑃3, 𝑃∗3 )+𝑀𝑆𝐸 (𝑃4, 𝑃∗4 )+𝑀𝑆𝐸 (𝑃5, 𝑃∗5 ), (3)
where𝑀𝑆𝐸 (·) computes the mean squared error between two fea-
ture maps, {𝑃2, 𝑃3, 𝑃4, 𝑃5} is a set of feature maps produced by the
teacher network [14], and {𝑃∗2 , 𝑃

∗
3 , 𝑃

∗
4 , 𝑃

∗
5 } is the set of feature maps

produced by the student network [14].
Benefiting from the additional supervision from the image-based

model, the student network gets higher performance and takes
fewer iterations to converge (Please see results in Table 5).

3.5 Losses
The total loss of our approach is computed as:

𝐿 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑜𝑥 + 𝜆𝑑𝑝𝐿𝑑𝑝 + 𝜆𝑘𝑝𝐿𝑘𝑝 + 𝜆𝑡𝑟𝐿𝑡𝑟 ,

where 𝐿𝑐𝑙𝑠 , 𝐿𝑏𝑜𝑥 , 𝐿𝑑𝑝 , 𝐿𝑘𝑝 , 𝐿𝑡𝑟 are losses for the person classifica-
tion, bounding box regression, DensePose, keypoints, and transfer
learning respectively. The classification loss 𝐿𝑐𝑙𝑠 and the box regres-
sion loss 𝐿𝑏𝑜𝑥 are standard RCNN losses [9, 21]. The DensePose
loss 𝐿𝑑𝑝 [8] consists of several sub-components: (1) Cross-entropy
loss for the coarse segmentation tasks. Each pixel is classified as
either belonging to the background or one of the 24 human body re-
gions. (2) Cross-entropy loss for body part classification and smooth
L1 loss for UV coordinate regression. These losses are used to de-
termine the exact coordinates of the pixels, i.e., 24 regressors are
created to break the full human into small parts and parameterize
each piece using a local two-dimensional UV coordinate system,
that identifies the position UV nodes on this surface part.



Figure 5:WiFi-DensePose RCNN. The 3×720×1280 feature map from Figure 4 first goes through standard ResNet-FPN and ROI
pooling to extract person-wise features. The features are then processed by two heads:the Keypoint Head and the DensePose
Head.

Figure 6: Transfer learning from an image-based teacher network to our WiFi-based network.

We add 𝐿𝑘𝑝 to help the DensePose to balance between the torso
with more UV nodes and limbs with fewer UV nodes. Inspired by
Keypoint RCNN [9], we one-hot-encode each of the 17 ground truth
keypoints in one 56×56 heatmap, generating 17×56×56 keypoints
heatmaps and supervise the output with the Cross-Entropy Loss. To
closely regularize the Densepose regression, the keypoint heatmap
regressor takes the same input features used by the Denspose UV
maps.

4 EXPERIMENTS
This section presents the experimental validation of our WiFi-based
DensePose.

4.1 Dataset
We used the dataset 1 described in [31], which contains CSI samples
taken at 100Hz from receiver antennas and videos recorded at 20
FPS. Time stamps are used to synchronize CSI and the video frames
such that 5 CSI samples correspond to 1 video frame. The dataset

1The identifiable information in this dataset has been removed for any privacy
concerns.

was gathered in sixteen spatial layouts: six captures in the lab
office and ten captures in the classroom. Each capture is around 13
minutes with 1 to 5 subjects (8 subjects in total for the entire dataset)
performing daily activities under the layout described in Figure 2
(a). The sixteen spatial layouts are different in their relative
locations/orientations of theWiFi-emitter antennas, person,
furniture, and WiFi-receiver antennas.

There are no manual annotations for the data set. We use the
MS-COCO-pre-trained dense model "R_101_FPN_s1x_legacy" 2

and MS-COCO-pre-trained Keypoint R-CNN "R101-FPN" 3 to pro-
duce the pseudo ground truth. We denote the ground truth as
"R101-Pseudo-GT" (see an annotated example in Figure 7). The
R101-Pseudo-GT includes person bounding boxes, person-instance
segmentation masks, body-part UV maps, and person-wise key-
point coordinates.

2https://github.com/facebookresearch/detectron2/blob/main/projects/DensePose/
doc/DENSEPOSE_IUV.md#ModelZoo
3https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md#
coco-person-keypoint-detection-baselines-with-keypoint-r-cnn

https://github.com/facebookresearch/detectron2/blob/main/projects/DensePose/doc/DENSEPOSE_IUV.md##ModelZoo
https://github.com/facebookresearch/detectron2/blob/main/projects/DensePose/doc/DENSEPOSE_IUV.md##ModelZoo
https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md##coco-person-keypoint-detection-baselines-with-keypoint-r-cnn
https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md##coco-person-keypoint-detection-baselines-with-keypoint-r-cnn


Throughout the section, we use R101-Puedo-GT to train our
WiFi-based DensePose model as well as finetuning the image-based
baseline "R_50_FPN_s1x_legacy".

Figure 7: Top two rows are the amplitude and phase of the
input WiFi signal. The bottom row shows R101-Psuedo-GT:
the ground truth dense pose and keypoints annotated by
running a pretrained image-based Densepose network on
the corresponding RGB image (see Section 4.1 for details).

4.2 Training/Testing protocols and Metrics
We report results on two protocols: (1) Same layout: We train
on the training set in all 16 spatial layouts, and test on remaining
frames. Following [31], we randomly select 80% of the samples to
be our training set, and the rest to be our testing set. The training
and testing samples are different in the person’s location and pose,
but share the same person’s identities and background. This is a
reasonable assumption since the WiFi device is usually installed
in a fixed location. (2) Different layout: We train on 15 spatial
layouts and test on 1 unseen spatial layout. The unseen layout is in
the classroom scenarios.

We evaluate the performance of our algorithm in two aspects:
the ability to detect humans (bounding boxes) and accuracy of the
dense pose estimation.

To evaluate the performance of our models in detecting humans,
we calculate the standard average precision (AP) of person bounding
boxes at multiple IOU thresholds ranging from 0.5 to 0.95.

In addition, by MS-COCO [15] definition, we also compute AP-m
for median bodies that are enclosed in bounding boxes with sizes

between 32× 32 and 96× 96 pixels in a normalized 640× 480 pixels
image space, and AP-l for large bodies that are enclosed in bounding
boxes larger than 96 × 96 pixels.

To measure the performance of DensePose detection, we follow
the original DensePose paper [8]. We first compute Geodesic Point
Similarity (GPS) as a matching score for dense correspondences:

𝐺𝑃𝑆 𝑗 =
1
|𝑃 𝑗 |

∑︁
𝑝∈𝑃 𝑗

exp(
−𝑔(𝑖𝑝 , 𝑖𝑝 )2

2𝜅2
), (4)

where 𝑔 calculates the geodesic distance, 𝑃 𝑗 denotes the ground
truth point annotations of person 𝑗 , 𝑖𝑝 and 𝑖𝑝 are the estimated and
ground truth vertex at point 𝑝 respectively, and 𝜅 is a normalizing
parameter (set to be 0.255 according to [8]).

One issue of GPS is that it does not penalize spurious predictions.
Therefore, estimations with all pixels classified as foreground are
favored. To alleviate this issue, masked geodesic point similarity
(GPSm) was introduced in [8], which incorporates both GPS and
segmentation masks. The formulation is as follows:

𝐺𝑃𝑆𝑚 =
√
𝐺𝑃𝑆 · 𝐼 , 𝐼 = 𝑀 ∩ �̂�

𝑀 ∪ �̂�
, (5)

where 𝑀 and �̂� are the predicted and ground truth foreground
segmentation masks.

Next, we can calculate DensePose average precisionwithGPS (de-
noted as dpAP· GPS) and GPSm (denoted as dpAP· GPSm) as thresh-
olds, following the same logic behind the calculation of bounding
box AP.

4.3 Implementation Details
We implemented our approach in PyTorch. We set the training
batch size to 16 on a 4 GPU (Titan X) server. We empirically set
𝜆𝑑𝑝 = 0.6, 𝜆𝑘𝑝 = 0.3, 𝜆𝑡𝑟 = 0.1. We used a warmup multi-step
learning rate scheduler and set the initial learning rate as 1𝑒 − 5.
The learning rate increases to 1𝑒 − 3 during the first 2000 iterations,
then decreases to 1

10 of its value every 48000 iterations. We trained
for 145, 000 iterations for our final model.

4.4 WiFi-based DensePose under Same Layout
Under the Same Layout protocol, we compute the AP of human
bounding box detections as well as dpAP· GPS and dpAP· GPSm of
dense correspondence predictions. Results are presented in Table 1
and Table 2, respectively.

Method AP AP@50 AP@75 AP-m AP-l
WiFi 43.5 87.2 44.6 38.1 46.4

Table 1: Average precision (AP) ofWiFi-based DensePose un-
der the Same Layout protocol. All metrics are the higher the
better.

From Table 1, we can observe a high value (87.2) of AP@50,
indicating that our model can effectively detect the approximate
locations of human bounding boxes. The relatively low value (35.6)
for AP@75 suggests that the details of the human bodies are not
perfectly estimated.



Method dpAP · GPS dpAP · GPS@50 dpAP · GPS@75 dpAP · GPSm dpAP · GPSm@50 dpAP · GPSm@75
WiFi 45.3 76.7 47.7 44.8 73.6 44.9

Table 2: DensePose Average precision (dpAP · GPS, dpAP · GPSm) of WiFi-based DensePose under the Same Layout protocol.
All metrics are the higher the better.

A similar pattern can be seen from the results of DensePose
estimations (see Table 2 for details). Experiments report high values
of dpAP · GPS@50 and dpAP · GPSm@50, but low values of dpAP ·
GPS@75 and dpAP · GPSm@75. This demonstrates that our model
performs well at estimating the poses of human torsos, but still
struggles with detecting details like limbs.

4.5 Comparison with Image-based DensePose

Method AP AP@50 AP@75 AP-m AP-l
WiFi 43.5 87.2 44.6 38.1 46.4
Image 84.7 94.4 77.1 70.3 83.8

Table 3: Average precision (AP) of WiFi-based and image-
based DensePose under the Same Layout protocol. All met-
rics are the higher the better.

As discussed in Section 4.1, since there are no manual annota-
tions on the WiFi dataset, it is difficult to compare the performance
of WiFi-based DensePose with its Image-based counterpart. This is
a common drawback of manyWiFi perception works including [31].

Nevertheless, conducting such a comparison is still worthwhile
in assessing the current limit of WiFi-based perception. We tried an
image-based DensePose baseline "R_50_FPN_s1x_legacy" finetuned
on R101-Pseudo-GT under the Same Layout protocol. In addition,
as shown in Figure 9 and Figure 10, though certain defects still exist,
the estimations from our WiFi-based model are reasonably well
compared to the results produced by Image-based DensePose.

In the quantitative results in Table 3 and Table 4, the image-based
baseline produces very highAPs due to the small difference between
its ResNet50 backbone and the Resnet101 backbone used to generate
R101-Pseudo-GT. This is to be expected. Our WiFi-based model
has much lower absolute metrics. However, it can be observed
from Table 3 that the difference between AP-m and AP-l values is
relatively small for theWiFi-based model. We believe this is because
individuals who are far away from cameras occupy less space in
the image, which leads to less information about these subjects. On
the contrary, WiFi signals incorporate all the information in the
entire scene, regardless of the subjects’ locations.

4.6 Ablation Study
This section describes the ablation study to understand the effects
of phase information, keypoint supervision, and transfer learning
on estimating dense correspondences. Similar to section 4.4, the
models analyzed in this section are all trained under the same-
layout mentioned in section 4.2.

We start by training a baseline WiFi model, which does not in-
clude the phase encoder, the keypoint detection branch, or transfer

learning. The results are presented in the first row of both Table 5
and Table 6 as a reference.

Addition of Phase information: We first examine whether
the phase information can enhance the baseline performance. As
shown in the second row of Table 5 and Table 6, the results for all
the metrics have slightly improved from the baseline. This proves
our hypothesis that the phase can reveal relevant information about
the dense human pose.

Addition of a keypoint detection branch:Having established
the advantage of incorporating phase information, we now evaluate
the effect of adding a keypoint branch to our model. The quantita-
tive results are summarized in the third row of Table 5 and Table 6.

Comparing with the numbers on the second row, we can observe
a slight increase in performance in terms of dpAP·GPS@50(from
77.4 to 78.8) and dpAP·GPSm@50 (from 75.7 to 76.8), and a more
noticeable improvement in terms of dpAP·GPS@75 (from 42.3 to
46.9) and dpAP·GPSm@75 (from 40.5 to 44.9). This indicates that
the keypoint branch provides effective references to dense pose
estimations, and ourmodel becomes significantly better at detecting
subtle details (such as the limbs).

Effect of Transfer Learning: We aim to reduce the training
time for our model with the help of transfer learning. For each
model in Table 5, we continue training the model until there are
no significant changes in terms of performance. The last row of
Table 5 and Table 6 represents our final model with transfer learn-
ing. Though the final performance does not improve too much
compared to the model (with phase information and keypoints)
without transfer learning, it should be noted that the number of
training iterations decreases significantly from 186000 to 145000
(this number includes the time to perform transfer learning as well
as training the main model).

4.7 Performance in different layouts
All above results are obtained using the same layout for training and
testing. However, WiFi signals in different environments exhibit
significantly different propagation patterns. Therefore, it is still a
very challenging problem to deploy our model on data from an
untrained layout.

To test the robustness of our model, we conducted the previous
experiment under the different layout protocols, where there are
15 training layouts and 1 testing layout. The experimental results
are recorded in Table 7 and Table 8.

We can observe that our final model performs better than the
baseline model in the unseen domain, but the performance de-
creases significantly from that under the same layout protocol: the
AP performance drops from 43.5 to 27.3 and dpAP·GPS drops from
45.3 to 25.4. However, it should also be noted that the image-based
model suffers from the same domain generalization problem. We



Method dpAP · GPS dpAP · GPS@50 dpAP · GPS@75 dpAP · GPSm dpAP · GPSm@50 dpAP · GPSm@75
WiFi 45.3 79.3 47.7 43.2 77.4 45.5
Image 81.8 93.7 86.2 84.0 94.9 86.8

Table 4: DensePose Average precision (dpAP · GPS, dpAP · GPSm) of WiFi-based and image-based DensePose under the Same
Layout protocol. All metrics are the higher the better.

Method AP AP@50 AP@75 AP-m AP-l Number of Trained Iterations
Amplitude-only Model 39.5 85.4 41.3 34.4 43.7 174000
+ Sanitized Phase Input 40.3 85.9 41.9 34.6 44.5 180000
+ Keypoint Supervision 42.9 86.8 44.1 38.0 45.8 186000
+ Transfer Learning 43.5 87.2 44.6 38.1 46.4 145000

Table 5: Ablation study of human detection under the Same-layout protocol. All metrics are the higher the better.

Method dpAP · GPS dpAP · GPS@50 dpAP · GPS@75 dpAP · GPSm dpAP · GPSm@50 dpAP · GPSm@75
Amplitude-only Model 40.6 76.6 41.5 39.7 75.1 40.3
+ Sanitized Phase Input 41.2 77.4 42.3 40.1 75.7 40.5
+ Keypoint Supervision 44.6 78.8 46.9 42.9 76.8 44.9
+ Transfer Learning 45.3 79.3 47.7 43.2 77.4 45.5
Table 6: Ablation study of DensePose estimation under the Same-layout protocol. All metrics are the higher the better.

Method AP AP@50 AP@75 AP-m AP-l
WiFi (base) 23.5 48.1 20.3 19.4 24.5
WiFi (final) 27.3 51.8 24.2 22.1 28.6

Image 60.6 80.4 52.1 48.3 65.8
Table 7: Average precision (AP) of WiFi-based and image-based DensePose under the Different Layout protocol. All metrics
are the higher the better.

Method dpAP · GPS dpAP · GPS@50 dpAP · GPS@75 dpAP · GPSm dpAP · GPSm@50 dpAP · GPSm@75
WiFi (base) 22.3 47.3 21.5 20.9 44.6 21.8
WiFi (final) 25.4 50.2 24.7 23.2 47.4 26.5

Image 60.2 70.1 62.3 54.0 72.7 58.8
Table 8: DensePose Average precision (dpAP · GPS, dpAP · GPSm) of WiFi-based and image-based DensePose under the Differ-
ent Layout protocol. All metrics are the higher the better.

believe a more comprehensive dataset from a wide range of settings
can alleviate this issue.

4.8 Failure cases
We observed two main types of failure cases. (1) When there are
body poses that rarely occurred in the training set, the WiFi-based
model is biased and is likely to produce wrong body parts (See exam-
ples (a-b) in Figure 8). (2) When there are three or more concurrent
subjects in one capture, it is more challenging for the WiFi-based
model to extract detailed information for each individual from the
amplitude and phase tensors of the entire capture. (See examples
(c-d) in Figure 8). We believe both of these issues can be resolved
by obtaining more comprehensive training data.

5 CONCLUSION AND FUTUREWORK
In this paper, we demonstrated that it is possible to obtain dense
human body poses from WiFi signals by utilizing deep learning
architectures commonly used in computer vision. Instead of directly
training a randomly initialized WiFi-based model, we explored
rich supervision information to improve both the performance and
training efficiency, such as utilizing the CSI phase, adding keypoint
detection branch, and transfer learning from an image-based model.
The performance of our work is still limited by the public training
data in the field ofWiFi-based perception, especially under different
layouts. In future work, we also plan to collect multi-layout data
and extend our work to predict 3D human body shapes from WiFi
signals. We believe that the advanced capability of dense perception



(a) (b) (c) (d)

Figure 8: Examples pf failure cases: (a-b) rare poses; (c-d) Three or more concurrent subjects. The first row is ground truth
dense pose estimation. The second row illustrates the predicted dense pose.

could empower the WiFi device as a privacy-friendly, illumination-
invariant, and cheap human sensor compared to RGB cameras and
Lidars.
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Figure 9: Qualitative comparison using synchronized images and WiFi signals. (Left Column) image-based DensePose (Right
Column) our WiFi-based DensePose.



Figure 10: More qualitative comparison using synchronized images and WiFi signals. (Left Column) image-based DensePose
(Right Column) our WiFi-based DensePose.
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