
Cache-friendly progressive data streaming
with variable-scale data structures

Martijn Meijers

Abstract

In this paper, we will give a description of a design of a fat client
and study some implementation issues, to use the tGAP structures
for progressive data streaming. This is an experiment to validate the
theory of Haunert et al. (2009). Furthermore this theory is extended
and a solution is proposed to make the progressive data streaming
more cache-friendly by means of a Fieldtree.

1 Introduction

On mobile devices with small screens it is even more important that
users keep the mental model of their surroundings than with traditional
maps. For this it is necessary to give an overview first and when users are
zooming in, that they do not loose their geographical point of reference.
Progressive streaming techniques, which supply coarse data first and then,
on demand, gradually add more details are suitable for this purpose.
For raster data, several solutions are available (e.g. based on wavelets)
and currently implemented in mainstream software (e.g. web browsers or
Google Earth). In contrast, although increased attention in recent years
in research, for vector data still only a handful of (research) prototypes
(Bertolotto and Egenhofer, 2001; Yang et al., 2007; Ramos et al., 2009)
and only few commercial products (e.g. Persson, 2004) are available that
perform some sort of progressive data streaming for vector data. The
majority of these solutions first send a coarse set of objects and then
gradually refine only the geometry of the objects (so no objects with new
attribute values for a different Level of Detail (LoD) are added to the map –
only the outlines of objects are improved).

1

14th ICA/ISPRS Workshop on Generalisation and Multiple Representation, 2011, Paris

In this paper progressive data streaming means to transmit first a set of
coarse map objects, then, over time, incrementally send more map objects
with higher LoD to the map (those objects are more detailed representations
of reality, both in their geometry as well as for their thematic attributes, and
replace the earlier send representations). This is a step towards map
generalization for which the term smooth or continuous generalization has
been coined (van Kreveld, 2001; Sester and Brenner, 2005; Nöllenburg et al.,
2008). To support this type of generalization, map data is not only needed
at a fixed set of map scales (termed ‘scale points’ by Ai and Li, 2009), but
also at variable-scale. The tGAP structures proposed by van Oosterom
(2005) can supply data at variable scale. Haunert et al. (2009) described
in theory how these structures can be used for progressive transmission
of (continuously generalized) vector data. In this paper, we will give a
description of a design of a fat client and study some implementation
issues, to use the tGAP structures for progressive data streaming. This is
an experiment to validate the theory of Haunert et al. (2009). Furthermore
this theory is extended and a solution is proposed to make the progressive
data streaming more cache-friendly.

Research questions that we try to answer are the following:

• Does the theory of Haunert et al. (2009) work in practice? A theoret-
ical overview was given in Haunert et al. (2009), however the data
structure design at server side has changed slightly afterwards to be
more lean (Meijers et al., 2009).

• Are the current data structures at the server side rich enough to
perform progressive streaming?

• How do we need to structure the increments that we want to transmit
over the network. Formulated differently: what has to be the content
of the ‘data packages’ that we want to transmit?

• How should an architecture of a client look like that processes the
packages?

• How to make the progressive data streaming approach suitable for
caching?

The implementation exercise that was performed shows that the chosen
approach only requires at most 2 times the original size of the vector dataset

2

14th ICA/ISPRS Workshop on Generalisation and Multiple Representation, 2011, Paris

to be transferred. The experiment also shows that the tGAP structures can
deliver continuously generalized data.

A proposal is done to make the solution more cache-friendly. This
can be obtained by using the Fieldtree as additional data structure (Frank
and Barrera, 1990). This extra structure provides ‘handles’ that can be
used to: a. effectively communicate which parts of the server-side database
is not yet retrieved, b. purge parts of retrieved data from memory (so
that the client has control over how much data is kept in memory) and c.
apply generalization operators more local – instead of globally over the
whole dataset searching for the least important object to be generalized,
this can be performed within a Field (apart from progressive streaming
the additional Fieldtree structure is probably also useful for making the
tGAP structures dynamic, so that updates can be performed incrementally,
instead of rebuilding the whole data structure from scratch).

The remainder of the paper is structured as follows: Section 2 discusses
the proposed architecture (including necessary pre-processing steps) for
progressive data streaming. Section 3 shows preliminary results of on-
going implementation efforts. Section 4 explores possibilities to make
the architecture more cache-friendly (and more scalable) and Section 5

concludes the work and gives some pointers for future research.

2 Progressive data streaming

2.1 Overview of the complete architecture

This section discusses step by step the whole architecture that is currently in
use in the research prototype. Figure 1 contains the visualization pipeline,
from pre-processing steps to the client that processes incremental updates
to show first a coarse map, then gradually refine with more additional
detail. Subsequent subsections will discuss every step, highlighted with a
number, in the architecture.

2.2 Pre-processing

tGAP data will be pre-processed before online use (Figure 1, step 1 and 2).

3

14th ICA/ISPRS Workshop on Generalisation and Multiple Representation, 2011, Paris

Figure 1: Visualization pipeline for progressive data streaming.

2.2.1 Validation of topology

The tGAP structures use explicit topological data structures for storage
(Figure 1, step 2). The input data is validated, so that it is valid and
allows programming by contract (Meyer, 1992) — when the input data is
‘clean’ and ‘valid’, it is much easier to implement generalization operations,
because there is no need to handle degenerate cases over-and-over again,
leading to more concise implementations.

2.2.2 Generalization operations

The three generalization operators (Figure 1, step 1) that are implemented in
the tGAP compiler are merge and split (of polygons) and simplification (of
boundary lines). The merge and split generalization operators are applied
as ‘global optimisation’: The least important object (according to some
criteria) present in the complete dataset is being generalized. Generalized
means that one of the following operations is applied:

Merge A polygonal feature is merged with one of its neighbouring objects;

Split/Collapse Collapse an area feature to a line and assign the parts to
the neighbours;

Simplify Boundaries of the object are simplified.

Note that the simplification operator is performed at the same time
as one of the merge and split operations (i.e. after a merge or split the
boundaries of the new polygonal feature(s) will be simplified). Furthermore,
all operators have been implemented in such a way that they do not
introduce topological errors.

4

14th ICA/ISPRS Workshop on Generalisation and Multiple Representation, 2011, Paris

2.3 Server-side

This section discusses how the data is structured at the server-side and
what steps are needed to transform the data from these structures into data
packages that are transferred over the network (Figure 1, step 3 and 4).

2.3.1 Database tables

Figure 2 shows the database tables currently in use in the research prototype.
Edges (polylines) have a prominent place in the database: the edge table is
the ‘centre of gravity’ in the structure. The imp_low and imp_high attributes
define the range of map scales for which a topological entity is valid and has
to be shown. Face references that are stored are limited to the neighbours
that are adjacent at the start of such a scale range (left_face_id_low
and right_face_id_low) and which faces are neighbouring at the end
of this range (left_face_id_high and right_face_id_high). This way
it is prevented that a lot of duplicate edge records have to be stored,
while the only thing that changes (due to a generalization operation) is a
neighbouring face (see for more details on choices in this respect Meijers
et al., 2009). Because the Collapse/Split operation splits Faces over multiple
neighbours, the resulting hierarchy is not necessarily a tree structure any
more, but a Directed Acyclic Graph structure (DAG), which is reflected in
the separate face_hierarchy table, where per parent-child combination a
record is stored.

The geometry of the edges can be merged after a merge or a split oper-
ation, if after application of a generalization operation nodes are present in
the topology of degree 2. These merged geometries will then be simplified
with a modified Visvalingham-Whyatt line simplification algorithm, taking
into account the topological correctness of the result (more details can be
found in Meijers, 2011). Note that the line simplification leads to a new
edge record (as the new geometry has to be stored). However, the number
of coordinates will remain equal, as the simplification tries to remove half
of the points of the lines that were merged (therefore edges remain the
same in ‘weight’ in terms of vertices) – this is important for transfer over a
network, because if all original vertices were kept, too much unnecessary
detail has to be transferred from server to client.

5

14th ICA/ISPRS Workshop on Generalisation and Multiple Representation, 2011, Paris

Table "<dataset>_tgap_node"

-------+-------+-------

node_id | integer | not null

imp_low | bigint

imp_high | bigint

geometry | geometry |

Table "<dataset>_tgap_edge"

-------------+-------+-------

edge_id | integer | not null

imp_low | bigint

imp_high | bigint

left_face_id_low | integer

right_face_id_low | integer

left_face_id_high | integer

right_face_id_high | integer

start_node_id | integer

end_node_id | integer

geometry | geometry

Table "<dataset>_tgap_face"

----------+-------+-------

face_id | integer | not null

imp_low | bigint

imp_high | bigint

imp_own | bigint

area | numeric

feature_class | integer

mbr_geometry | geometry

pip_geometry | geometry

Table "<dataset>_tgap_face_hierarchy"

-----------+------+-------

face_id | integer | not null

imp_low | bigint

imp_high | bigint

parent_face_id | integer | not null

Figure 2: Database tables at server-side

2.3.2 Retrieval queries

As tGAP data in our prototype is stored in an object-relational database, de-
pending on whether standardised features are available in such a database
system, queries for progressive data retrieval can be formulated in one
of the 2 following ways. Option 1 is to use a hierarchical query for face
record retrieval (using the parent_face_id attribute of the faces) and a
sorted set of edge records. The Structured Query Language (SQL) standard
specifies hierarchical queries by way of recursive common table expressions
(CTEs). Figure 3 shows the CTE for retrieval of faces, using the hierarchical
relationship for faces stored in the face table. Note that the union all part
of the query references itself via a self-join. Option 2, when the database
system does not have CTEs implemented, is both using sorted sets for face
records as well as for edge records. Figure 4 illustrates this. Note that the
query for retrieval of edges for both options is the same.

6

14th ICA/ISPRS Workshop on Generalisation and Multiple Representation, 2011, Paris

with recursive hierarchy as (

select

face_id, imp_low, imp_high, parent_face_id

from

<dataset>_face_hierarchy

where parent_face_id = -1

union all

select

t1.face_id, t1.imp_low, t1.imp_high, t1.parent_face_id

from

<dataset>_tgap_face_hierarchy t1

join

hierarchy as h on t1.parent_face_id = h.face_id

) select * from hierarchy;

Figure 3: Hierarchical query

2.4 Network

2.4.1 Communication channels

The client will need 2 channels for communicating with the server: a
communication and a data channel. Over the communication channel the
client will give commands to the server: e.g. start retrieval for zoom-in or
zoom-out, pause retrieval and stop retrieval. Data packages – that contain
the incremental updates for the client-side – will be transferred over the
data channel. The data packages and the relationship with the queries from
§ 2.3.2 will be explained in the following subsections.

2.4.2 Package layout

Incremental updates are realised by reading the data packages at the
client-side and processing the updates contained in the data package. The
structure of a data package is the following:

at imp a imp value, that describes the scale point where the change has to
be applied for (imp_high for zoom-in, imp_low for zoom-out).

faces faces to be added and faces to be removed. The parent-child relation-
ship of the faces encodes this, together with the direction of the user
action (zoom-in or out determines how to traverse the relationship).

edges the edges that have to be added: geometry (polyline) plus face- and
node-references

7

14th ICA/ISPRS Workshop on Generalisation and Multiple Representation, 2011, Paris

SELECT

fh.face_id::integer,

f.feature_class::integer,

fh.parent_face_id::integer,

fh.imp_low::bigint,

fh.imp_high::bigint,

ST_AsBinary(f.mbr_geometry::geometry) as mbr_geometry

FROM

<dataset>_tgap_face_hierarchy fh

JOIN

<dataset>_tgap_face f

ON

fh.face_id = f.face_id

ORDER BY

imp_high DESC,

parent_face_id ASC

SELECT

edge_id::integer,

imp_low::bigint,

imp_high::bigint,

start_node_id::integer,

end_node_id::integer,

left_face_id_low::integer,

right_face_id_low::integer,

left_face_id_high::integer,

right_face_id_high::integer,

ST_ASBINARY(geometry)

FROM

<dataset>_tgap_edge

ORDER BY

imp_high DESC

Figure 4: Queries for both edges and faces (sorted sets)

8

14th ICA/ISPRS Workshop on Generalisation and Multiple Representation, 2011, Paris

2.4.3 Packages and their relation with queries

Figures 1 and 2 show the first part of the resultset that is retrieved by
the queries from § 2.3.2. Packages will contain data from both resultsets,
grouped by imp_low (in case of zoom-out action) or imp_high (zoom-in)
attribute values.

face_id feature_class parent_face_id imp_low imp_high

6756 4107 1 1354522168 17421338713

6746 4107 6756 1109020325 1354522168

6646 2101 6756 178039195 1354522168

6736 4107 6746 786370390 1109020325

6576 4107 6746 130670112 1109020325

Table 1: Set of face records, sorted descending by imp_high – zoom-in. First three
records encode that Face 6756 is split into Faces 6746 and 6646

Composition of the packages can be realised by opening two cursors to
the database, that query the database and from which the result-sets are
‘intermingled’ by a process at the server-side. Most of the time, database
cursors can be implemented in such a way that not the whole result-set
needs to be pulled into memory of the server-side process, leading to
relatively low memory requirements at the server-side. The server-side
process iterates over both result-sets at the same time — first face records
and when a change in imp value is detected then switch over to edge
records. The process outputs a package when enough relevant content is
gathered (e.g. both face and edge records with same imp_high value in case
of zoom-in operation are obtained from the 2 cursors). Based on this data
package, the client will update its local data structures, which is discussed
next.

2.5 Client-side

At the client-side a topological structure of a 2d map is kept – the TopoMap,
discussed in § 2.5.1. The TopoMap contains Topological primitives that have

9

14th ICA/ISPRS Workshop on Generalisation and Multiple Representation, 2011, Paris

edge_id imp_low imp_high sn en lf_low rf_low lf_high rf_high

9183 1354522168 17421338713 343 343 6756 1 6756 1

9171 1109020325 1354522168 896 343 6746 6646 6746 6646

9172 1109020325 1354522168 343 896 6746 1 6746 1

8680 44573839 1354522168 896 343 6336 1 6646 1

9147 776041941 1109020325 435 5 6726 6576 6736 6576

9160 786370390 1109020325 5 896 6736 1 6736 1

8968 130670112 1109020325 435 343 6576 6506 6576 6646

8967 130670112 1109020325 343 5 6576 1 6576 1

9159 786370390 1109020325 896 435 6736 6646 6736 6646

Table 2: Set of edge records retrieved from database at server-side, sorted descend-
ing by imp_high – zoom-in. Note that each edge record also contains an associated
geometry (polyline), but that this is not shown. Edge 9183 forms the boundary of
Face 6756 (compare imp_high of Face and Edge records) and when Face 6756 is
split in 2 Faces, Edges 9171, 9172 and 8680 form the boundaries of these 2 Faces,
replacing the old boundary 9183.

to be transformed into geometry, that then can be visualised to an end user.
This map is being updated when a data package arrives over the network,
by a component called the TopoMapUpdater (Figure 1, step 5 and 6 and
discussed into detail in § 2.5.2).

2.5.1 TopoMap

Figure 5 shows that the TopoMap object at the client-side is implemented as a
Doubly-Connected Edge List (DCEL, cf. de Berg et al., 2000), extended with
a Loop class to handle Faces that have holes in their interior. Relations are
implemented as memory pointers. The relations kept allow local updates
to be performed effectively. From the topological primitives Simple Feature
geometries (polygons) will be formed (when all pointers are set correctly
this means forming loops, where the loop having the largest bounding box
has to be the outer shell of a polygon).

10

14th ICA/ISPRS Workshop on Generalisation and Multiple Representation, 2011, Paris

Face Looploops HalfEdgestart

face

loop

twin

next

Nodeorigin

Figure 5: Structure of the TopoMap – which objects are kept in memory, plus their
pointers. Basically the TopoMap object represents a Doubly-Connected Edge List
(DCEL) extended with Loops to handle Faces that have islands in their interior.

2.5.2 TopoMapUpdater

The TopoMapUpdater updates the TopoMap object incrementally. It performs
updates based on the incoming packages in 5 steps:

Step 1 Unpack data package into new faces and edges.

Step 2 Remove unneeded Topo primitives (client can deduct this from
face hierarchy in the incoming package — which faces are not valid
any more is in the package, navigate from these faces to their edges
and remove edges that are not valid any more, i.e. at-imp does not
overlap their imp range) and in the process of removing edges it is
necessary to keep track of broken and orphaned Loops.

Step 3 Add new primitives from package to the TopoMap (faces and edges).

Step 4 Put back broken and orphaned loops to Faces where they belong —
geometric searching might be required, as not all intermediate Face
pointers are kept explicitly.

Step 5 Reconstruct polygon geometries (of new faces, but also of their
neighbours if simplify had changed boundaries of neighbours) and
put polygons into the visualization queue together with instructions
which polygons to delete from the Display List cache.

2.5.3 Polygon Display List cache

Figure 1, step 8 and 9 show that in the client OpenGL display lists are used
for caching drawing instructions. Per polygon (identified by the face_id

attribute) a Display List is created. Updates placed in the visualization
queue allow Display Lists that are not active any more to be removed

11

14th ICA/ISPRS Workshop on Generalisation and Multiple Representation, 2011, Paris

and new drawing instructions for Polygons have to be placed into the
Display List cache. This entails triangulation of the incoming polygons,
as OpenGL can only handle convex objects. Once placed in the Display
List cache the visualization loop will execute the drawing instructions. The
polygonal map that will be drawn (with a certain frame rate) is at this stage
in the visualization pipeline only a set of (low-level OpenGL) drawing
instructions.

3 Experiments

3.1 Implementation exercise

A fat client has been implemented with the Python1 programming language.
PostGIS2 and the PostgreSQL3 database are used for data storage. Wx-
Python4 is used for creating the User Interface, together with PyOpenGL5

and a wrapper to the OpenGL triangulation library, created with Cython6.
The client visualizes the resulting packages. The decoupled components
(data retrieval and visualization are running in two separate processes)
keep the client responsive and give a good initial idea of what progressive
data streaming entails and means. From the implementation exercise the
following was learned:

• The initial data model that Haunert et al. (2009) used at the server-
side has to be modified to support both zoom-in as well as zoom-
out operations. The data structures also need left and right face
pointers at the imp_high level – then these are rich enough to be
used for progressive data streaming. It is also possible to leave out
intermediate edge records (as proposed in Meijers et al. (2009)), so
that these do not need to be send over the network.

• Holes in polygons can be dealt with, but it is only possible to know
where some holes (loops) belong by using geometry (e.g. by using
a bounding box check). This is due to this efficient encoding of the

1http://www.python.org
2http://postgis.refractions.net/
3http://www.postgresql.org/
4http://www.wxpython.org/
5http://pyopengl.sourceforge.net/
6http://www.cython.org/

12

14th ICA/ISPRS Workshop on Generalisation and Multiple Representation, 2011, Paris

http://www.python.org
http://postgis.refractions.net/
http://www.postgresql.org/
http://www.wxpython.org/
http://pyopengl.sourceforge.net/
http://www.cython.org/

edge records (only first scale and last scale, but no intermediate face
pointers).

• With the incremental updating approach, it is necessary to address
topological primitives explicitly (based on their identifier in the
TopoMap structure), a dictionary has been used for that (in the C++
programming language one could use the std::map type from the
standard template library for this).

3.2 Size of original 2d map versus progressive packages

An experiment was conducted to see how much data needs to be transferred
in the progressive scenario, compared to the original 2d map having the
original amount of detail (formed by topological primitives). The difference
between the two is the price that has to be paid for progressive data
streaming with the tGAP structures. In the ‘raster world’ for a raster
pyramid the factor between original and pyramid is at most 1 1

3 , when every
level contains pixels that are twice as big as the previous level.

Table 3 shows the sizes of the 2d maps (that is, their topological prim-
itives serialized into a text format) that were used as input for the tGAP
structure versus the total size of all packages to be transferred over the net-
work for the complete tGAP structure in a progressive streaming scenario
(i.e. for all scales, all packages containing updates from coarse to detailed,
serialized into a plain text format). From the table it is clearly visible that
progressive data streaming with the tGAP structures can be realised within
2 times the size of the original dataset.

It must be said that the data for the tGAPs has been created with line
simplification, where the optimal number of points that should be pre-
served (in the polylines being merged) was set to half of the original input
vertices. As illustration that it is important to perform the line simplifica-
tion, Table 3 also shows the size of packages when no line simplification is
performed in the compilation of the tGAP data. It is evident that this leads
to more data that needs to be streamed.

4 A cache-friendly solution

This section explores an alternative for making the progressive data stream-
ing more cache-friendly as in the experiment only the data were streamed

13

14th ICA/ISPRS Workshop on Generalisation and Multiple Representation, 2011, Paris

Dataset + Size 2d map Size Progressive Increase Size Progressive

type of data (non-simplified)

(KB) (KB) (factor) (KB)

Hamburg (rural) 477 822 1.72× 1,515

Colchester (rural) 3,377 5,366 1.59× 9,722

Buchholz (rural) 5,044 8,597 1.70× 15,257

Delft (urban) 8,369 13,802 1.65× 19,582

Table 3: Size of the original 2d map (serialization to text of topological primitives
that form the map) compared with size for full hierarchy, progressive data stream-
ing (serialization to text of packages). The table shows that within a factor of
2 of the original size progressive data streaming can be realised with the tGAP
structures. To reach this factor, it is necessary to perform line simplification; This
is illustrated by the last column, which shows how much space the edge records
take when they are not simplified.

without taking into account a bounding box for requests; this is not very
realistic for larger datasets. Furthermore, the advantages of such a cache-
friendly solution are two-fold: 1. it leads to a faster user experience when
the same area is visited again – no need to stream the same data again,
as it already is available at the client-side and 2. it leads to possibilities to
operate the solution even when no network access is available by priming
the cache, i.e. placing the data (partly) in the cache on the client beforehand.
With ‘plain’ tGAP structures it is difficult to communicate in a client-server
environment which parts of the tree structures (free form vector objects
with arbitrary shapes and geographic extents) have been already retrieved.
Haunert et al. mentioned in their list of future work to investigate the use
of a more regular block pattern for data retrieval.

To obtain a regular block pattern, the use of a Fieldtree is explored. The
Fieldtree exists in different forms, but we will use the so-called Partition
Fieldtree. This tree is a hierarchical data structure, composed of Fields
(actually a Directed Acylcic Graph, a DAG, as each Field can have up to 4

parents). Fields are grid cells with a certain width and height. Each level
of Fields is covering the whole domain, has a different resolution (coarser
Fields to the top of the hierarchy) and a different displacement (which is
a nice property for our problem). In this case the Fieldtree is not used as

14

14th ICA/ISPRS Workshop on Generalisation and Multiple Representation, 2011, Paris

usual, where all features of one 2d map at one map scale are split over
different Fields (based on which smallest Field totally contains an object
dependent on its geographic extent), but the Fields of the tree are used as
the more regular blocks suggested by Haunert et al. (2009). Figure 6 shows
that the Fields will get a height in the scale dimension and will therefore
become ‘real’ 3d blocks.

Level 1

Level 2

Level 3

(a) Fieldtree in 2d

y
x

scale

Level 1

Level 2

Level 3

(b) Fieldtree in 3d

Figure 6: Fieldtree with 3 levels in 2d and 3d. Note that extents of Fields at a level
higher in the hierarchy are twice the size of previous level and shifted.

The normal approach of creating tGAP data is to search for the least
important object over the complete domain and apply a generalization
operation to this object. Here we modify this approach to limit the search
within the extents of one Field (as suggested in van Putten and van Oost-
erom, 1998, § 5.2). A Field is generalized enough if a certain percentage
of the objects that are falling within it have been generalized. Objects in a
Field that do not completely fit (i.e. their bounding box overlaps with the
border of a Field) can not be touched – i.e. these objects are ‘locked’ and can
not be merged, will not get a share of a split/collapse operation and their
boundaries will not be simplified, in short, they will not be candidates for
generalization this round. When all data for the Fields of the most detailed
level in the Fieldtree have been generalized enough, the next level in the
Fieldtree will be used for continuing the generalization process: Fields for
this next level will be displaced and their extents will be larger this round.
Because each level of Fields has a different displacement, the boundaries of
the Fields are not fixed at one location in space. This also means that it is

15

14th ICA/ISPRS Workshop on Generalisation and Multiple Representation, 2011, Paris

not very likely that objects that are locked at one level will also be locked
at the next round of processing (i.e. objects that could not be generalized
the first time, will most likely be generalized the next time, or when the
Fields are large enough for the object to fit in).

When tGAP data is obtained with the help of the Fieldtree, the Fields
can also be used in a progressive data streaming scenario as initial filter
step to obtain only a part of the tGAP data from the server-side. The
characteristics of the Fieldtree (as it is a very regular structure) can be
coded compactly. These Fieldtree characteristics are firstly transmitted
from server to client. In subsequent steps, the client can then progressively
retrieve data from the server by requesting the Fields. A client will have
to start with a slice of data at the top or bottom of one (or more) Field(s).
It is therefore necessary to map scale to a level of the Fieldtree. Once the
slice of data is retrieved, both ‘locked’ and not locked polygons for this
slice are available at the client. As each Field is associated to a part of the
tGAP structure, this part of the tGAP structure can now progressively be
transferred from server to client. With this approach there is thus no need
to split the polygons, that form a polygonal coverage of the whole domain,
into parts, as polygons that are interacting with the boundary of a Field are
valid for the whole scale range, i.e. the height of the Fields at this level. It
is enough to only retrieve once a slice of data and then data for every Field
can be streamed independently from the other Fields.

Fields also allow to purge retrieved data from memory, which is useful
when a user is navigating somewhere else (e.g. zooming in to complete
different region). To appreciate the effects, it is necessary to test the
tGAP-Fieldtree approach with a real big data set (having many faces and
preferably large in geographic extent) and a small amount of memory
available at client (which can be ‘faked’ by setting a constraint how much
data may be cached at client-side). Experiments should be conducted in
which not only zooming is supported, but also panning.

To obtain tGAP data for a very large dataset (thus generalizing a large
dataset), it is possible to use the same approach with the Fieldtree: Fields
at the same level in the tree can be processed by a local tGAP compiler into
a part of the whole tGAP structure, and only objects that are completely
inside a Field its extent are allowed to be ‘touched’ by the tGAP compiler,
so can be beneficial as well to build a parallel tGAP compiler. Probably
it is also possible to partly retrieve the associated tGAP data of a Field.
When the client remembers how much data in which direction (zoom-in or

16

14th ICA/ISPRS Workshop on Generalisation and Multiple Representation, 2011, Paris

zoom-out) for a Field is already retrieved, the progressive data streaming
of a Field can be paused and later continued.

Using the Fieldtree structure for building the tGAP and using this
additional structure for progressive data streaming is still an on-going
research effort (tGAP data is build with Fieldtree approach). One of
the challenges is to obtain a valid and clean topological dataset that is
large in geographic extent and stored in an explicit Node-Edge-Face (NEF)
structure (an option is to use the European Landcover dataset, but as shown
by Arroyo Ohori (2010) this first has to be cleaned and validated). Using
the proposed automatic repair option and validation approach (described
in Ledoux and Meijers, 2010) it should be possible to perform this task
largely automated. Next step is to obtain the data in the NEF structure,
compile a tGAP dataset and adapt the client to use the Fieldtree to retrieve
parts of the tGAP data structures in a progressive data streaming setting.

5 Conclusion and Future work

This paper has presented an experiment with regards to progressive data
streaming. The goal was to see whether the theory sketched in Haunert et al.
(2009) was complete and correct. The implementation exercise performed
has proven that, with some modifications to the stored model (addition
of 2 extra face pointers at the imp_high scale point of every primitive and
leaving out intermediate edge records), this indeed is the case. Furthermore,
the following was learned:

• With the described data structures, it is possible to transmit pack-
ages containing topological primitives (faces and edges) that allow
reconstruction of the polygonal geometry at the client-side at variable
scale.

• It is absolutely necessary to output valid and clean topological data.
When processing incremental updates all previous updates have to
be correct. Validity of tGAP data becomes very important to realise
progressive data streaming (e.g. all topological references have to be
stored correctly, otherwise errors may occur).

• It is necessary to simplify the geometry of the edges (the polylines
– otherwise more than a factor 2 for size is needed). The total size

17

14th ICA/ISPRS Workshop on Generalisation and Multiple Representation, 2011, Paris

demonstrates that the number of points that can be removed from
the edge geometry can still be tuned.

• In case of a larger dataset, the streaming of all updates from top
to bottom takes some serious time. However, this is not really a
valid scenario – increments should be filtered and streamed by using
a geographic extent, i.e. per Field, using the additional proposed
Fieldtree structure.

• The proposed cache friendly approach may also be helpful to process
big data sets with the tGAP compiler, even in parallel.

For the near future it is planned to:

1. implement the cache-friendly approach to see how good it works and
whether there are any problems with it.

2. Make the progressive streaming approach more smooth. Currently
it is already progressive, but not very smooth (polygonal objects are
replaced with ‘visual shocks’ – discrete jumps). It could be beneficial
for an end user to make the approach even more gradual: smooth
progressive data streaming. This then heads in the direction of
applying morphing effects (Sester and Brenner, 2005).

References

Ai, T. and Li, J. (2009). Progressive transmission and visualization of vector
dat over web. In Proceedings of ASPRS Annual Conference. (Cited on
page 2).

Arroyo Ohori, K. (2010). Validation and automatic repair of planar parti-
tions using a constrained triangulation. Master’s thesis, Delft University
of Technology. (Cited on page 17).

Bertolotto, M. and Egenhofer, M. J. (2001). Progressive Transmission of
Vector Map Data over the World Wide Web. GeoInformatica, 5(4):345–373.
(Cited on page 1).

de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O. (2000).
Computational geometry: Algorithms and applications. Springer-Verlag,
Berlin, second edition. (Cited on page 10).

18

14th ICA/ISPRS Workshop on Generalisation and Multiple Representation, 2011, Paris

Frank, A. and Barrera, R. (1990). The Fieldtree: A data structure for
geographic information systems. In Buchmann, A., Günther, O., Smith,
T., and Wang, Y.-F., editors, Design and Implementation of Large Spatial
Databases, pages 29–44. Springer Berlin / Heidelberg. (Cited on page 3).

Haunert, J.-H., Dilo, A., and van Oosterom, P. (2009). Constrained set-up
of the tGAP structure for progressive vector data transfer. Computers
& Geosciences, 35(11):2191–2203. Progressive Transmission of Spatial
Datasets in the Web Environment. (Cited on pages 1, 2, 12, 14, 15,
and 17).

Ledoux, H. and Meijers, M. (2010). Validation of planar partitions using
constrained triangulations. In Proceedings Joint International Conference
on Theory, Data Handling and Modelling in GeoSpatial Information Science,
pages 51–55, Hong Kong. (Cited on page 17).

Meijers, M. (2011). Simultaneous & topologically-safe line simplification for
a variable-scale planar partition. To be presented at Agile 2011. (Cited
on page 5).

Meijers, M., van Oosterom, P., and Quak, W. (2009). A storage and transfer
efficient data structure for variable scale vector data. In Advances in
GIScience, Lecture Notes in Geoinformation and Cartography, pages
345–367. Springer Berlin Heidelberg. (Cited on pages 2, 5, and 12).

Meyer, B. (1992). Applying "design by contract". Computer, 25(10):40–51.
(Cited on page 4).

Nöllenburg, M., Merrick, D., Wolff, A., and Benkert, M. (2008). Morphing
polylines: A step towards continuous generalization. Computers, Environ-
ment and Urban Systems, 32(4):248–260. Geographical Information Science
Research - United Kingdom. (Cited on page 2).

Persson, J. (2004). Streaming of compressed multi-resolution geographic
vector data. Geoinformatics, Sweden. (Cited on page 1).

Ramos, J., Esperança, C., and Clua, E. (2009). A progressive vector map
browser for the web. Journal of the Brazilian Computer Society, 15(2):35–48.
(Cited on page 1).

19

14th ICA/ISPRS Workshop on Generalisation and Multiple Representation, 2011, Paris

Sester, M. and Brenner, C. (2005). Continuous generalization for visualiza-
tion on small mobile devices. In Fisher, P., editor, Developments in Spatial
Data Handling, pages 355–368. Springer-Verlag. (Cited on pages 2 and 18).

van Kreveld, M. (2001). Smooth generalization for continuous zooming.
In Proceedings 20th International Cartographic Conference (ICC’01), pages
2180–2185, Beijing, China. (Cited on page 2).

van Oosterom, P. (2005). Variable-scale topological data structures suitable
for progressive data transfer: The gap-face tree and gap-edge forest.
Cartography and Geographic Information Science, 32:331–346. (Cited on
page 2).

van Putten, J. and van Oosterom, P. (1998). New results with Generalized
Area Partitionings. In 8th International Symposium on Spatial Data Handling,
pages 485–495. (Cited on page 15).

Yang, B., Purves, R., and Weibel, R. (2007). Efficient transmission of vector
data over the internet. International Journal of Geographical Information
Science, 21(2):215–237. (Cited on page 1).

20

14th ICA/ISPRS Workshop on Generalisation and Multiple Representation, 2011, Paris

	Introduction
	Progressive data streaming
	Overview of the complete architecture
	Pre-processing
	Validation of topology
	Generalization operations

	Server-side
	Database tables
	Retrieval queries

	Network
	Communication channels
	Package layout
	Packages and their relation with queries

	Client-side
	TopoMap
	TopoMapUpdater
	Polygon Display List cache

	Experiments
	Implementation exercise
	Size of original 2d map versus progressive packages

	A cache-friendly solution
	Conclusion and Future work
	References

