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We introduce a new approach for the generation and the generalisation of visually
smooth depth-contours for hydrographic charts. Unlike most current approaches, it
strictly respects the safety constraint that dictates that the resulting chart may not
indicate a depth shallower than originally measured. The main idea is to construct a
smooth surface using a Voronoi-based interpolation method. This surface is represented
using a triangulation, modified using a series of generalisation operators, and ultimately
depth-contours are extracted directly from this surface. We report on experiments made
with real-world datasets, and we compare our results with existing approaches.
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Introduction

An hydrographic chart is a map of the underwater world specifically intended for the safe
navigation of ships. Important elements of such a chart are the depth-contours, which
have been traditionally drawn by hand by skilled hydrographers. They used a limited set
of scattered surveyed depth measurements to deduct and depict the morphology of the
seafloor with smooth-looking curves. Nowadays, with technologies such as multibeam
echosounders (MBES) offering an almost full coverage of the seafloor, one would expect
the contouring process to be fully automatic. It is however in practice still a (semi-)manual
process since the new technologies have ironically brought new problems; for example,
computers have problems processing the massive amount of data, especially in choosing
which data is relevant and which is not. Contours constructed directly from MBES datasets
are often not satisfactory for navigational purposes since, as Figure 1a shows, they are
zigzagging (the representation of the seafloor contains “waves”; that is, the slope changes
abruptly) and they contain many “island” contours (seafloor has several local minima and
maxima). These artefacts are the result of measurement noise that is present in MBES
datasets; that is, the variation in depth between two close samples can be larger than in
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146 R. Peters et al.

Figure 1. Comparison of raw data and a hydrographic chart from the Royal Australian Navy of the
Torres Strait north of Australia. Raw depth contours are blue, generalized depth contours are black.
(a) Depth-contours obtained from the raw data; (b) Hydrographic map product of the same area;
(c) Pits are removed, while peaks are preserved or integrated with another contour; (d) Groups of
nearby contour lines are aggregated.

reality, even after the dataset has been statistically cleaned (Calder and Mayer 2003; Calder
and Wells 2007). Figure 1b illustrates what is expected by hydrographers.

Creating good depth-contours requires generalisation; that is, the process of meaning-
fully reducing information. As Zhang and Guilbert (2011) state, the generalisation of the
content of a nautical chart is hindered by the fact that the following four constraints must
be respected:

1. The legibility constraint. An overdose of information slows down the map reading
process for the mariner, thus only the essential information should be depicted on
the map in a form that is clearly and efficiently apprehensible.

2. The safety constraint. At every location, the indicated depth must not be deeper
than the depth that was originally measured at that location; this is to guarantee that
a ship never runs aground because of a faulty map. This constraint is a so-called
hard constraint, i.e. it can never be broken.

3. The topology constraint. The topology of the depicted map elements must be correct,
i.e. depth contours may not touch or intersect (also a hard constraint).

4. The morphology constraint. The map should be as realistic and accurate as possible,
i.e. the overall shape of the morphology of the underwater surface should be clearly
perceivable and defined features should be preserved.

It should be noted that these four constraints are sometimes incompatible with each other.
For instance, the morphology constraint tells us to stay close to the measured shape of
the seafloor, while the legibility constraint forces us to deviate from that exact shape by
disregarding details. Also, because of the safety constraint, contours can only be modified
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Voronoi-Based Approach to Generating Depth-Contours 147

Figure 2. During generalisation, depth-contours can only be moved towards greater depth (indicated
by a “–” in the figure).

such that the safety is respected at all times; that is, contours can only be pushed towards
the deeper side during generalisation, as illustrated in Figure 2. It is therefore evident that
the end result must be a reasonable compromise between the four constraints, although the
hard constraints must not be broken.

The generation of contours, and their generalisation, can be done by several methods.
Practitioners usually first interpolate the original MBES samples to create a grid and
then directly extract the contours from the grid. If the number of samples is too high
to be processed by a computer, they often use a subset, which has the added benefits of
creating smoother and simpler depth-contours. We demonstrate in the next section that such
workflows can not guarantee that the safety constraint is respected, and should therefore
not be used. This is one result of this paper. An alternative approach is to construct depth-
contours and directly displace the lines. Guilbert and Lin (2007) and Guilbert and Saux
(2008) provide the only known methodology to generalise these while respecting the four
constraints. However, these methods require input datasets that are already relatively clean
and structured according to a specific format (b-splines), and they do not consider how to
safely obtain these in the first place.

We propose in this article, which is an extension of the work of Peters et al. (2013),
a unified approach to the generation of safe and smooth depth-contours. It deals with the
entire processing chain—from the (statistically cleaned) depth-measurements to generalised
contours—and intrinsically respects the four constraints listed above. The main idea is to
construct a surface with all the original samples, to modify and manipulate this surface
to obtain a smoother one, and to extract depth-contours from the smoothed surface only
(which ensures that the topology constraint is always respected). This is conceptually
similar to the Navigational Surface paradigm (Smith et al. 2002; Smith 2003) in the sense
that a surface is built and maintained from the original samples, and contours are extracted
from it when needed. However, instead of using raster coarsening to obtain contours at a
given scale (which does not guarantee the safety constraint), we construct a surface using a
triangulated irregular network (TIN) and we use a Voronoi interpolant (Sibson 1981; Gold
1989; Watson 1992). This permits us to obtain a smooth surface (i.e., having good slope),
which translates to smooth-looking contours; this is key to our approach. We have translated
the basic cartographic generalisation operators needed to construct depth-contours (e.g.,
movement of contours towards greater depth, smoothing of lines, aggregation of local
maxima as in Figure 1c, enlargement as in Figure 1d, etc.) into Voronoi-based operations
on the surface. It should also be noticed that, as demonstrated by Gold and Condal (1995),
a Voronoi surface deals elegantly with anisotropic sample distributions, which are common
in datasets collected with singlebeam echosounders (SBES). We have implemented our
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148 R. Peters et al.

Figure 3. General workflow to construct depth-contours from sample points.

approach,1 and we report on experiments made with real-world datasets, including one
where MBES and SBES data are mixed. We also compare our results with alternatives.

Related Work

Figure 3 illustrates the basic processing pipeline commonly used to obtain depth-contours
from a set of sample points (MBES and/or SBES). Most methods construct a surface, either
a raster or a TIN, by selecting sample points and interpolating, and construct contours
from that surface. Some methods do not consider the complete pipeline, and focus only
on contours; these could be used in combination with others. We describe below the most
common processing operations, taking into account the four hydrographic constraints, and
focusing on the most important: the safety constraint. A summary of these methods is
shown in Table 1.

Raster-Based Methods

The following are methods that use a raster data structure either to select a subset of the
input samples or to construct a raster surface.

Selection with virtual gridding. This is a point filtering method that aims at reducing the
volume of data, in order to create generalised contours and to speed up the computation
time, or simply to make the computation possible, in the case the input dataset is several
orders of magnitude bigger than the main memory of a computer (Isenburg et al. 2006). The
idea is to overlay a virtual grid on the input points and to keep one point for every grid cell.
The selected points can either be used to construct a raster or TIN surface. While different
functions can be used to select the point (e.g., deepest, shallowest, average, or median),
because of the safety constraint the shallowest point is often chosen by practitioners, see
Figure 4a for a one-dimensional equivalent. It should however be stressed that choosing the

1The implementation is open-source and available at https://github.com/Ylannl/Surfonoi
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Voronoi-Based Approach to Generating Depth-Contours 149

Table 1
Overview of methods to construct depth-contours for nautical charts. All the methods

respect the topology constraint.

Type Safe Generalisation Smooth Other:

Virtual Gridding point − a −
Max rasterization raster − a −
Raster coarsening raster − a −
Interpolated Raster raster − s

√
TIN simplification TIN − s −
Double buffering line

√
* s,u −

Spline-snake line
√

* s
√

Computationally
expensive

a = arbitrary reduction of detail;
s = significant features are preserved;
u = unnatural appearance of contour lines;
∗Only if the input contours are safe.

shallowest point does not guarantee safe contours. The problem is that contour extraction
algorithms perform a linear interpolation on the cells of the surface (raster cells or triangles).
As can be observed from Figure 4d, this easily results in safety violations at ‘secondary’
local maxima in a grid cell. The number and severity of these violations is related to the
cellsize of the virtual grid: a bigger cellsize will result in more and more severely violated
points. Notice that it is not possible to reduce the cellsize such that the safety issue can be
guaranteed.

Max rasterization. As Figure 4b shows, it is similar to virtual gridding, the main difference
is that a raster (a surface) is created where every cell in the virtual grid becomes a raster cell
whose depth is the shallowest of all the samples. This disregards the exact location of the
original sample points, and moves the shallowest point in the grid cell to the centre of the

(a) (b) (c)

(d) (e) (f)

2r

Figure 4. On the top: profile views of different filtering and rasterization methods. On the bottom:
the corresponding contours. The arrows indicate where the safety constraint is violated with respect
to the original points. (a) Virtual gridding; (b) Max rasterization; (c) IDW rasterization; (d) Virtual
gridding and TIN-based contour values; (e) Max rasterization and contours; (f) IDW rasterization
and contours.
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150 R. Peters et al.

pixel. That means that the morphology constraint is not respected. Moreover, as Figure 4e
shows, the safety constraint is not guaranteed, for the same reasons as with virtual gridding.
Again, the severity of these problems depends on the chosen cellsize.

Interpolation to a raster. For hydrographic contouring, the raster surface is often con-
structed with spatial interpolation, particularly with the method of inverse distance weight-
ing (IDW), as first proposed by Shepard (1968). Figures 4c and 4f illustrate the process
of IDW interpolation, notice that as a result of the averaging that takes place extrema are
disregarded and subsequently the safety constraint is also violated.

Raster coarsening. Raster coarsening is somewhat similar to max rasterization, the differ-
ence is that it takes a raster as input rather than sample points. Based on that input raster,
a new raster is created that has larger cellsize. In this way small details in the surface are
omitted. Subsequently the contour lines that correspond to this coarsened raster surface
also contain fewer small details. In terms of safety this method has the same drawbacks as
max rasterization.

TIN Simplification

Given a set of points (x, y, depth), a TIN is a tessellation of the (x, y) plane into triangles
where the vertices of the triangles are the points in (x, y). The triangulated surface can be
embedded in three-dimensional space, but since every point has only one depth value, it has
the property of being projectable onto the plane (x, y). The objective of TIN simplification
is to reduce the number of vertices in a TIN until the surface represented with the triangles
deviates by more than a given tolerance to the original TIN. While we are not aware of
any method tailored to contours in hydrographic charts, it could be an attractive method
since, unlike the raster-based methods, TIN-based methods take into account the geometric
configuration of neighbouring points and do not move sample points (Garland and Heckbert
(1995) give an overview of the different methods used). However, as Figure 5 shows, the
safety constraint is also not guaranteed to be respected when vertices are removed from a
TIN. This is due to the fact that the triangulation must be updated (Mostafavi et al. 2003)
and the shape of the triangles is usually not controlled by the depth of the vertices, but
rather by the Delaunay criterion.

Line-Based Methods

Two issues arise with line-based methods. First, moving lines can create intersections and
thus break the topology constraint. Methods to ensure that no intersections are created
after displacement, or to resolve them, are complex and in most cases do not respect the
safety constraint; see, for instance Visvalingam and Whyatt (1993), van der Poorten and
Jones (2002) and Dyken et al. (2009). Hennau and De Wulf (2006), based on the work
of Christensen (2001), propose a method tailored to depth-contours that combines a line-
based smoothing technique with a TIN-based patch smoothing technique. Unfortunately,
they do not consider the safety constraint. Second, line-based methods require safe and
clean contours as input; as previously described, obtaining those safe contours is not a
trivial task in the first place. The following methods do respect the safety constraint with
respect to the input contours.
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Voronoi-Based Approach to Generating Depth-Contours 151

(a) (b)

(c)

Figure 5. Due to the re-triangulation after a removal, violations of the safety constraint may occur
after a series of points are removed. The first vertex is removed (locally the resulting surface will be
shallower). However, the second removal changes the configuration of triangles and at that location
the surface is now deeper. A lower number means a shallower point. (a) Initial configuration; (b) First
vertex removal; (c) Second vertex removal.

Double-buffering. It is a popular method employed in major commercial hydrographic
packages such as Caris.2 As illustrated in Figure 6, it works by buffering a set of input
contour lines back and forth (by the same distance), effectively taking into account the
safety constraint as well as performing a form of aggregation. When a sphere is taken
instead of a disk, the method can also be used on a 3D surface (Smith 2003). The resulting
depth-contours are however not smooth (the first derivative is not continuous) because
contours are formed by the intersections of circles. The morphology constraint is thus not

2http://www.caris.com
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152 R. Peters et al.

Figure 6. Double buffering. The original blue contour line (bottom) is first buffered to the upper
green line, which is subsequently buffered back to the middle red line.

respected. Another major weakness of this approach is its non-adaptiveness: the buffer
distance is strongly dependent on local details in the contours. Also, notice that the safety
constraint can only be guaranteed in case of safe input contours. If the input contours are not
safe, for example if they are extracted from an IDW interpolated grid, the double buffering
operation does not make them safe (nor would it cause extra violations of the safety).

Spline-snake model. A spline is a piecewise polynomial function that is by definition
smooth. Guilbert and Lin (2007) and Guilbert and Saux (2008) use splines in combination
with a snake model to perform smoothing of bathymetric contour lines, this is implemented
as an iterative optimisation process. Their method respects the safety constraint and achieves
smooth contours at the same time. At each iteration during the process, intersections in the
contours are checked. If the distance between two line segments is below a given threshold,
the conflicting segment is removed. Also the contours are generalised in order of ascending
depth, so that deformations resulting from conflicts are propagated towards the deepest
contours. The method is designed to be fully automatic, however, in practice, it seems that
manual intervention is still required. Indeed, in one of the case studies described a contour
line needed to be split because it got stuck between two other contours. Also, it is unclear
how well the method performs on raw contours because the input contours in the presented
case studies are b-splines already and it is unclear how these can be safely generated in the
first place. The authors also note that the computational cost of the algorithm is high for
complex lines, where convergence is slow because of the safety constraint.

Other Methods

The Navigational Surface, as introduced by Smith et al. (2002) and Smith (2003), aims at
facilitating and supporting the hydrographer in his work, but is not a way to obtain auto-
matically depth-contours. The framework focusses on uncertainty grids and on combining
different overlapping surveys, and proposes to keep one high-resolution grid for a given
area. Depth-contours are derived with raster coarsening and double-buffer, and thus the
results are not guaranteed to be safe.

A Voronoi-Based Surface Approach

Part of the problems with existing approaches to generate depth-contours is the fact that the
different processes, such as spatial interpolation, generalisation and contouring, are treated
as independent processes. We argue in this paper that they are in fact interrelated, and we
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Voronoi-Based Approach to Generating Depth-Contours 153

Figure 7. Overview Voronoi- and surface-based approach.

present in this section an approach where the different processes are integrated into one
consistent framework: a Voronoi-based surface.

The key idea behind a surface-based approach is to have one single consistent rep-
resentation of the seafloor from which contours can be generated on-the-fly (potentially
for different map scales, or with varying degrees of generalisation). Instead of performing
generalisation by moving lines or using a subset of the original samples, we manipulate
the surface directly with operators. Imhof (2007, p. 132) gives a compelling argument to
do so: “One must never overlook the fact that (geographic) surfaces are being depicted
with contours. A single line says very little. One line does not define a surface. Everything
comes back, eventually, to the formation of the system of lines, that is, the surface.”

Figure 7 gives a schematic overview of the different components of our Voronoi-based
surface concept. First, all the statistically cleaned input sample points of a given area
are used to construct a TIN that respects the Delaunay criterion. Second, a number of
generalisation operators are used that alter the TIN using Laplace interpolation, which is
based on the Voronoi diagram. These operators aim at improving the slope of the surface,
and permit us to generalise the surface. Finally, contour lines are derived from the altered
TIN using linear interpolation (Watson 1992).

Good Slope Translates to Smooth Contours

The representation of a continuous phenomenon in space such as the depth of a given area
can be done with a field (Goodchild 1992). A field is a model of the spatial variation of
a given attribute a, and can be described by a function; in our case the function would be
f (x, y) = depth. A contour line is the set of points in space where f (x, y) = depth0, where
depth0 is a constant.

The mathematical concept Implicit Function Theorem states that a contour line ex-
tracted from a field f will be no less smooth than f itself (Sibson, 1997). In other words,
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154 R. Peters et al.

obtaining smooth contour lines can be achieved by smoothing the field itself. Sibson (1997,
p. 45) goes further in stating that: “The eye is very good at detecting gaps and corners, but
very bad at detecting discontinuities in derivatives higher than the first. For contour lines
to be accepted by the eye as a description of a function however smooth, they need to have
continuously turning tangents, but higher order continuity of the supposed contours is not
needed for them to be visually convincing.” In brief, in practice we should use functions
whose first derivative is continuous (called a C1 interpolant); C0 interpolants (function is
continuous but its derivatives are not continuous) are not enough, and C2 ones (first and
second derivatives are continuous) are not necessary.

Representing a field in a computer is problematic since computers are discrete ma-
chines. We therefore need to discretise the field, i.e. partition it into several pieces that
cover the whole area (usually either grid cells or triangles). The contours in Figure 1a are
not smooth basically because the seabed is represented simply with a TIN of the original
samples, which is a C0 interpolant.

However, as we demonstrate in the next section, we can obtain a smooth looking
approximation of the field by densifying the TIN using the Laplace interpolant (which
is C1).

Delaunay Triangulation and Voronoi Diagram

The TIN surface is a Delaunay triangulation (DT) because it permits us to extract on-the-fly
the Voronoi diagram (VD) needed for the smooth interpolant. As Figure 8a shows, the
DT maximises the minimal angle of its triangles, through the application of the Delaunay
criterion that states that the circumscribed circle of any triangle must not contain any other
vertex. As a result, triangles are as ‘fat,’ or equilateral, as possible. As with any other TIN
the edges in a DT implicitly define neighbour relations between vertices. However, only for

Figure 8. (a) The VD, drawn in dashed lines, uniquely maps to the DT, drawn in dotted lines. A DT
triangle maps to a VD vertex that is located at the centre of the circumscribed circle of the triangle. A
DT edge corresponds to a VD edge, and is perpendicular to it. (b) Laplace interpolation. Black points
indicate natural neighbours of the point p0. The dashed region marks the Voronoi cell that would be
added with the insertion of p0 to the Voronoi Diagram.
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Voronoi-Based Approach to Generating Depth-Contours 155

the Delaunay triangulation it is guaranteed for every vertex that its neighbouring vertices
are closer than any other vertex in the triangulation.

The Voronoi diagram (VD) is a dual graph of the DT, see Figure 8a. It is a subdivision
of the plane into ‘proximity’ regions: every point p of the set S is mapped to a Voronoi cell
Vp defined as the set of points x ∈ R

2 that are closer to p than to any other point q ∈ S.
It is important to note that the DT and the VD are completely adaptive to the spatial

distribution of the points. The neighbouring relations between points are also meaningful
because they indicate which points are closest in any given direction. As Gold and Condal
(1995) show, this property allows us to handle SBES datasets better than raster-based
approach; our experiments corroborate this.

Laplace Interpolant

The Laplace interpolant, or non-Sibsonian interpolation (Belikov et al. 1997; Hiyoshi and
Sugihara 1999b), is a spatial interpolation method that exploits the spatial relationships
between vertices in a VD. It is a computationally faster variant of the Sibson, or natural
neighbour, interpolation method (Sibson 1981; Gold 1989).

Laplace interpolation is completely determined by the configuration of the natural
neighbours; that is, the generators of the adjacent Voronoi cells, of a vertex inserted into
the VD at the interpolation location x. The interpolated depth at x, denoted as ĥ0, is the
average of its natural neighbours’ weights:

ĥ0 =

⎧⎪⎪⎨
⎪⎪⎩

hi if p0 = pi,

1∑n
i=1 wi

·
n∑

i=1

wihi if p0 �= pi

The weights are defined by:

wi = dVi

di

(1)

where hi is the depth of vertex vi , di is the Euclidean distance in R
2 to the natural neighbour

pi (the distance from p0 to pi), and dVi
is the length of the Voronoi edge incident to V0 and

Vi . Figure 8b illustrates this. Note that the fraction becomes indeterminate when p0 equals
one of the sample points pi . In this case the Laplace interpolant therefore simply defines
that ĥ0 = hi .

Watson (1992) lists the properties of the ideal spatial interpolation method in the
context of real-world geographical datasets. A brief review of these properties in the light
of Laplace interpolation demonstrates some of the fundamental features of our approach.
First the Laplace interpolant is exact: the interpolation method returns the exact value,
rather than some estimate of a sample point when it is queried at that precise location.
Note that an inexact interpolation method might violate the hydrographic safety constraint
at the locations of sample points, if the interpolated depth is deeper than the original
depth. Second, it is continuous and continuously differentiable (C1) everywhere except at
sites where finitely many Voronoi circles (as defined in Figure 8a) intersect (Hiyoshi and
Sugihara 1999a). We found that this is not a problem in practice. Third, it is local; that is, it
uses only a local subset of data for the interpolation of a point. This limits the computational
cost and supports efficient addition or removal of new data points. Finally, like the VD itself,
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156 R. Peters et al.

it is adaptive to the spatial configuration of sample points. Unlike other methods such as
IDW interpolation, the Laplace interpolant requires no user-defined parameters.

Operators on the Surface

We introduce in this section three generalisation operators that permit us to obtain a
smoother surface from which depth-contours can be extracted: (i) smoothing, (ii) densi-
fication and (iii) reshaping. These three operators are based on the Laplace interpolation
algorithm (described in Algorithm 1, and referred to as InterpolateDepth in the follow-
ing) to interact with the surface. As shown in Algorithm 2 InterpolateCheckDepth, is
used to ensure that the safety constraint is never violated (the newly interpolated depth is
only returned if it is shallower than the current depth at the vertex). If the interpolated depth
is deeper than the current depth, the current depth is returned.

Algorithm 1 InterpolateDepth
Input: a vertex v in a TIN T
Output: the Laplace interpolated depth h for v

1: for each vi adjacent to v do
2: e1 ← edge(v, vi)
3: e2 ← dual(e1)

4: wi ← length(e2)

length(e1)

5: end for
6: h ← 0
7: for all wi, hi from the natural neighbours vi around v do
8: h ← h + wi∑

wi
∗ hi

9: end for

Algorithm 2 InterpolateCheckDepth
Input: a vertex v in a TIN T
Output: depth of v is safely updated

1: h ← InterpolateDepth (v)
2: if h shallower than current depth at v then
3: depth of v ← h

4: else
5: depth of v stays the same
6: end if

The Smoothing Operator. The operator Smooth (Algorithm 3) is the most trivial applica-
tion of the InterpolateCheckDepth algorithm: it simply calls it for all input vertices,
after which their depths are updated (see Figure 9). Thus, smoothing does not change the
planimetric coordinates of vertices, but only lifts the vertices’ depths. It can be performed
either on a portion of a dataset, or on the whole dataset. Furthermore this operator can be
applied any number of times, delivering more generalisation with each pass.

The primary objective of smoothing is to generalise the surface by removing high
frequency detail while preserving the overall feature shape. Applying Smooth both reduces
the angle between the planes spanned by adjacent triangles and simplifies the overall shape.
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Voronoi-Based Approach to Generating Depth-Contours 157

Algorithm 3 Smooth
Input: a TIN T
Output: a smoothed T

1: for all vertices vi ∈ T do
2: hi ← InterpolateCheckDepth (vi)
3: end for
4:
5: for all tuples vi, hi do
6: update depth of vi with hi

7: end for

Algorithm 4 Densify
Input: a TIN T
Output: a densified T

1: for all triangles t ∈ T do
2: if area(t) > maxArea then
3: insert vertex v in T at circumcenter(t), and update T for the Delaunay criterion
4: set depth v ← InterpolateDepth
5: end if
6: end for

Algorithm 5 Reshape
Input: a TIN T ; a set V of vertices to be reshaped
Output: depth of vertices in V updated

1: vertexCache ← [ ]
2: for all vertices v ∈ V do
3: append v to vertexCache
4: remove v from T
5: end for
6:
7: for all vertices v in vertexCache do
8: insert v in T
9: update depth of v with InterpolateCheckDepth (vi)
10: remove v from T

11: end for
12:
13: for all vertices v in vertexCache do
14: insert v in T

15: end for

Smooth performs two linear loops over the n vertices of the TIN (the depths are only
updated after all the depths have been estimated), and since the smoothing of one vertex
is performed in expected constant time, the expected time complexity of the algorithm is
O(n).

The Densification Operator. Its objective is primarily to minimise the discretisation error
between the Laplace interpolated field and the contours that are extracted from the DT,
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158 R. Peters et al.

(a) (b)

(c) (d)

Keep shallowest one

Figure 9. Cross-section view of the smoothing of a single vertex in a TIN. (a) Initial TIN;
(b) Estimation using only neighbours; (c) Comparison of depths; (d) Resulting TIN.

this is illustrated in Figure 10. By inserting extra vertices in large triangles (to break them
into three triangles), the resolution of the DT is improved. As a result also the extracted
contour lines have smoother appearance because they now have shorter line-segments. We
insert a new vertex at the centre of the circumscribed circle of any triangle that has an area
greater than a preset threshold (Algorithm 4); its depth is assigned with InterpolateDepth
(Algorithm 1). The circumcenter is chosen here because that location is equidistant to its
three closest points, and subsequently results in a very natural point distribution.

If the maximum area threshold is ignored, a single call to Densify is O(n), as it
only requires a single pass over the n triangles of the TIN. However, when a number of t
densification passes is sequentially performed, it only scales to O(3t n), since every point

(a) (b)

(c) (d)

Figure 10. Cross-section view of the densification operator in a TIN. (a) Initial TIN; (b) Interpolated
field (dashed); (c) Addition of intermediate points (orange) in accordance with the interpolated field;
(d) Resulting TIN.
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(a) (b)

(c) (d)

Steering points

Steering points

Figure 11. Reshaping operator. (a) Initial situation: a group of nearby features; (b) Selection of
steering points; (c) Depth-estimation of points enclosed by the steering points; (d) Reshaped feature.

insertion creates two new triangles. However, because of the maximum area threshold, that
worst case scenario will never be reached in practice with large t.

The reshaping operator. Reshape (Algorithm 5) should be considered as a mechanism
to perform generalisation that requires specific alteration of the surface that can not be
achieved through Smooth or Densify alone. An example is the aggregation of two dis-
tinct peak features, as illustrated in Figure 11. The reshape operator is also based on
InterpolateCheckDepth, but unlike Smooth, prior to updating the depth of a vertex the
set of input vertices V are temporarily removed from the TIN. Prior to calling Reshape,
the relevant feature(s) need to be identified (which is currently done manually) and a set
of so-called steering points needs to be assigned. Figure 11a depicts these steering points,
they are local maxima of the features to be aggregated. The set of input vertices V repre-
sents the vertices that are to be reshaped; in Figure 11a these are enclosed by the steering
points. These vertices are then temporarily removed from the TIN (see Figure 11b) and
then each input vertex v ∈ V is individually re-added to the triangulation, assigned a depth
of InterpolateCheckDepth (v) and removed again (see Figure 11c). After doing this for
every input vertex v ∈ V , they are permanently inserted back into the TIN, but now with
new depths that can be significantly different, as depicted in Figure 11d.

Note that a call to Reshape only performs changes to a very specific region of m
vertices that is a subset of all the n vertices in the DT. Over those m points the complexity
of the algorithm is O(m).

Experiments

We have implemented the algorithms described in the previous section with the C++
programming language using the CGAL library3 for its implementation of the DT. A
number of experiments were performed to investigate the effectiveness of the proposed

3http://www.cgal.org
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160 R. Peters et al.

Table 2
Details of datasets

Antilles Australia London Zeeland

Point count 1081 1613 151,704 102,954
Area 2960.74 km2 0.27 km2 1.12 km2 0.32 km2

Type SBES MBES MBES+SBES MBES

operators and to compare results with existing methods. Note that we rasterized some depth
fields exclusively for evaluation purposes.

Table 2 gives an overview of the used datasets and their characteristics. Both SBES
and MBES datasets were used, as well as a dataset with a mixture of those.

The Smoothing Operator

As can be observed from Figure 12a, the raw and ungeneralised contours in the Zeeland
dataset have a very irregular and cluttered appearance. However, the smoothed contours
(100 smoothing passes) from Figure 12b have a much cleaner and less cluttered appearance.
Clearly, the number of contour lines has diminished. This is both because pits (local minima)
have been lifted upwards by the smoothing operator, and nearby peaks (local maxima) have
been aggregated (because the region in-between has been lifted upwards). Thus omission
and aggregation take place in the contour lines. Notice also that a third effect of the
smoothing operator is the enlargement of certain features as a result of the uplifting of the
points surrounding a local maximum.

As to be expected, the overall effect of the smoothing operator on the morphology
of the surface is significant. As shown by the plot of the root mean square (RMS) error
between the initial and the generalised field in Figure 12d, the smoothing of the surface is
most significant in the earlier smoothing passes and results in a per pixel difference of tens
of centimetres. That supports the idea that the smoothing of the surface works against the
preservation of all morphological features. However, from the difference map in Figure 12c,
it can be seen that the high frequency features are especially altered, thus preserving the
general surface shape (low frequency pattern).

The Densification Operator

The effects of the densification operator are illustrated in Figure 13a. The sharp edges of
the undensified lines are caused by the large triangles in the initial TIN, however after
densification these large triangles are subdivided into much smaller ones. The result is a
much smoother contour line that still respects the sample points. Figure 13b shows how the
approximation error of the TIN with respect to a Laplace interpolation of the input sample
points improves with more densification passes.

The Reshaping Operator

Figure 14 illustrates the use of the reshaping operator in the aggregation of two peaks in
the surface. Evidently, the region in between the peaks is significantly raised such that it
has the same depth as the original peaks. For this experiment the steering points and input
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Voronoi-Based Approach to Generating Depth-Contours 161

Figure 12. The effect of the smoothing operator in the Zeeland dataset. (a) Raw contours extracted
at a 50cm depth interval; (b) Smoothed contours (100 smoothing passes). The ellipses mark areas
where aggregation (left), omission (middle) and enlargement (right) take place; (c) Difference map
between the initial and 100x smoothed interpolated and rasterized fields (pixel size 50 cm); (d) RMS
of differences with respect to the initial interpolated field as a function of the number of smoothing
passes.

Figure 13. Densification illustrated on the Antilles dataset. (a) TIN before densification (left), TIN
after 3x densification (centre) and comparison of corresponding contour lines (right). Original sample
points shown in the background (detail); (b) Approximation error of TIN interpolation with respect
to the initial Laplace interpolated field as a function of the number of densification passes. Computed
for a rasterization of the fields with 10 m pixel size.
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162 R. Peters et al.

Figure 14. The reshaping operator performs aggregation in the Australia dataset. (a) The initial
Laplace interpolated field with corresponding contours; (b) The field after reshaping. Both the initial
(thin line) as the reshaped contours (fat line) are shown.

points for Algorithm 5 were manually selected; we are currently working on an approach
to automate this step.

Heterogeneous Data

The London dataset, shown in Figure 15, is composed of a mixture of SBES and MBES
sample points. The abrupt transition in point density and homogeneity is problematic for
interpolation methods in general (Gold and Condal 1995). It demonstrates the adaptivity
of the Voronoi-based interpolation method. Since Laplace interpolation (see Figure 15b) is
fully adaptive to the density of input samples there is no distance parameter that needs to be

Figure 15. Dealing with heterogeneous data. (a) Sample point distribution; (b) Laplace interpolant,
contours densified 5 times; (c) Inverse Distance Weighting (radius = 150m, power = 2).
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set, and it can easily be applied to datasets with a highly anisotropic distribution of samples.
However, we can observe contours that are unrealistically bent toward the inner part of the
dataset due to the anisotropic sampling pattern. If IDW is used with a 150 m search radius
(so that the whole region can be interpolated), it results in cluttered contours in the bottom
of the area and rather disturbing artefacts in the center area (see Figure 15c). Therefore we
conclude that, while still not perfect, the Laplace interpolation performs significantly better
in this case.

Comparison with Existing Methods

Figure 16a shows the distribution of the error between the sample points and the interpolated
surfaces constructed with different approaches. The parameters were chosen in such a way
that the resulting contours look as similar as possible, thus providing the same overall degree
of generalisation. As expected, since it is an average, the raster-based IDW interpolation
violates the safety constraint for roughly half the number of points. In contrast, our approach
violates no points at all. After applying the smoothing operator the safety constraint is still
respected. With the max rasterization method, the safety constraint is also respected in
its field representation (note that it does not mean the resulting contours are safe, see
Figure 4e). However when compared to the smoothed Laplace interpolated surface it is
clear that the variance of the distribution is larger, thus raster coarsening is less accurate
than the smoothed conceptual surface at a comparable level of generalisation.

From a visual comparison of the different contours (Figure 16b), it can be seen that
the contours of both double-buffering and raster coarsening have sharp corners. In case
of double-buffering this is due to the convex features (pointing south and towards the
deeper region). Those features are not smoothed by the process of double-buffering unless
a very large buffer distance is chosen. In case of concave features in the input line, the
doubly buffered line clearly has circular arcs. It is evident that the contours from the
coarsened raster are indeed quite coarse and therefore not smooth at all. As expected, since
with our approach the conceptual surface is by definition smooth and safe, the resulting
depth-contours are smooth and are all moved/generalised in the direction of deeper areas.

Figure 16. Comparison of four methods to generate depth-contours applied to the MBES part of the
London dataset. (a) Boxplots of the sample point differences with respect to the interpolated fields;
(b) Comparison between hydrographic contouring approaches.
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Conclusion and Discussion

We have shown in this article that the raster-based approaches, which are commonly used in
practice for generating depth-contours, do not necessarily respect the safety constraint, i.e.
the depth displayed in a nautical chart could be deeper than in reality. In contrast, we have
developed an approach—based on the Voronoi diagram and the Laplace interpolant—that
can generate both smooth-looking and safe depth-contours. It respects the two hard con-
straints (safety and topology) and performs well for the two soft constraints (legibility and
morphology). Conceptually, this is achieved by modifying with operators the surface that
is fitted through the original sample points only in one direction: up. The Voronoi-based
lifting improves the smoothness of the surface (its slope) and hence the resulting contour
lines also appear smoother, less “island” contours are present, and pits are removed. Also,
more specialised generalisation operations can be realised with our approach: we have
shown how a reshaping operation, which aggregates peaks, can help improve the legibility
of nautical charts.

Although we have primarily focussed on generalisation operators that modify the
surface (which has a direct effect on the resulting contours), we see this work as an initial
step in “linking” both representations. Indeed, we envision a stronger and bidirectional link
between the two, and that could lead to a powerful interactive system where an operator
would have a linked view of both representations and could therefore choose the most
appropriate representation for applying a modification (either change the surface or the
lines), which is then directly translated into both representations. Such an approach would
simplify the implementation of several generalisation operations, while respecting the four
constraints for nautical charts.

While our approach deals with the entire processing chain (from the samples to gen-
eralised contours), it does not replace nor invalidate previous results. Indeed, we believe
that the safe and smooth depth-contours we generate could be used as the input for the
work of Guilbert and Lin (2007) and Guilbert and Zhang (2012), as the input needs to be
already cleaned. Furthermore, extension of this work could be used to analyse the surface
and detect where our operators could be used: Guilbert (2012) introduces a method to
extract (bathymetric) terrain features and to store them, and their spatial relationships, in a
hierarchical structure.

Finally, our future work includes:

1. The automation of the reshaping operator so that it detects peaks in the surface and
applies the operator to these detected locations.

2. The RMS error graph allows us to quantify the generalisation error we make with
smoothing and densifying. This can possibly be used to locally control the error
that is introduced during generalisation (currently there is no guarantee on the
horizontal displacement that is introduced in the contours while generalising). An
open question is: how can we assess the quality of the resulting contours for the
softer constraints (legibility and morphology)?

3. Data management and scalability: How can we scale the method to deal with a
huge number of input points? At this moment, we are limited by the memory of the
computer used, which is often not sufficient for real-world MBES datasets. We plan
to investigate the streaming paradigm of Isenburg, Liu, Shewchuk, and Snoeyink
(2006) and see if it can be adapted to our operators, since it would allow us to
process much larger datasets.
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