Automatically repairing polygons and planar partitions

with prepair and pprepair*

Ken Arroyo Ohori

Hugo Ledoux

Martijn Meijers

July 2, 2012

Figure 1: Part of the Corine Land Cover dataset
for the region around Delft, The Netherlands.

1 Introduction

Planar partitions are frequently used in GIS to
model concepts such as land cover, the cadastre, or
the administrative boundaries of a given country.
As shown in Figure 1, a planar partition is a sub-
division of a region into non-overlapping polygons.
In practice, planar partitions are often represented,
and stored in a computer, as a set of individual
polygons to which one or more attributes are at-
tached, and the topological relationships between
polygons are not explicitly stored (shared bound-
aries are thus represented and stored twice). The
preferred method of practitioners is representing
polygons according to the Simple Features specifi-
cation [OGC, 2006], for instance as an ESRI Shape-
file [ESRI, 1998] or in a database, such as PostGIS?!.

Polygons are frequently built from imperfect
data (e.g. line segments with overshoots and un-

* Authors’ draft of an abstract to be published in the Pro-
ceedings of the 4th Open Source GIS UK Conference in Not-
tingham, United Kingdom

Ihttp://postgis.refractions.net/

Figure 2: Two invalid (self-intersecting) polygons
in a municipality dataset.

dershoots), or digitized semi-manually in a variety
of CAD software, such as the example in Figure 2.
Thus, invalid polygons continue to be prevalent in
practice despite the existence of a variety of valida-
tion tools (see Van Oosterom et al. [2004]), causing
errors such as: duplicate vertices, and unclosed or
self-intersecting polygons. Similar issues occur with
planar partitions. If they are stored as a set of in-
dividual polygons, then in practice errors, mistakes
and inconsistencies will often be introduced when
they are built, updated or exchanged. Examples
of common errors are: overlapping polygons, gaps
between polygons, and polygons not connected to
others. Figure 3 shows examples of a gap and an
overlap in the Corine dataset. Notice that such
problems are often not visible at the scale that
the data is usually viewed, exacerbating the prob-
lem [Laurini and Milleret-Raffort, 1994]. These er-
rors can be, among others, due to human error, the
use of floating-point arithmetic, or limited preci-
sion [Schirra, 1997]. They can have catastrophic
consequences for practitioners since most software
and algorithms using planar partitions as input as-
sume that this input is valid. At best erroneous



CORINE E41N27

\ | CORINE E39NSJ
107em 0.3 mm

CORINE E40N32

(b) An overlapping region
between four tiles of the
dataset.

(a) A gap between two
polygons.

Figure 3: Examples of errors in the Corine dataset.

results are returned, at worst it causes a software
failure, often without any warning to the user.

Solving this problem involves repairing errors
that occur both at the polygon and planar partition
levels. Doing so automatically is highly desirable,
since real-world datasets can easily contain thou-
sands of polygons and millions of vertices, some-
times resulting in hundreds of errors. Automatic
polygon repair has been tackled in the past with
a variety of ad hoc tricks (see Ramsey [2010] for
an excellent overview). Meanwhile, automatic pla-
nar partition repair is usually based on snapping
nearby vertices (up to a user-defined threshold).
However, these approaches are limited (they cannot
recover from any situation), and do not guarantee
that the validity of their output. As for commercial
tools (e. g. ArcGIS), they offer only semi-automatic
methods.

We have developed a method—and implemented
it—to automatically repair polygons and planar
partitions stored according to the Simple Features
specification. It uses a constrained triangulation
(CT) of the polygons as a support, which is by def-
inition a planar partition. This structure allows us
to give a consistent interpretation to invalid poly-
gons. Repair is performed by simple operations
on the CT: (re)labelling the triangles, and stan-
dard graph traversal algorithms (such as depth-first
search). Since vertices are never moved, we can
guarantee that a given repair operation will pre-
serve the topological consistency of both individual
polygons and the entire planar partition. We give

in Section 2 an overview of the method.

We have created a robust implementation of our
method, and have made it open source and publicly
available at https://github.com/tudelft-gist.
Our software takes as input polygons stored accord-
ing to the Simple Features specification, automat-
ically repairs them if they contain errors, and re-
turns a new set of valid polygons that is guaranteed
to be a valid planar partition. We also report in
Section 3 our experiments with several real-world
datasets (some of them rather large), and we com-
pare our method and its implementation to alter-
natives, both for validation and for repair.

2 Our implementations:
pair and pprepair

pre-

Our approach to automatically repair polygons and
planar partitions uses a constrained triangulation
(CT) as a supporting structure, and as Figure 4
indicates, it has four steps:

@@

set of partially
overlapplng polygons that
needs to be repaired.
There is also a gap be-
tween the polygons.

(c) The triangles are re-
labelled so that each tri-
angle has exactly one la-
bel.

(b) The polygons are tri-
angulated and each trian-
gle is labelled with the
polygons it belongs to.

@@

) The now valid poly-
gons are reconstructed
from the triangulation.

Figure 4: The steps to repair a planar partition.

(a) The CT of the line segments forming the

boundaries of the polygon(s) is constructed.
For a (valid) planar partition, each segment
will be present twice (except those forming



the outer boundary of the set of input poly-
gons), and these duplicates should be ig-
nored. When segments are found to inter-
sect, they are split with a new point created
at the intersection. Both of these operations
are available in triangulation libraries, such
as CGAL [CGAL, 2011], Triangle [Shewchuk,
1997] and GTS [GTS, 2006].

(b) Each triangle in the CT is labelled appropri-
ately. For the polygon case, two labels rep-
resenting its interior and exterior are used, la-
belling by starting from a triangle known to be
in the exterior of the polygon, e.g. using the
“big triangle” concept [Facello, 1995; Liu and
Snoeyink, 2005], and switching labels when
passing through a constrained edge. For the
planar partition case, each triangle is labelled
with the the polygon inside which it is located,
so that gap triangles have zero labels, and over-

lap triangles have two or more.

(¢) To repair a planar partition, triangles are re-
labelled to ensure that each triangle has ex-
actly one label. This operation is based on lo-
cal criteria, such as the length of its boundary
with adjacent features, which can be done tri-
angle by triangle, or by first selecting regions
of contiguous triangles with the same set of
labels.

(d) The polygon(s) are extracted from the trian-
gulation, one by one and according to their
labels. To do this, we use a depth-first clock-
wise search, and a stack-based algorithm that
generates separate closed rings for the outer

boundary and each of the inner boundaries.

Based on this process, we have implemented two
software tools that are able to automatically repair
polygons and planar partitions. These are called
prepair (for polygons), and pprepair (for planar
partitions), which are open source and freely avail-
able under a BSD license (although we use GPL
libraries).

Our implementation is written in C++ and uses
the OGR Simple Features Library? for input and
output, and CGAL’s® 2D Triangulations package

2http://www.gdal.org/ogr/
3Computational Geometry Algorithms Library: http://
www.cgal.org/

to triangulate the polygons. It can use either float-
ing point or exact (lazy evaluated) representations
of the points in the triangulation. The different
classes in our software and how they use OGR and
CGAL classes are shown in Figure 5.

More details are available in Ledoux et al. [2012]
and in Arroyo Ohori et al. [2012].

We have also implemented different repair op-
erations, which are based on local properties of a
triangle, a region of triangles with the same labels,
or using a list of feature classes with different prior-
ities. Figure 6 presents some of the available repair
operations.

(a) The
gons.

original (b) Repaired each trian-
gle using the label ad-
jacent along the longest
boundary from the neigh-

bouring triangles.

poly-

(c) Repaired each region
using a random label from
the neighbouring trian-
gles.

(d) Repaired each region
using the label adjacent
along the longest bound-
ary from the neighbouring
triangles.

Figure 6: Different repair operations used in the
two polygons for the Arribes del Duero Natural
Park in Spain (red) and the International Douro
Natural Park in Portugal (green). All of them can
be considered best by a certain criterion, like pre-
serving the area ratio between the two polygons
(b), smoothness of the boundary (d), or a balance
between the two (c).



IOWorker

- fileNames : std::vector<char *>
- schemaFieldType : OGRFieldType

FieldDefinition

+ addToTriangulation(file : char *, schemalndex : unsigned int = 0) : bool
+ tagTriangles() : bool

+ makeAllHolesValid() : bool

+ splitRegions(ratio : double) : bool

-+ repairTrianglesByNumberOfNeighbours(alsoUniverse : bool) : bool

-+ repairTrianglesBy AbsoluteMajority(alsoUniverse : bool) : bool

i repairTrianglesByLongestBoundary (alsoUniverse : bool) : bool

-+ repairRegionsByLongestBoundary (alsoUniverse : bool) : bool

-+ repairRegionsByRandomNeighbour (alsoUniverse : bool) : bool

-+ repairByPriorityList(file : char *) : bool

-+ repairEdgeMatching(file : char *) : bool

+ matchSchemata() : bool

-+ reconstructPolygons(outputPolygons : std::vector<OGRPolygon>) : bool
-+ exportPolygons(outputPolygons : std::vector<OGRPolygon>, file : char *) : bool
- exportTriangulation(file : char *) : bool

+ name : char *

+ type : OGRFieldType

-+ justification : OGRJustification
+ width : int

+ precision : int

- fields
%

+ matches(FieldDefinition *) : bool

-io [ 1

PlanarPartition

# triangulation : CGAL::Constrained Delaunay _triangulation 2<...>
# edgesToTag : std::vector<OGRPolygon>
# outputPolygons : std::vector<OGRPolygon>

- fieldEquivalencies FieldDescriptor
\ + file : char *
0..% -+ layer : int
+ field : int
Facelnfo MultiPolygonHandle
- universe
7 tag 0.1 o
PolygonHandle

+ addToTriangulation(file : char *, schemalndex : unsigned int = 0) : bool
+ tagTriangles() : bool

+ makeAllHolesValid() : bool

+ splitRegions(ratio : double) : bool

-+ repairTrianglesByNumberOfNeighbours(alsoUniverse : bool) : bool

-+ repairTrianglesBy AbsoluteMajority(alsoUniverse : bool) : bool

+ repairTrianglesByLongestBoundary (alsoUniverse : bool) : bool

+ repairRegionsByLongestBoundary (alsoUniverse : bool) : bool

+ repairRegionsByRandomNeighbour(alsoUniverse : bool) : bool

+ repairByPriorityList(file : char *) : bool

+ repairEdgeMatching(file : char *) : bool

-+ matchSchemata() : bool

-+ reconstructPolygons(outputPolygons : std::vector<OGRPolygon>) : bool
i exportPolygons(outputPolygons : std::vector<OGRPolygon>, file : char *) : bool
+ exportTriangulation(file : char *) : bool

# originalFile : char *
# layer : unsigned int
# schemalndex : unsigned int

-+ isMultiPolygonHandle() : bool

# fields | 0...%

Field

StringField

IntField

DoubleField

# contents : char *

# contents : int

#+ contents : double

Figure 5: A simplified UML diagram of pprepair.




3 Experiments

We have tested our software with several datasets,
such as Corine?, Mexican and Canadian land cover
data, and edge-matching datasets.

Our software has been able to successfully repair
every dataset that we have tested, including some
very large ones. Figure 7 shows two such examples,
with the time and memory it took to repair them.
These tests were run on a Intel Core 2 Duo 2.66
GHz MacBook Pro under Mac OS X 10.7.3.

(a) The largest polygon of
the Corine dataset, consist-
ing of 1 189 903 vertices and
having 7672 holes. It was
repaired in 1md4s using 940
MB of memory.

(b) 25 tiles of the Corine
dataset, consisting of 105
712 polygons and 5 122 108
vertices. It was repaired
in 6m10s using 2.34 GB of
memory.

in three dimensions. Computer Aided Geometric
Design, 12(4):349-370, 1995.

GTS. GTS Library Reference Manual, 2006. URL
http://gts.sourceforge.net/reference/
bookl.html.

R. Laurini and F. Milleret-Raffort.  Topologi-
cal reorganization of inconsistent geographical
databases: A step towards their certification.
Computers & Graphics, 18(6):803—813, Decem-
ber 1994.

H. Ledoux, K. Arroyo Ohori, and M. Meijers. Auto-
matically repairing invalid polygons with a con-
strained triangulation. In Proceedings of the 15th
AGILE International Conference on Geographic
Information Science, 2012.

Y. Liu and J. Snoeyink. The “far away point”
for Delaunay diagram computation in E?. In
Proceedings 2nd International Symposium on
Voronoi Diagrams in Science and Engineering,
pages 236-243, Seoul, Korea, 2005.

OGC. OpenGIS Implementation Specification for

Geographic Information - Simple Feature Access
- Part 1: Common Architecture, 1.2.0 edition,

Figure 7: Examples of large datasets successfully October 2006
ctober .

repaired by prepair and pprepair.
P. Ramsey. PostGIS: Tips for power users.
Presentation at the FOSS4G 2010 Conference,

References Barcelona, 'Spam, 2010. http://s3.opengeo.

org/postgis-power.pdf.

K. Arroyo Ohori, H. Ledoux, and M. Meijers. Vali-
dation and automatic repair of planar partitions
using a constrained triangulation. Journal of
Photogrammetry, Remote Sensing and Geoinfor-
mation Processing, 2012. Accepted for publica-
tion.

CGAL. CGAL 3.8 User and Reference Manual.
CGAL Editorial Board, 2011.

ESRI. Shapefile technical description. White paper,
ESRI, July 1998.

S. Schirra. Precision and Robustness in Geomet-
ric Computations, volume Algorithmic Founda-
tions of Geographic Information Systems of Lec-
ture Notes in Computer Science, chapter 9, pages
255-287. Springer Berlin / Heidelberg, 1997.

J. R. Shewchuk. Delaunay Refinement Mesh Gen-
eration. PhD thesis, School of Computer Science,
Carnegie Mellon University, Pittsburg, USA,
1997.

P. van Oosterom, W. Quak, and T. Tijssen. About
invalid, valid and clean polygons. In P. F. Fisher,
editor, Developments in Spatial Data Handling—
11th International Symposium on Spatial Data
Handling, pages 1-16. Springer, 2004.

M. A. Facello. Implementation of a randomized al-
gorithm for Delaunay and regular triangulations

cover
http:

4Corine is a European land
dataset. It is freely available at
//www.eea.europa.eu/data-and-maps/data/
corine-land-cover-2000-clc2000-seamless-vector-database.



