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a b s t r a c t

Although the validation of a single GIS polygon can be considered as a solved issue, the repair of an
invalid polygon has not received much attention and is still in practice a semi-manual and time-
consuming task. We investigate in this paper algorithms to automatically repair a single polygon.
Automated repair algorithms can be considered as interpreting ambiguous or ill-defined polygons and
returning a coherent and clearly defined output (the definition of the international standards in our
case). We present a novel approach, based on the use of a constrained triangulation, to automatically
repair invalid polygons. Our approach is conceptually simple and easy to implement as it is mostly based
on labelling triangles. It is also flexible: it permits us to implement different repair paradigms (we
describe two in the paper). We have implemented our algorithms, and we report on experiments made
with large real-world polygons that are often used by practitioners in different disciplines. We show that
our approach is faster and more scalable than alternative tools.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

While there are different definitions for a polygon, most
geographical information systems (GISs) use that of the Open
Geospatial Consortium (OGC) and the International Organization
for Standardization (ISO)1 (OGC, 2011, ISO, TC211), and provide
validation functions to ensure that a given polygon conforms to
the definition. There are small variations between different imple-
mentations (van Oosterom et al., 2004), but we can consider the
validation of a two-dimensional polygon a solved problem. Having
one definition together with validation tools ensures that practi-
tioners can exchange datasets and use spatial analysis operations
in their downstream applications. Validity is indeed a prerequisite
for many GIS operations—invalid polygons will either yield wrong
results or, even worse, could make the software crash.

When a polygon is invalid—that is, it does not respect a given
definition—then one has to repair it. While most validation tools
give users a list of errors and locations (see for instance Fig. 1),
they usually still have to manually fix them. This can become in
practice a very tedious and time-consuming task for large polygons.

We investigate in this paper automatic methods for repairing GIS
polygons. Surprisingly, it is a topic that so far has received little
attention. As we discuss in Section 3, most GIS packages perform some
form of implicit cleaning/repairing (e.g. deleting “unwanted parts” for
display purposes) when reading invalid input, but how this is done is

(often) not documented and the user has little control over it. An
example of this cleaning, and of how the interpretation of the input
can differ, is shown in Fig. 2 for two well-known packages. To our
knowledge, the only fully automatic repair tool available is the one in
PostGIS (the ST_MakeValid function). In our context, a repair tool
explicitly takes a polygon as input, repairs it, and gives it back to the
user; this is in contrast with the cleaning functions that are auto-
matically used on the input as a means to enable its conversion
to another (internal) representation. As explained in Section 3,
ST_MakeValid is not documented (one has to read the code and
try with different inputs) and does not perform well for polygons
having a large number of boundaries. It should be said that the repair
of polygons is not an exact science, i.e. different persons could repair
one invalid polygon in different ways. As a consequence, we describe
in Section 3 different algorithms and paradigms that can be used, each
one of these has pros and cons. We believe that the most suitable
paradigm is application-dependent.

We present in this paper a novel approach to automatically
repair invalid GIS polygons. As described in Section 4, it is
conceptually simple and is based on the properties of a con-
strained triangulation (CT) of the input polygon. Our CT-based
approach permits us to implement efficiently different repair
paradigms, and adding new ones is easily done. We also discuss
in Section 5 a preprocessing step to our approach to snap points
and lines to each other if they are within a tolerance. Doing so can
destroy (modify and invalidate) the topology of the input, but we
show that with our approach we can recover from these errors,
and that the repaired polygons are free of spikes and more robust.
We have implemented our approach and we report in Section 6 on
experiments we ran with large and complex real-world GIS
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polygons used by practitioners in different disciplines related to
the geosciences. It can be seen that our implementation is efficient
in practice, and that it scales better than a graph-based approach

(that of PostGIS's ST_MakeValid) for very large polygons. Finally,
in Section 7, we elaborate on the advantages of our method and
discuss how other paradigms can be implemented on it.

Fig. 1. The Java Topology Suite (JTS) interface that helps users locate errors in invalid polygons.

Fig. 2. Different interpretations of the polygon p3, as shown in Fig. 3. (a) ArcGIS considers the overlapping region as a hole, but the non-overlapping part of the hole as a new
polygon (QGIS and FME do this as well). (b) GRASS removes the overlapping part from the polygon, becoming a new polygon with a different shape.
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2. What is a (robust) polygon?

We use the definition as found in the Simple Features specifi-
cations (SFS) (OGC, 2011):

[A] planar Surface defined by 1 exterior boundary and 0 or more
interior boundaries. Each interior boundary defines a hole in the
Polygon.

A boundary is defined by a (clockwise or counterclockwise)
oriented ring. Different rules are provided, the most relevant being
the following (examples of polygons breaking the rules are given
between brackets, they refer to those in Fig. 3):

1. Each ring defining the exterior and interior boundaries should
be simple, i.e. non-self-intersecting (p1 and p10). Notice that this

prevents the existence of rings with zero-area (p6), and of rings
having two consecutive points at the same location. It should
be observed that the polygon p1 is not allowed by the SFS (in a
valid representation of the polygon, the triangle should be
represented as an interior boundary touching the exterior
boundary), but some implementations do allow it (e.g. ESRI's
Shapefile).

2. Each ring should be closed (p11): its first and its last points
should be the same.

3. The rings of a polygon should not cross (p3, p7, p8 and p12) but
may intersect at one tangent point (the interior ring of p2 is a
valid case, although p2 as a whole is not since the other interior
ring is located outside the interior one).

4. A polygon may not have cut lines, spikes or punctures (p5 or
p6); removing these is known as the regularisation of a polygon
(a standard point-set topology operation).

5. The interior of every polygon is a connected point set (p4).
6. Each interior ring creates a new area that is disconnected from

the exterior. Thus, an interior ring cannot be located outside the
exterior ring (p2) or inside other interior rings (p9).

Furthermore, the exterior boundary of a polygon must be oriented
counterclockwise, and the interior boundaries clockwise.

The ISO/OGC definition of a polygon assumes an implementa-
tion of the rules with an arbitrary-precision representation (real
numbers), while most commonly these are done using floating-
point, which offers only an approximation (Hoffmann, 1989). The
coordinates of the vertices of a polygon are therefore most often
rounded to the closest possible value in the computer. This can
have serious consequences as the topology of a polygon can be
modified and a valid polygon can become invalid; Fig. 4 shows an
example. In the ISO/OGC rules, if two rings touch at location q, only
one of the rings is required to have a vertex at location q. If both rings
had a vertex at location q (if a fifth vertex was added to the exterior
ring of the polygon in Fig. 4(a)), this problem would be avoided.

To facilitate operations (including validation) on polygons
when finite-precision representations is used, van Oosterom
et al. (2004) define the concept of robustness of a polygon. Each
vertex of a polygon is assigned a tolerance: the maximum distance
this vertex can be moved (in any direction) while the polygon is
guaranteed to remain valid. As an example, the polygon in Fig. 4
(a) is not very robust, but if, as shown in Fig. 4(c), the exterior ring
explicitly had a vertex where both rings touch than the robustness
would be greatly increased. van Oosterom et al. (2004) use the
tolerance for validation: a polygon is valid only if it respects
the ISO/OGC rules and if its robustness is greater than a given
user-defined tolerance (see Fig. 4(d)). Observe here that this
definition has the advantage of not allowing ‘spikes’ in polygons.
As Fig. 4(c) and (d) show, calculating the robustness implies
calculating distances between vertices and other vertices, and
between vertices and edges. We describe in Section 5 one method
to improve the robustness of polygons and to remove spikes from
polygons.

Fig. 3. Several invalid polygons; this is not a complete list of all problematic
polygons, but rather an overview of common cases. Polygon p12 has its exterior and
interior rings defined by the same geometry.

Fig. 4. (a)(b) Two polygons, appearing to be identical, having an interior ring touching the exterior ring. However, because of the use of a finite-precision representation, the
vertex cannot be located directly on the segment, and will thus be either slightly (a) inside or (b) outside the exterior ring. (c) A more robust representation of the polygon. Its
robustness is equal to the length of the red line. (d) If a given minimum tolerance for a valid polygon is given (red circles), then the polygon becomes invalid. (For
interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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3. Related work

3.1. Algorithms to identify the interior of a polygon

The automatic repair of a polygon is akin to the identification of
the interior of a polygon. Given one simple and closed boundary in
the plane, finding its interior is straightforward since, as the Jordan
curve theorem states, the boundary divides the plane into two
distinct regions: the interior and the exterior (Jordan, 1887).

If the boundary is non-simple then there are two commonly
used algorithms in vector-based graphic software (Foley et al.,
1996): (i) the odd–even rule; (ii) the non-zero winding rule. In
brief, both approaches first require us to construct the planar
graph G of the boundary to identify faces, and then two similar
rules are used to determine whether a face is an interior or an
exterior region of the boundary. Fig. 5 illustrates both
approaches. With the odd–even rule, a face F is an interior
region if for any point p inside F the segment po (where o is a
distant point located outside the boundary) intersects an odd
number of edges in G. The non-zero winding rule counts the
number of times the boundary makes a full revolution around a
point p in a given direction (changing direction can cancel out
previous rotations), let us assume counter-clockwise. If the
count is non-zero, p is located inside. It is implemented by
adding 1 when the segment po, as above, intersects an edge
of G that is oriented from left to right, and subtracting 1 when
the edge is in the other direction; p is an interior point when the
count is non-zero.

Both algorithms can be generalised to GIS polygons (i.e. having
interior rings). Fig. 5(c) shows one polygon having one interior
ring (light grey boundary) whose interior has been defined as the
interior of the polygon with the odd–even rule (the input polygon
has actually been split into several polygons). While this behaviour
is predictable (so a practitioner can predict easily how her
polygons will be repaired), it is perhaps not suited for all applica-
tions, especially when rings overlap. As shown in Fig. 5(d), with
the odd–even rule all rings are considered equal and interior rings
become new polygons when located outside the exterior ring. We
describe in Section 4 an implementation of this paradigm where
degeneracies (e.g. when two rings are sharing an edge, or when
they overlap) are handled.

We also propose in Section 4 an alternative approach to odd–
even in which the interior of interior rings is always considered as
the exterior of the polygon. This offers another option for practi-
tioners, one where the information of whether a ring is inner or
outer is deemed to be correct. As shown in Fig. 5(e), it follows a
point-set topology approach in which a polygon p having an
exterior ring r and n interior rings ri (where 0r irn) is defined
as p¼ r\ðr0 [ r1 [ ⋯ [ rnÞ. We are not aware of other software
implementing this approach explicitly.

3.2. How practitioners repair their invalid polygons

As seen in the Introduction, most GIS packages have algorithms
to automatically clean invalid polygons. These algorithms are
usually used implicitly as soon as an invalid geometry is read by
the software so that the geometries can be stored in a specific data
structure and then drawn on the screen. As shown in Fig. 2, the
rules for the handling of extreme cases differ greatly from one
package to the other. While there exist also specific functions to
repair invalid polygons (e.g. in ArcGIS one can define rules based
on a tolerance for the allowed distances between rings and how
they can interact), these are usually applied after the invalid
geometry has been cleaned automatically. Therefore, the user
has no direct control over these (some parts of a polygon could
be unpredictably deleted), and perhaps worse, these are not
documented.

To explicitly repair polygons automatically, i.e. in a manner
where the output can be controlled and/or predicted, practitioners
often resort to ad hoc solutions and tricks. Ramsey (2010) gives an
excellent overview of these, his examples are PostGIS-related only,
but since it uses other open-source libraries such as GEOS we
believe this is representative of what practitioners do. The most
known is the “buffer-by-0” operation: a buffered geometry is built,
constructed by offsetting lines from the original geometry by
nothing (zero). To construct a buffer, the planar graph of the input
is built; in other words the topology is built, which will be
structurally identical to the original input. While this trick works
fine for solving a few simple cases (polygon p1 in Fig. 3 for
instance), parts of a polygon can disappear for some input
polygons: it removes half of the bow-tie of p10. Repairing it
correctly (i.e. with two polygons) requires using three functions
in PostGIS.2 All these functions are based on the construction of a
planar graph of the input, and on identifying loops in this graph to
form rings. Some of them reconstruct all the possible loops, while
others stop after one loop has been found.

The script cleanGeometry.sql3 was the first attempt to
formalise the decision tree based on a given input. Unfortunately,
polygons with interior rings are not properly handled.

The PostGIS function ST_MakeValid4 is an attempt to build a
high-level function to repair any input polygon. It uses the
functions of GEOS and PostGIS, and depending on the topological
and geometrical configuration of the input rings, different func-
tions are used to repair. Basically, first a planar graph of the input
is built, and then one face in the graph is found and a ring is built
(at this point it is unknown if it is an exterior or an interior ring).

Fig. 5. Three non-simple polygons; grey represents the interior of the polygon. (a) The odd–even rule. (b) The non-zero winding rule. (c) The odd–even rule when applied to
a polygon having an interior ring. (d) Top: input polygon. Bottom: result of the odd–even rule algorithm is formed by 3 polygons (having no interior rings). (e) Top: input
polygon. Bottom: result of the non-zero winding rule algorithm is formed by 1 polygon.

2 ST_ExteriorRing þ ST_Union þ ST_BuildArea
3 Available at: trac.osgeo.org/postgis/wiki/UsersWikiCleanPolygons
4 Since PostGIS version 2.0.
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Then, for all the other faces in the graph the resulting polygon is
obtained by the symmetric difference of this ring and the one
already found. Each symmetric difference requires building a new
independent graph where the topological relations of the rings are
extracted (to detect which ring is the exterior and which are the
interior). As a consequence, ST_MakeValid is inefficient for input
containing a large number of points and/or interior rings, as Section
6 demonstrates with real-world large polygons. Even if the function
is not documented, after reading the code and testing it we can
conclude that it operates according to the odd–even rule, as
explained above. The main difference is that it attempts to create a
valid representation of a given invalid geometry without losing any
of the input vertices, i.e. if a ring collapses to a line segment, this line
segment is also returned to the user as a separate geometry.

4. Repairing a polygon with a constrained triangulation

We present in this section a triangulation-based approach to
implement the two automatic repair paradigms described in Section 3:

odd–even paradigm: the odd–even rule when interior rings are
present.

setdiff paradigm: the polygon p¼ r \ ðr0 [ r1 [ ⋯ [ rnÞ, where r is
the exterior ring and ri are interior rings.

We demonstrate that both paradigms can be implemented
simply and efficiently using a constrained triangulation (CT) as a
supporting data structure. Because the input polygons can be
invalid and thus contain special cases (e.g. two rings sharing
an edge or partly overlapping), we have generalised the two
paradigms so that they have a consistent behaviour. The overall
layout of the two algorithms is very similar, and in brief has the
following three steps (Fig. 6 illustrates the steps for a polygon
having two errors):

1. construction of the CT of the segments of the input polygon;
2. labelling of each triangle as either outside or inside;

3. reconstruction of the repaired polygon according to the SFS.

Notice that the valid representation of an invalid input polygon
can be either:

� nothing (e.g. the only ring of a polygon is a line segment);
� one polygon (potentially with interior boundaries);
� several polygons (e.g. polygons p2, p4, p9 and p10 in Fig. 3).

4.1. Properties of a constrained triangulation

Given a set S of points and (straight-line) segments in the plane
(such as that in Fig. 6(b)), a constrained triangulation (CT)
decomposes the convex hull of S into triangles that are non-
overlapping, and every input segment appears as an edge of CT(S).
If S contains segments forming a face (which defines one boundary
of a polygon in our case), it permits us to triangulate the interior of
this face (i.e. a triangulation of the polygon). Notice here that for
the sake of repairing a polygon, we cannot use algorithms to
triangulate a single polygon (e.g. Chazelle, 1982) as these often
assume that the input is simple and forms only one polygon.

Observe that while the shape of the triangles constructed is
important for many applications (Shewchuk, 1977), here any CT
can be used (the constrained Delaunay triangulation can be used
but is not necessary). A CT can be built efficiently with a variety of
approaches (Guibas and Stolfi, 1985; Clarkson et al., 1992). Once
the CT is constructed, it can be used for solving quickly the point-
location problem (eventually with an extremely light auxiliary
data structure, cf. Mücke et al., 1999), which is useful to identify
double vertices and intersections of segments.

4.2. Advantages of a constrained triangulation for the
automatic repair

The two algorithms described in this section can in theory be
implemented with a planar graph approach where each input
segment becomes one edge in the graph. While this would

Fig. 6. Workflow of our approach for repairing a polygon. In (a) the input polygon has 2 problems; (b) the interior ring is closed; (c) the CT is constructed; (d) triangles are
labelled as inside (grey) or outside (white); and (e) the repaired polygon.
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decrease the memory usage (since the CT contains several addi-
tional unconstrained edges), there are in practice several advan-
tages to using a CT. First, we can exploit the properties of the CT to
perform some cleaning that is otherwise rather cumbersome to
implement. One example is that if two input segments intersect,
they are split into two sub-segments and thus a new vertex is
added at their intersection. This step is performed efficiently since
the CT is used as a spatial index to identify the candidate segments
intersecting; no brute-force computations or auxiliary spatial
index structures are thus necessary. Another example is that no
two vertices or edges of a CT can be at the same location, which
means that if two identical segments are in the input, only one will
be kept in the CT. Also, the handling of rings collapsed to points or
lines is trivial as these have no area and are thus not labelled.
Second, the CT permits us to embed together in the same structure
both the geometry and the topology of the input polygons, which
allows us to perform less operations when repairing. For instance,
ST_MakeValid, an implementation of a planar graph approach,
needs to perform extra geometrical operations to detect topologi-
cal relationships between rings, while with a CT this is not
necessary because the extra edges of the CT ensures that the
graph is always connected (even when a polygon has interior
rings). Third, implementation-wise, several stable and fast con-
strained triangulation libraries exist (including CGAL, CGAL, 2011;
Triangle, Shewchuk, 1977; and GTS, GTS, 2006) and we can simply
build over them as the approach involves mostly the labelling of
triangles.

4.3. Odd–even paradigm

The algorithm for the odd–even paradigm is shown in
Algorithm 1. Its main steps are described in the following.

Algorithm 1. The ODDEVEN algorithm.

Input: an invalid polygon p having an exterior ring r and n
interior rings ri (where 0r irn)

Output: p is valid (potentially formed by none or several valid
polygons)

1: for each ri do
2: if first vertex !¼ last vertex then
3: add first vertex as last vertex
4: end if
5: end for
6: T ’ construct CT of all segments of r and the ri
7: label each triangle in T as either outside or inside
8: reconstruct p as a SFS polygon

Closing each ring. The SFS require that the first and the last
point of a ring be the same (a triangle has thus 4 points). This is in
practice often ignored, and most GIS packages will recover from
that (small) error by adding the missing point. We believe that this
is consequent with the intention of the user: if a shape was
defined as a ring, it is probably a mistake that it is not closed.

Labelling triangles. To label each triangle as either outside or
inside, we start at one triangle located outside any input ring, we
label it as outside and we expand to all triangles reachable from it
without passing through a constrained edge of the CT (this is akin
to performing a breadth-first search (BFS) on the dual graph of the
triangulation). When these are exhausted, all remaining triangles
reachable by passing once through a constrained edge are known
to be in its interior. From the remaining triangles, those that can be
reached by passing through two constrained edges are in its
exterior, and so on.

The fact that we start from the outside is key to ensuring that
the algorithm performs correctly. To find a triangle located outside
any ring, we exploit the “far-away point” (also called the “big
triangle”) that is used by several CT implementations (Liu and
Snoeyink, 2005; Facello, 1995). In brief, every edge on the border
of the convex hull has a triangle incident to it, and this triangle is
formed by the edge and a special “infinite” point.

Thus, to label the triangles, the algorithm performs several
passes. First the triangles incident to the infinite point and the
reachable ones are labelled as outside. Then this operation is
expanded to triangles further in the interior of the polygon
(labelling them as inside). If all the triangles have been flagged
(if there are no interior rings) then the process if finished,
otherwise the labelling continues the same way, alternating
between outside and inside, until all triangles have been labelled.

From the CT to a polygon. To reconstruct the polygon(s)—
according to the SFS—from the labelled CT, we need to remove
all the edges (both constrained and non-constrained) whose left
and right labels are the same. If we performed that operation, then
the reconstruction of the polygon(s) (and the identification of the
exterior and interior rings of each) would be computationally
expensive. We use a more efficient alternative: we construct a
path (a polyline) that runs along the boundary segments of the
polygon, on the inside of it. In a nutshell, as Fig. 7 illustrates, we
traverse one area formed by several triangles labelled as interior
(or exterior) in a depth-first search order, always going counter-
clockwise. In this process, the so-called ‘bridges’ are generated to
connect the exterior and interior rings. These are later removed in
a rather complex procedure that also ensures that inner and outer
rings are generated and nested correctly. More details can be
found in Arroyo Ohori et al. (2012).

4.4. The setdiff paradigm

Algorithm 2. The SETDIFF algorithm.

Input: an invalid polygon p having an exterior ring r and m
interior rings ri (where 0r irm)

Output: p is valid (potentially formed by none or several valid
polygons)

1: r0’ ODDEVEN
2: for each ri do
3: r0i’ ODDEVEN
4: end for
5: T ’ construct CT of all segments of r0 and the r0i
6: label each triangle in T as either outside or inside, taking the

orientation of rings into account
7: reconstruct p as a SFS polygon

Fig. 7. The polyline generated from a given triangle in the interior of the ring joins
all holes with the external boundary, always while keeping the interior connected
and on the same side of the line (left in this case). A separate polyline is always
generated for each different interior connected component. Note that the ‘bridges’
generated involve passing through them twice in the polyline.
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The algorithm to repair a polygon according to the setdiff
paradigm is shown in Algorithm 2. It is conceptually similar to
ODDEVEN, the two major differences are that (i) each input ring
must be repaired individually and properly identified (exterior or
interior); (ii) the labelling step is performed differently. The other
steps (the construction of the CT and the reconstruction of the
polygon in SFS) are exactly the same as in ODDEVEN.

Repairing each ring. To ensure that every input ring is valid, the
algorithm ODDEVEN is used separately for every ring (a ring
becomes a polygon for this step). If an input ring is non-simple
(e.g. p10 in Fig. 3) then it is split into simple rings.

Labelling triangles while considering the orientation. As is the
case for ODDEVEN, one CT is constructed with the segments of all
the repaired rings. Since the exterior and interior rings have to be
handled differently, the constrained edges of the CT are oriented
and have an attribute for the type of ring. If two rings share an
edge, the information is kept for both directions of the edge.

The labelling is performed in three steps, as shown in Fig. 8 for
two polygons. First the triangles incident the “far-away point” are
labelled as outside, with exactly the same procedure as with
ODDEVEN. Second, the interior triangles of the exterior ring are
labelled as inside; during the labelling procedure the constraints in
the CT are never crossed. Finally, the interior of every interior ring
is labelled as outside; during this step, constrained edges repre-
senting the exterior ring can be crossed and triangles already
labelled as inside can be re-labelled as outside. This is to properly
handle the special cases such as p12 in Fig. 3 or when an interior
ring surrounds the exterior ring, as Fig. 8 shows.

4.5. Time complexity

The time complexity of ODDEVEN is defined by the complexity of
constructing the CT, Oðv log vÞ, and by the reconstruction of the
polygon(s), Oðvr log rÞ, with v being the number of vertices in all
the rings and r the number of rings. It should be noticed that
constructing the CT can take Oðv2Þ in the worst case since a
quadratic number of edge–edge intersections are possible (e.g. in
certain star polygons). However, for single polygons commonly
found in GIS applications the number of intersections is usually
much smaller than v. As an example, the 100 real-world GIS
polygons used for the experiments in Section 6.2 contain no
intersections. The other operations (i.e. closing rings and labelling)
are performed in linear time or lower. Therefore, the total running
time is Oðv log vþvr log rÞ. If v is several orders of magnitude
larger than r (as it is most always the case with polygons used in

practice), the algorithm is dominated by the triangulation time,
Oðv log vÞ.

For SETDIFF, each ring is similarly repaired in Oðn log nÞ, where n
is the number of points in a ring. Since every input vertex is only
repaired once (vertices belonging to more than one ring appear in
the input once per ring), this is equivalent to Oð∑rn log nÞr
Oðv log vÞ. The SETDIFFrepair process is therefore also performed in
Oðv log vÞ.

This matches the experimental results in Section 6, where
SETDIFF is slower by a factor of about 2. This is explained by the fact
that the ODDEVEN steps have to be performed roughly twice: once
for each ring, and once for all the rings together.

4.6. Example of repaired polygons

Fig. 9 shows examples of invalid polygons that were repaired
with the approach described in this section.

The following should be noticed:

Dangling pieces: These are ignored because the labels on the left
and the right are the same.

Disconnected interior: This is handled properly and one new
polygon is created per interior-connected part.

Collapsed area: These areas are simply ignored in the output
(same labels on left and right). However, if they inter-
sected another boundary, then the point(s) added during
the construction of the CT is present in the output. It is
possible to post-process segments and merge two con-
secutive collinear ones, but we have not implemented it.

Overlapping boundaries: Such boundaries are merged/dissolved
together.

Self-intersections: Self-intersections, such as p1 in Fig. 3, are
repaired as an interior boundary is constructed.

4.7. Repairing a MultiPolygon

A MultiPolygon is a collection of m polygons in which no two
polygons overlap or are edge-adjacent (OGC, 2011). The first
obvious approach to repairing a MultiPolygon is to use either
ODDEVEN or SETDIFF separately for each polygon; this does not
necessitate any changes to the algorithms. A second approach is
to use one of the two algorithms with all the rings of the polygons
together when labelling. Special cases such as when an interior

Fig. 8. The steps of the SETDIFF algorithm for two invalid polygons.
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ring of a polygon p1 is located outside the exterior ring of p1, but
inside the exterior ring of another polygon p2, will yield totally
different outcomes. In our implementation of the two algorithms
(presented in Section 6), we have favoured the latter. Our main
motivation is that if one MultiPolygon was created by a user (and
not several separate polygons), this is because the polygons
“belong together” (and share the same set of attributes), and thus
it makes more sense to repair them in an integrated manner.

5. Computing the robustness and improving it with snapping

The use of a CT as a base to automatically repair polygons can
also help us to efficiently compute the robustness of a given
polygon, before and after repair. Indeed, the triangulation itself
serves as a spatial index, and no auxiliary spatial index structures
(such as an R-tree) need to be used. The algorithm works by doing
a breadth-first search (BFS) from every vertex v belonging to a
polygon, visiting up to the closest vertex c or edge e also belonging

to a polygon or until the robustness (initialised at infinity) has
been reached. The robustness is updated to the smallest distance
between v and c or e if it is smaller than the current robustness.
Notice that these vertices or edges are found as constraints in the
input polygon, but after repair (labelling) they are instead defined
as being incident to two triangles having different labels.

If the robustness of a given polygon is not high enough, it is
possible to improve it by preprocessing the polygon with a well-
known method to convert its segments from an arbitrary-
precision representation to a finite-precision one: snap rounding
(Goodrich et al., 1997). As shown in Fig. 10, the method is based on
the subdivision of the plane into a grid of a resolution s. Each
vertex, and each intersection between two or more segments, are
moved to the centre of the grid cell they are located in (these grid
cells are labelled as ‘hot’). While this ensures that the distance
between two vertices is at least s, the distance between a vertex
and a segment not incident to that vertex can be very small.
Iterated snap rounding (ISR) solves that problem and ensures that
any vertex is at least s/2 from a segment. As Fig. 10c shows, it splits
segments overlapping a hot cell by adding a new vertex at the
centre of the cell; as a result, the segment is not straight anymore.
The details of the algorithm are out-of-scope for this paper, the
reader is referred to Halperin and Packer (2002).

While the ISR algorithm allows us to increase the robustness of
a polygon, its topology can be significantly changed. For instance,
the polygon in Fig. 10 is now split into two polygons, but other
cases such as the collapsing of a small area into a line can also
arise. One example is the polygon in Fig. 4d where the two spikes
would potentially become segments, and thus be removed by our
triangulation-based approach. ISR can thus be used not only to
improve the robustness of polygons, but also to remove spikes
since these collapses to lines, which are deleted.

Notice that the origin of the virtual grid used for ISR influences
the outcome of Fig. 4d: it is possible that the vertex and the
segment be located in different grid cells and the spike would stay
in the repaired polygon. However, the ‘base’ of the spike would be
larger (the interior angle of the vertex at the right would be
greater).

6. Experiments and comparison with other tools

We have implemented in Cþþ the two algorithms described
in Section 4. The prototype, called prepair, is open-source and
freely available under a GPL licence.5 Two libraries are used:
(1) CGAL6 (we use its constrained triangulation module and its
robust geometric operations) and (2) the OGR Simple Features
Library7 (which allows us to read and write from a large variety of
GIS data formats). In its current form, the prototype reads one
Polygon and returns one valid MultiPolygon; different GIS
formats are supported for the input/output.

We describe in this section experiments that were run with
different datasets. We compare our implementation of ODDEVEN to
that of PostGIS (version 2.0.2) and the function ST_MakeValid.
Both implementations have the same behaviour, and preproces-
sing with ISR was not used. Since ST_MakeValid first validates a
polygon (with the function ST_IsValid()), we have subtracted from
the total running time the validation time. All the experiments
were run on a laptop with Mac OS X 10.8, 2.5 GHz and 4 GB of
main memory.

Fig. 9. Some polygons from Fig. 3 and how ODDEVEN and SETDIFF repair them;
polygon p13 is new.

5 www.github.com/tudelft-gist/prepair
6 www.cgal.org
7 www.gdal.org/ogr
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6.1. Unit tests

All the polygons shown in Fig. 3, and other similar ones, were
tested. The situations depicted in these purposefully involve many
degenerate cases, both with regard to interpretation and imple-
mentation. They are meant as a sort of unit testing polygons to
compare how they fare in different tools (Burns, 2001). We are
able to repair all of these, with the behaviour explained in Section 4.
ST_MakeValid repairs these correctly also, and the results are the
same as ODDEVEN, except that the collapsed geometries are also
returned to the user. These polygons are very small and the running
time is comparable.

6.2. Corine 2006 dataset

To test the efficiency of prepair, we have tested it with
complex real-world polygons from the CORINE land cover dataset
(CLC2006).8 Since they are constructed from reclassified raster
imagery, they can be very large, both in terms of number of points
and of rings. As a test dataset, we used the 100 largest (in terms of
number of points) invalid polygons in the CLC2006 dataset. The
smallest of these 100 polygons (ID¼EU-2018418) contains 44,051
points and 126 rings; the largest (ID¼EU-199949) contains
1,189,903 points and 7672 rings. The average numbers of points
and rings per polygon are respectively 146,478 and 776; the
median values are 90,526 and 434. Fig. 11 shows one example of
a polygon, the errors in the polygons are generally the self-
intersection of a boundary and different interior boundaries
touching at more than one location. It should be noticed that with
these 100 polygons, no new vertices were added during the
construction of the CT; in other words there were no intersections
between straight-line segments in the input. The number of
vertices in the CT is in fact in each case lower than the number
of points in the input (ranging from 2 to 90 vertices); the main

explanation for this is that several points were duplicated, an
example is shown in Fig. 11.

Fig. 12 shows the results of the experiments for the odd–even
paradigm. Observe that for polygons with less than 400 K points, the
running time appears similar, although prepair is on average
6 times faster. The bottom plot in Fig. 12 shows that ST_MakeValid
follows roughly a polynomial of degree 2, and prepair has a linear
behaviour. The results corroborates the theoretical analyses for the
two algorithms, as previously explained in Sections 3 and 4.5. For the
polygons having between 500 K and 1 M points it is about 11 times
faster. The exception is the biggest polygon: ST_MakeValid takes
more than 100 times more time to repair.

The comparison of the running times for ODDEVEN and SETDIFF is
shown in Fig. 13. It can be seen that both algorithms have a close-
to-linear behaviour, and that in practice ODDEVENruns on average
about twice as fast as SETDIFF.

7. Conclusions

We have demonstrated that a triangulation-based approach for
automatically repairing GIS polygons yields in practice a fast and
scalable implementation (with a behaviour that in practice is linear in
terms of the number of points in the polygon), and has several benefits
over a graph-based approach. The main benefits are (i) many of the
cleaning operations can be performed locally on the CT; (ii) the graph
of the polygons with interior rings is always connected, which
facilitates the detection of topological relationships between rings;
and (iii) it is robust, thanks to the several robust triangulators that
have been developed in several disciplines. We can further claim that
our implementation is fully robust since we rely on CGAL (which uses
exact arithmetic when needed) and our repair operations are
expressed solely in terms of labelling of triangles (no complex
geometric computations are involved).

While designing our approach we had to make several—often
arbitrary—choices for its behaviour when special cases are present
in the input polygon. While the way polygons are repaired in

Fig. 10. (a) Input polygon with one interior ring. (b) ‘Hot’ cells are in grey. (c) The polygon after vertices have been moved to the centre of the grid cells. Observe that one hot
cell contains a line segment. (d) The result of the ISR algorithm.

8 www.eea.europa.eu/publications/COR0-landcover
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prepair is perhaps not always consistent with what one might
do manually, we believe that the two paradigms we have proposed
to automatically repair polygons are consistent and sufficient for

most applications. The two repair paradigms can be described in a
simple manner, and that permits users to predict easily how their
polygons will be repaired. Since the two paradigms can be
translated to properties of a CT and labelling of triangles, it is
relatively easy for practitioners to modify the code so that
different application-specific rules are used.
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Fig. 11. The polygon EU-180927 from the CLC2006 dataset. It covers an area of about 26 000 km2 in the North of Norway and Sweden, and contains 102 272 points and 299
rings. The polygon contains a typical error that is found in several polygons of the CLC2006 dataset: self-intersection of the exterior boundary.

Fig. 12. Running time of prepair (ODDEVENalgorithm) and ST_MakeValid for the
100 largest polygons in the CLC2006 dataset. The bottom plot is for the part in the
ellipse at the top.

Fig. 13. Running time for the CLC2006 polygons for the prepair implementations
of ODDEVEN and SETDIFF. Both display a linear behaviour.
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