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Abstract

Subspace learning is one of the most foundational tasks
in computer vision with applications ranging from dimen-
sionality reduction to data denoising. As geometric ob-
jects, subspaces have also been successfully used for effi-
ciently representing certain types of invariant data. How-
ever, methods for subspace learning from subspace-valued
data have been notably absent due to incompatibilities with
standard problem formulations. To fill this void, we in-
troduce Approximate Grassmannian Intersections (AGI), a
novel geometric interpretation of subspace learning posed
as finding the approximate intersection of constraint sets
on a Grassmann manifold. Our approach can naturally be
applied to input subspaces of varying dimension while re-
ducing to standard subspace learning in the case of vector-
valued data. Despite the nonconvexity of our problem, its
globally-optimal solution can be found using a singular
value decomposition. Furthermore, we also propose an ef-
ficient, general optimization approach that can incorporate
additional constraints to encourage properties such as ro-
bustness. Alongside standard subspace applications, AGI
also enables the novel task of transfer learning via subspace
completion. We evaluate our approach on a variety of ap-
plications, demonstrating improved invariance and gener-
alization over vector-valued alternatives.

1. Introduction
Understanding the structure of data is one of the most

fundamental problems in machine learning. Surprisingly,

despite their apparent simplicity, models that learn linear

subspaces have achieved remarkable success in areas such

as dimensionality reduction [11], data denoising [15], col-

laborative filtering [18], and many others.

Within computer vision, this could partially be attributed

to the observation that real data tend to concentrate near

lower-dimensional (locally) linear structures. This can arise

naturally for a variety of reasons. For example, harmonic

analysis of Lambertian reflectance functions has demon-
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Figure 1: A comparison between PCA and AGI applied to the

task of dimensionality reduction. For each method, a subspace

was learned from training images with lighting conditions that dif-

fered substantially from those in the testing images. Examples are

shown (a) alongside two-dimensional Isomap [35] embeddings of

the associated latent spaces (b,c). Unlike PCA, AGI provides some

invariance to shared variations due to lighting by representing the

data as subspaces, resulting in discriminative representations that

contain more information relating to identity.

strated that third-order approximations can account for over

99% of the energy, allowing aligned images of convex,

Lambertian objects under any illumination to be succinctly

summarized by 9-dimensional subspaces [4]. This has led

to the practical success of linear component analysis meth-

ods for automatic facial analysis [16].

Of course, data linearity is often satisfied only in re-

stricted, highly-controlled scenarios. With faces, even slight

image misalignment or appearance variability can introduce

nonlinearities that adversely affect subspace-based meth-

ods [23]. However, subspaces can provide efficient and

robust representations of sets of data points that span sub-

spaces invariant to certain linear transformations. This is es-

pecially useful in scenarios in which sufficient training data

is unavailable; subspace representations can generalize a
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Figure 2: A demonstration of the improved invariance provided

by AGI representations. From the example in Fig. 1, a number

of testing images are shown (a) beside their 3 nearest neighbors

in the latent spaces of AGI (b) and PCA (c). Despite significant

lighting variations, the AGI neighbors belong to the same class

more consistently in comparison to PCA.

small set of training vectors to one that is effectively infinite.

An example of this is shown in Fig. 1 where subspace learn-

ing is used to reduce the dimensionality of face images with

different lighting conditions between the training and test-

ing sets. Image representations from standard vector-valued

subspace learning methods like PCA fail to generalize well

beyond the training data because a single low-dimensional

subspace is insufficient for modeling faces of multiple indi-

viduals lit from a variety of directions. However, the data

can be well approximated by a mixture of low-dimensional

subspaces, one for each individual. From this observation,

our approach leverages the known linear structure of faces

to learn representations that better encode lighting-invariant

information related to image identity, as demonstrated in

Fig. 2. Instead of learning from vector-valued data in Eu-

clidean space, this suggests learning from subspace-valued

data lying on the Grassmannian, a nonlinear manifold that

parametrizes the set of all subspaces.

While a number of machine learning techniques for

subspace-valued data have been explored in a variety of

contexts [19, 36, 20, 24], fundamental tasks such as dimen-

sionality reduction, denoising, and missing data imputation

have been relatively unexplored. As these problems are all

naturally amenable to solutions using low-rank linear mod-

els, we propose an approach for learning subspaces from

subspace-valued data. Analogous to standard vector-valued

approaches, we aim to learn subspaces that approximately

contain all of the training data. However, due to the ambigu-

ity inherent in representing and manipulating subspaces nu-

merically, standard computational machinery like eigende-

compositions of sample covariance matrices and low-rank

matrix approximations cannot be applied directly.

To address this issue, we introduce Approximate Grass-

mannian Intersections (AGI), a novel geometric framework

for subspace learning posed as finding the approximate in-

(a)
Source

Image:

→

(b) →

→

(c)
Ground

Truth:

Figure 3: A visualization of subspace completion applied to the

task of image relighting. From single images of a novel subject

not included during training (b, left), higher-dimensional illumi-

nation subspaces are inferred and information from source testing

images (a) is transferred to generate images under novel lighting

conditions (b, right). The results match closely with the ground

truth (c), though harsh shadows can cause blur and artifacts.

tersection of sets on a Grassmann manifold. Specifically,

AGI treats each training example as a constraint set for the

learned subspace, essentially enforcing that the data be con-

tained within it. To account for nonlinearities, we approxi-

mate these constraints by minimizing their average distance

to the learned subspace. Though nonconvex, the resulting

optimization problem admits a globally-optimal solution

that can be efficiently found using a singular value decom-

position, reducing to standard principal subspace learning in

the special case of vector-valued input data represented as

weighted one-dimensional subspaces. This approach natu-

rally supports standard subspace modeling applications like

linear dimensionality reduction, but can be applied to in-

put data given as subspaces of variable dimension. Further-

more, our geometric interpretation enables subspace com-

pletion, the novel task of transfer learning to increase the

dimensionality of an input subspace. It can be applied, for

example, in appearance-based image relighting by gener-

ating illumination subspaces from single input images, as

demonstrated in Fig. 3. Our formulation easily supports ad-

ditional constraints for incorporating prior knowledge and

can be solved with a simple optimization procedure based

on the theory of best approximation with iterative projec-

tions [5]. To demonstrate the wide applicability of AGI,

we evaluate its effectiveness in a variety of applications,

including dimensionality reduction, visualization, transfer

learning, and classification.

2. Related Work

In this section, we provide a brief overview of previ-

ous research on subspace learning and matrix factorization,

representations of subspace-valued data on the Grassmann
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manifold, and iterative projection algorithms for finding ap-

proximate intersections of sets.

Subspace learning has a long history in the fields of

statistics, signal processing, and computer vision. Origi-

nally introduced by Karl Pearson [33] in 1901, the prototyp-

ical subspace learning method of principal component anal-

ysis (PCA) [26] began an influential sequence of algorithms

motivated by fundamental applications like regression [33],

classification [34], clustering [37], and dimensionality re-

duction [27]. To encourage learning more meaningful low-

dimensional representations without supervision, the task of

low-rank matrix approximation has been extended to more

general matrix factorization techniques in which additional

constraints are imposed on the basis vectors or coefficients.

Examples include sparse PCA [40], sparse dictionary learn-

ing [28], non-negative matrix factorization [7], and robust

PCA [8]. Often implemented using alternating optimiza-

tion algorithms due to the typical biconvexity of the objec-

tive functions, convergence can be slow and prone to getting

trapped in poor local minima.

Thus, recent approaches have considered techniques that

explicitly consider the geometry of the underlying mani-

fold. A survey of linear dimensionality methods solved

via optimization programs over matrix manifolds can be

found in [11]. Other example include GROUSE [3] and

GRASTA [22], online algorithms for subspace identifica-

tion and tracking derived from incremental gradient descent

on the Grassmannian. Despite the non-convexity of sub-

space estimation, this approach has theoretically attractive

convergence properties with global optimality guarantees in

the case of noiseless data [39].

Interpreting subspaces as points on a Grassmann mani-

fold has also allowed for more effective representations of

data that naturally exhibit invariance to certain linear trans-

formations. Example applications include the classification

of linear dynamical systems represented as subspaces de-

fined through their observability matrices [25] and affine-

invariant regression of shape data [24]. Furthermore, in [36]

the authors present a statistical framework for inference on

the Grassmannian by considering the underlying manifold

geometry and describe a variety of computer vision appli-

cations that can be viewed from this paradigm, demonstrat-

ing improved performance in both supervised and unsuper-

vised learning. Similar ideas have been used in designing

kernels for the pairwise comparison of subspaces, leading

to Grassmannian extensions of kernel discriminant analy-

sis [19], extrinsic dictionary learning [20], and classifiers

such as support vector machines, logistic regression, and

partial least squares [31].

Because the Grassmannian is not a vector space, arith-

metic operations such as addition and subtraction are not

well defined between subspaces. Thus, standard least-

squares approaches to subspace learning and component

analysis [12] are not directly applicable. While Principal

Geodesic Analysis [17] addresses this by linearizing the un-

derlying manifold around an intrinsic mean element, this

can be computationally expensive and could only be used

with subspace data of the same dimension. Our approach

overcomes this issue by introducing a novel formulation for

learning based on approximate constraint satisfaction with

a solution given by the method of averaged projections [6].

Projection algorithms [5] like this have been applied with

great success in the fields of signal processing and optics [9]

due to their practical advantages and well-studied theoreti-

cal properties [5]. Traditionally applied to convex feasibil-

ity problems, they have also been used in applications of

best approximation [6] and extended to certain regular non-

convex sets such as manifolds [30].

3. Grassmannian Geometry Preliminaries
In this section, we provide a brief overview of Grassman-

nian geometry. More thorough reviews can be found in [14]

and [32], which emphasizes computer vision applications.

The Grassmannian Gk,d is the set of all k-dimensional

subspaces of Rd. These subspaces can be identified by any

set of k non-coincident vectors contained within the sub-

space, which makes their numerical representation ambigu-

ous. Thus, the Grassmannian is typically defined as in Eq. 1,

where col(·) denotes the range or column space of a matrix

and Vk,d is the Stiefel manifold, which parameterizes the

set of all orthogonal matrices in R
d×k.

Gk,d = {col(B) : B ∈ Vk,d} ,Vk,d =
{
B : BTB = I

}
(1)

As a compact, smooth manifold, this set is imbued with ge-

ometric structure. Specifically for our purposes, this allows

for the definition of distances between two points on the

Grassmannian. The natural geodesic distance dG can be ex-

pressed as the Euclidean norm of the vector of principal an-

gles between the corresponding subspaces:

dG(A,B) = ‖θ‖2 , ATB = Udiag(cosθ)VT (2)

Here, A and B are orthogonal matrices with columns that

span the subspaces A and B respectively. The vector θ con-

taining the principal angles can by found through a singular

value decomposition. However, due to the computational

expense required in its evaluation, we instead use the pro-

jection F -norm dP , an alternative distance metric that relies

on a bijective, isometric embedding Π of the Grassmann

manifold in Euclidean space [14]. This is accomplished by

identifying a subspace B with the unique linear operator

Π(B) that projects any point in R
d orthogonally onto it:

Π : Gk,d → R
d×d, Π(B) = BBT (3)

In Eq. 4, the distance dP is then defined simply as the Eu-

clidean distance between the subspaces’ projection matri-

ces, though it can also be equivalently expressed as the
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Euclidean norm of the sine of the principal angles. This

demonstrates the equivalence between dG and dP for small

distances due to the isometry of Π.

dP (A,B) = ‖sinθ‖2 =
1√
2
‖Π(A)−Π(B)‖F (4)

This provides a convenient method to represent subspaces

in Euclidean space as elements of the set of projection ma-

trices Pk,d =
{
BBT : B ∈ Vk,d

}
. This set is equivalently

expressed in Eq. 5, showing the symmetry, idempotency,

and trace constraints of projection matrices.

Pk,d =
{
P ∈ R

d×d : PT = P,P2 = P, tr(P) = k
}

(5)

While this set is non-convex, projection can be easily ac-

complished using a truncated singular value decomposi-

tion. However, for the theoretical optimality guarantees dis-

cussed in Sec. 4.4, we will also consider the convex hull of

this set, denoted as Fk,d = conv(Pk,d), or equivalently:

Fk,d =
{
Q ∈ R

d×d : 0 � Q � I, tr(Q) = k
}

(6)

This set, called the Fantope, has been effectively used in ap-

plications like sparse PCA [38]. Projection onto it can again

be easily accomplished via singular value thresholding.

4. Approximate Grassmannian Intersections
From the perspective of Grassmannian geometry, we

now introduce our novel framework for subspace-valued

subspace learning. Consider a dataset consisting of sub-

spaces Xi ∈ Gpi,d of potentially varying dimension pi for

i = 1, . . . , n. Our goal is to learn a k-dimensional sub-

space B ∈ Gk,d, where pi ≤ k < d for all i, such

that all of the training data Xi are approximately con-

tained within it. To accomplish this, we introduce con-

straints Xi for each data point that enforce the data sub-

spaces Xi be contained exactly within a local subspace Z,

i.e. Xi = {Z ∈ Gk,d : Z ⊇ Xi}. For example, consider

the set of two-dimensional planes containing a fixed, one-

dimensional line. While one of the plane’s basis vectors

must be fixed to be coincident with the line, the other can

rotate freely around the line, resulting in a constraint set

with one degree of freedom.

AGI attempts to align these local subspaces with a

learned global subspace B, but can only satisfy all of these

constraints if the input data are exactly contained within

some k-dimensional subspace. Due to noise and data non-

linearitites, however, this will likely never be the case.

Thus, instead of finding an exact intersection of these con-

straints, we aim to find an approximate intersection by min-

imizing the average squared distances between B and its

projection onto the constraint sets Xi as in Eq. 7. An illus-

trative visualization is also shown in Fig. 4.

argmin
B,Zi∈Gk,d

n∑
i=1

d2P (B,Zi) s.t. Zi ∈ Xi (7)

࣡௞,ௗ
௜ࣲ = Z ∶ Z ⊇ ܺ௜ܼܤ௜ ݀௉ଶ ܤ , ܼ௜

(a) Grassmannian View

௜ܼܤ

௜ࣲ

ℝௗ

(b) Euclidean View

Figure 4: An illustrative overview of our method, comparing a

Grassmannian view (a), in which subspaces are represented as

points on a manifold, and a Euclidean view (b), in which they

are lower-dimensional vector space subsets of Rd. Our goal is to

learn a k-dimensional subspace B ∈ Gk,d (shown in green) that

is closest to each local subspace Zi ∈ Gk,d (shown in purple),

which is constrained to lie within the set Xi (shown in blue) of all

k-dimensional subspaces containing the training data Xi ∈ Gpi,d.

Note that we approximate the geodesic distance dG with

the more computationally efficient projection F -norm dP
from Eq. 4. As that this relies on an isometric embedding

of the Grassmannian in Euclidean space, we also represent

subspaces in this same space. Thus, instead of learning a

subspace B ∈ Gk,d, we will learn a projection matrix P =
BBT ∈ Pk,d, where B ∈ Vk,d is an orthogonal basis matrix

for B. This allows the constraint sets Xi to be written as:

Ci = {Q : QXi = Xi} , ∀i = 1, . . . , n. (8)

To understand these constraints, recall that for the columns

of a matrix Xi to all be contained within some subspace Q,

pre-multiplication of the corresponding projection matrix Q
will return the original matrix unchanged. Note that these

constraints are now affine with respect to the matrix Q and

our optimization problem in Eq. 7 can be written as:

argmin
P,Qi∈Pk,d

n∑
i=1

‖P−Qi‖2F s.t. Qi ∈ Ci (9)

This can be interpreted as finding the approximate inter-

section of affine subspaces of subspaces mapped to the set

of projection matrices in Euclidean space. However, due to

the constraints P,Qi ∈ Pk,d, this problem is nonconvex,

which typically makes optimization difficult due to the pos-

sibility of becoming trapped in poor local minima. How-

ever, in our case, the unique global optimum can efficiently

be found using a simple singular value decomposition.

4.1. Generalization of Principal Subspace Learning

To show this, we first draw connections to standard

vector-valued subspace learning. While the objective in

Eq. 9 differs substantially from standard approaches that

explicitly minimize data approximation error, it turns out

that for the special case of vector-valued data represented

as weighted one-dimensional subspaces, AGI is equivalent

to principal subspace learning.
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Specifically, consider a dataset consisting of vectors

xi ∈ R
d for i = 1, . . . , n. Principal subspace learning

with PCA can be posed as finding the k-dimensional sub-

space spanned by the columns of B ∈ Vk,d that minimizes

the average approximation error:

argmin
B∈Vk,d

n∑
i=1

‖xi −Pxi‖22 s.t. P = BBT (10)

The solution subspace can then be found as the span of the

top k left singular vectors of the matrix [x1, . . . ,xn].
If we represent the input data xi as one-dimensional sub-

spaces spanned by the basis Xi = ‖xi‖−1
2 xi ∈ V1,d asso-

ciated with weights a2i = ‖xi‖22, then:

‖xi −Pxi‖22 = min
Qi∈Pk,d

a2i
2
‖P−Qi‖2F s.t. Qi ∈ Ci (11)

To see why this is the case, note that in order to

satisfy the equality constraint in Eq. 11, the local sub-

space projection matrix Qi must be decomposed as

Qi = XiX
T
i + X̄iX̄

T
i where X̄i ∈ Vk−1,d and X̄T

iXi = 0.

Furthermore, in order to minimize its distance to P, X̄i

must be contained within the subspace corresponding to P,

i.e. PX̄i = X̄i. Since projection matrices are idempotent

and their trace is equal to the dimensionality of their corre-

sponding subspaces, both sides of Eq. 11 can then be shown

to equal to xT
i xi − Tr(Pxix

T
i ), demonstrating the equiva-

lence between the principal subspace objective in Eq. 10

and a weighted version of the AGI objective in Eq. 9.

4.2. Globally-Optimal Solution

More generally, this reasoning can be extended to show

that the globally-optimal solution of the nonconvex problem

in Eq. 9 is given by a singular value decomposition. Specif-

ically, let Xi ∈ Vpi,d be an orthogonal matrix with columns

spanning the pi-dimensional subspace Xi. Then, following

a similar argument from above:

‖Xi −PXi‖2F = min
Qi∈Pk,d

1

2
‖P−Qi‖2F s.t. Qi ∈ Ci (12)

In this case, both sides of Eq. 12 are equal to

pi − Tr(PXiX
T
i ). This suggests that AGI is optimizing the

average Euclidean reconstruction error of projecting each

basis vector from each data subspace Xi onto the learned

subspace B. Thus, as in Eq. 10, the globally-optimal so-

lution can be found as the span of the top k left singular

vectors of the matrix [X1, . . . ,Xn] where Xi is any orthog-

onal matrix with columns spanning Xi. Subspace-valued

subspace learning can thus be solved using standard vector-

valued subspace learning algorithms such as PCA by first

transforming the input data into sets of basis vectors. How-

ever, the novel formulation of AGI can also naturally incor-

porate additional constraints, as described in Sec. 4.4.

4.3. Inference and Subspace Completion

The solution subspace can be applied towards a variety

of applications through inference of latent variables that

relate data with their locations on the subspace. Recall

that this is accomplished in standard vector-valued subspace

learning by fixing a basis matrix B for the learned sub-

space and then finding a lower-dimensional latent repre-

sentation of the vector xi as wi = BTxi. However, be-

cause subspace-valued data are essentially infinite sets of

vectors, inference in AGI must proceed in a way that pre-

serves their inherent invariances. Furthermore, in order to

map subspace data of varying dimension to the same lower-

dimensional latent space, subspace completion must first be

used to ensure consistent dimensionality and enable direct

comparisons between them.

To do this, we first consider solving for the constrained

local subspace representations Qi with the learned P fixed.

Note that this is simply the Euclidean projection of P onto

the intersection of the sets Pk,d and Ci:

argmin
Qi

‖P−Qi‖2F s.t. Qi ∈ Pk,d ∩ Ci (13)

The solution can be decomposed as Qi = XiX
T
i + X̄iX̄

T
i ,

where X̄i ∈ Vk−pi,d spans the top k − pi eigenvectors of

(I − XiX
T
i )P. The result is a k-dimensional subspace Zi

that is close to B, but contains the data subspace Xi. Essen-

tially, instead of projecting our data onto the learned sub-

space, we are projecting the learned subspace onto the set

of subspaces that contain our data.

The same approach can be used for subspace comple-

tion to infer m-dimensional subspaces with pi ≤ m < k.

However, in order to ensure consistency, we must introduce

a relative ordering of the dimensions of the learned sub-

space B. Fortunately, this ordering is naturally given by the

singular values associated with the globally-optimal solu-

tion described in the previous section. Thus, given an m-

dimensional approximation B̂ ∈ Gm,d spanning the top m

dimensions of B with the projection matrix P̂ = B̂B̂T for

B̂ ∈ Vm,d, we can find an m-dimensional completed input

subspace X̂i ∈ Gm,d as the span of the columns of the ma-

trix X̂i = [Xi, X̄
′
i] where X̄′

i ∈ Vm−pi,d contains the top

m− pi eigenvectors of (I−XiX
T
i )P̂ as its columns.

Finally, since all completed subspaces X̂i are of the same

dimension m, consistent lower dimensional representations

can now be inferred. As with standard subspace learning,

we find an approximation X̂i that is contained within the

learned subspace B. However, instead of minimizing the

Euclidean reconstruction error, we minimize the distances

between projection matrices, as shown in Eq. 14 below.

argmin
Wi∈Vm,k

∥∥∥X̂iX̂
T
i −BWiW

T
i B

T
∥∥∥
2

F
(14)
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Figure 5: A visualization of the convergence properties of our op-

timization algorithm applied with 30 random initializations for un-

constrained AGI (a) and robust AGI (b). Without additional con-

straints, the global optimum from Sec. 4.2 is achieved with both

our original formulation and its convex relaxation, which also ap-

pears to speed convergence substantially.

The columns of the solution Wi span the column space of

BTX̂i and can be found as its left singular vectors. Note that

this again reduces to standard inference in vector-valued

subspace learning for the special case of weighted one-

dimensional subspaces with m = 1.

Because any vector within the subspace X̂i is a linear

combination of the columns of X̂i, the lower-dimensional

representation found by projecting it onto B is also a lin-

ear combination of the columns of Wi. Thus, the lower-

dimensional latent representation for the subspace Xi is it-

self a subspace Wi ∈ Gm,k that can be uniquely represented

in terms of its projection matrix Mi = WiW
T
i , which we

treat as the coordinates of the associated latent space.

To enable the transfer of information between the com-

pleted subspaces X̂i as in the image relighting example in

Fig. 3, consistency between the choice of their basis matri-

ces must be enforced. Specifically, we choose Ẑi ∈ Vm,d

to be the basis matrix for X̂i that is closest to the fixed m-

dimensional basis matrix B̂ in terms of Euclidean distance.

Since we know that Ẑi must span the columns of X̂i, this

is equivalent to finding the orthogonal linear transformation

Ri ∈ Vm,m that brings it closest to B̂, as shown in Eq. 15.

argmin
Ri∈Vm,m

∥∥∥B̂− X̂iRi

∥∥∥
2

F
= argmax

Ri∈Vm,m

Tr(B̂TX̂iRi) (15)

The solution is Ri = UiV
T
i from the singular value de-

composition B̂TX̂i = UiSiV
T
i so that Ẑi = X̂iRi. Then,

the coefficients found by projecting a data vector lying in

another input subspace onto the global basis B̂ can be used

directly with the completed local basis Ẑ to generate novel

samples extrapolated from Xi.

4.4. Optimization with Additional Constraints

In this section, we demonstrate how prior knowledge can

be introduced to improve the quality of the learned subspace

through the example of robust AGI, a constrained variation

of our method. We also present a simple, unified optimiza-

tion algorithm that supports this and a wide range of addi-

tional constraints that can be expressed as the intersection

of sets equipped with efficient projection operators.

For robust AGI, the local affine constraints Ci are re-

placed with robust alternatives Cri that allow for sparse er-

rors Ei in a manor similar to the convex formulation for

robust PCA [8]. The local subspace Zi is then constrained

to contain Xi+Ei. We assume that these errors are present

only within some subset of the data features, so we re-

strict that the �2,1-norm of ET
i be less than some maxi-

mum threshold ε, which constrains the sum of the Euclidean

norms of the rows of E. The robust affine constraint sets Cri
can be written as:

Cri =
{
Q : Q(Xi +Ei) = Xi +Ei,

∥∥ET
i

∥∥
2,1
≤ ε

}
(16)

While these constraints are convex, inferring Qi cannot

be accomplished in closed form as with Eq. 13. However,

the projection onto this this set can be found in closed form

with a soft-thresholding operator. This suggests the use of

an iterative projection algorithm that finds the projection

onto an intersection of sets via sequences of projections

onto the individual sets, which can often be computed much

more efficiently. Specifically, in this work, we employ the

Douglas-Rachford algorithm [6].

To learn the global subspace projection matrix P, we em-

ploy an alternating optimization strategy. After random ini-

tialization, we fix P and then solve for it’s projection Qi

onto each of the constraint sets Cri . Then, with Qi fixed, we

solve for P, repeating this process until convergence.

The convex relaxation of our problem replaces the set

of projection matrices Pk,d with its convex hull, the Fan-

tope Fk,d. From convexity, the resulting solution for P is

the sample average P = 1
n

∑
i Qi. Thus, this optimization

procedure is exactly the averaged projections algorithm for

finding the intersection of convex sets, so it is guaranteed to

converge to the globally-optimal solution [10]. Then, after

training, the learned subspace can be found from the Fan-

tope representation as the span of its top k left singular vec-

tors. This strategy has been effectively used in other convex

relaxations of subspace learning [38] and extrinsic methods

for learning on Grassmann manifolds [21].

On the other hand, for the original nonconvex formu-

lation in which each Qi is constrained to be a projection

matrix, the average will generally not be a projection ma-

trix. Instead, the solution P is its projection onto Pk,d.

In this case, convergence to the globally-optimal solution

is not theoretically guaranteed due to the nonconvexity of

the set of projection matrices Pk,d. However, similar meth-

ods been applied successfully with certain other nonconvex

sets [1]. Furthermore, our empirical results were promising,

demonstrating consistent convergence (as in Fig. 5) robust

to initialization and encouraging further theoretical investi-

gations of this behavior.
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Figure 6: Relative distances between the low-dimensional repre-

sentations of training and testing data for PCA (a) and AGI (b).

For PCA, each pixel shows the distance between the nearest train-

ing and testing image of the corresponding classes. For AGI, the

smallest distance is shown between the one-dimensional subspace

of each testing image and the pi-dimensional subspace of all train-

ing images of the corresponding classes. For a particular row, a

white circle on the diagonal indicates that the minimum distance

was smallest between training elements from the same class.

4.5. Implementation Details

While the optimization strategy described in the previ-

ous section relies on the Euclidean representation of sub-

spaces as matrices in R
d×d, this would be very inefficient in

high-dimensional settings like those common within com-

puter vision. However, both projection matrices and Fan-

tope elements are low-rank and so we represent them nu-

merically as low-rank matrix factorizations M = UDUT

where U ∈ Vr,d and D is a diagonal r × r matrix. For

projection matrices, r = k and D = I. On the other hand,

members of the Fantope Fk,d have a fixed trace equal to k,

but can have rank r > k with arbitrary non-negative ele-

ments in D. Thus, we enforce them to have a maximum

rank of rmax = 5k, which we found to be more than suffi-

cient in our experiments.

Projection on many constraint sets, including those con-

sidered in Sec. 4.4, can preserve the low-rank factorization

as shown in Fig. 7. For example, since projection onto the

affine subspace defined by the constraint set Ci in Eq. 8 will

not result in a symmetric matrix, we instead employ projec-

tion onto its intersection with the set of d × d symmetric

matrices Sd, which can be efficiently computed in closed-

form while preserving rank and symmetry. Also, projection

of the average of the local representations Qi onto the set of

projection matrices is computed with an incremental SVD

algorithm [2] so that the full matrices never need to be eval-

uated or stored during optimization.

5. Experimental Results
To demonstrate the effectiveness of AGI, we evaluate a

variety of applications on both real and synthetic datasets.

First, continuing the example shown in Figures 1-3, we

demonstrate further results on the on the Extended Yale

PPk,d
M =U(k)D(k)U(k)T , PFk,d

M = U(PB1
k
D)U

T

PCi∩Sd
M =XiX

T

i + (I−XiX
T

i )UDU
T

(I−XiX
T

i )

PCr
i ∩Sd

M =X̃iX̃
+
i + (I− X̃iX̃

+
i )UDU

T

(I− X̃iX̃
+
i ),

X̃i = Xi + PB1
ε
(M− I)

+
(Xi −MXi)

Figure 7: Projections onto some of the constraint sets discussed

in the text. Note that ·+ denotes the Moore-Penrose pseudoinverse,

which admits a low-rank update, and B1
k is the �1 ball of radius k,

whose projection can also be computed efficiently [13].
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(c) Example Nearest-Neighbor Subspaces

Figure 8: A demonstration of AGI applied to the classification

of illumination subspaces constructed from images under a vari-

ety of lighting conditions. The latent space embedding (a) shows

the representations of the training and testing subspaces belong-

ing to the same class connected by dotted lines while the relative

distance matrix (b) shows correct nearest-neighbor classification

of all testing subspaces. Visualization of three nearest neighbors

(c) shows that the learned representations are able to encode visual

similarities invariant to lighting.

Face Database B [29], which contains images of 38 individ-

uals under approximately 64 different lighting conditions.

The training images consisted of all images lit from the left

with a single subject left out, resulting in substantial bias

between the training and testing sets. We represented each

subject as a a subspace retaining 90% of the variance and

learned a global subspace of dimensionality k = 200 with

subspace completion of m = 40 dimensions used for in-

ference. As discussed previously, AGI representations are

more discriminative, even when the testing data are rep-

resented individually as one-dimensional subspaces. This

is shown quantitatively in Fig. 6, where the nearest dis-

tances between training and testing data of the same class

is much lower for AGI. Furthermore, if prior knowledge is

known about which testing images are of the same individ-

ual, groups of testing data for a particular class can be sum-

marized with a single testing subspace that better encodes
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Figure 9: A summary of the synthetic dataset used in our ex-

periments. A pictorial overview is shown (a) demonstrating the

data-generating process. The dimensionalities pi of the class sub-

spaces are also shown (b) alongside the eigenspectrum of the data

covariance matrix (c), which demonstrates that the vast majority

of the data variability of the 20 classes is contained within a 10-

dimensional subspace, resulting in significant class overlap.

Table 1: Synthetic Data Classification Accuracies

PCA
Subspace

Angle

AGI

(Vector)

AGI

(Subspace)

14.6% 15.5% 96.1% 100%

the data invariance. This shown in Fig. 8, in which the re-

sulting class representations appear to encode more com-

plex appearance variations that are invariant to lighting.

We also construct a difficult synthetic dataset for the task

of set-valued classification where groups of data vectors

known to belong to the same class are evaluated jointly,

an overview of the of which is shown in Fig. 9. The data

generating process can be summarized as follows: first,

a shared k-dimensional subspace B of R
d is chosen with

k = 10 and d = 1000. Then, for each of n = 20 classes, a

lower-dimensional training subspace Xi is chosen with ran-

dom dimensionality pi ≤ k so that it is close to B along

with a noisy version used for testing. Finally, for each

class, a total of pi noisy data vectors x
(j)
i are drawn near

the subspaces for both training and testing sets, the min-

imum number required to define the associated subspace,

for a total of only 103 samples in each. The difficulty,

which is visualized in Fig. 10, arises from the small num-

ber of biased training examples–some classes have only a

single data point–along with the relatively large number of

nearly-overlapping classes. Thus, the discriminative infor-

mation between classes is essentially contained within the

slight discrepancies between their local subspaces Xi and

the global subspace B, which account for less than 2% of

the total variance in the dataset, as shown in Fig. 9c.

We consider each testing group to be points on a sub-

space and use AGI to find invariant lower-dimensional rep-

resentations with k = 10 and m = 20. Fig. 11 shows the

distance matrices between the low-dimensional representa-

tions while Tab. 1 shows the resulting nearest-neighbor pre-

diction accuracies. Also shown is the accuracy from se-

lecting the label of the training subspace that is closest to

each testing subspace in terms of angle, which still performs

poorly due to the substantial noise in the dataset as shown
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Figure 10: A visualization demonstrating the difficulty of our

synthetic dataset. A two-dimensional embedding of the data (a)

shows no recognizable structure. This results from the close prox-

imity between the training classes (a), where each element of the

matrix corresponds to the angle between the corresponding sub-

spaces. The angles between the training and testing subspaces (b)

also demonstrate the large disparity between training and testing

data due to the added noise.
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Figure 11: Relative distances between the low-dimensional rep-

resentations of training and testing data for PCA (a), AGI with

testing vectors represented as one-dimensional subspaces (b), and

AGI with testing vectors of the same class grouped together as

pi-dimensional subspaces.

in Fig. 10c. On the other hand, even when each testing vec-

tor is treated as its own subspace, AGI gives perfect accu-

racy when all testing data of the same class are modeled as

higher-dimensional subspaces. This indicates that AGI is

also able to leverage the denoising capabilities of subspace

learning to improve discriminability.

6. Conclusion

The framework of Approximate Grassmannian Intersec-

tions is a novel interpretation of subspace learning as ap-

proximate constraint satisfaction on the Grassmann mani-

fold, generalizing standard vector-valued techniques such

as PCA to naturally support subspace-valued data. Despite

the nonconvexity of our formulation, the globally-optimal

solution can be found efficiently and described a simple op-

timization framework that supports a variety of additional

constraints for incorporating prior knowledge. More gener-

ally, our approach explicitly leverages the known geometric

structure of data to learn representations invariant to certain

transformations for improved generalization, especially in

cases with extremely limited training data.
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