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Abstract. We employ a batch generalization process for obtaining a vari-
able-scale planar partition. We describe an algorithm to simplify the 
boundary lines after a map generalization operation (either a merge or a 
split operation) has been applied on a polygonal area and its neighbours. 
The simplification is performed simultaneously on the resulting boundaries 
of the new polygonal areas that replace the areas that were processed. As 
the simplification strategy has to keep the planar partition valid, we define 
what we consider to be a valid planar partition (among other requirements, 
no zero-sized areas and no unwanted intersections in the boundary poly-
lines). Furthermore, we analyse the effects of the line simplification for the 
content of the data structures in which the planar partition is stored. 

1 Introduction 

A planar partition is a tessellation of the 2D plane into polygonal areas. 
These polygonal areas form a complete covering of the domain without 
overlaps and gaps. To obtain a variable-scale planar partition stored in the 
topological Generalized Area Partition (tGAP) data structures, we employ 
an off-line map generalization process as a pre-processing step (before on-
line use, see for more details Van Oosterom  2005; Meijers et al. 2009). 
The boundaries of the partition are stored in the form of polylines and to-
pological references. The tGAP structure can be used in a networked con-
text (e.g. the Internet) to supply a vector map at a variety of map scales 
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(many more than usually stored in a Multi-Resolution Database (MRDB)). 
Initially, for storing the geometry of the boundaries, the use of a forest of 
Binary Line Generalisation (BLG) trees was proposed (Van Oosterom 
2005). A BLG tree (Van Oosterom 1990) is a binary tree and stores the re-
sult of the Douglas-Peucker line simplification algorithm. Advantages of 
employing the forest of BLG trees would be that the data structure would 
contain as little geometric redundancy as possible. However, the Douglas-
Peucker algorithm does not give any guarantees on topological correctness 
and we noticed that the use of the BLG trees would create communication 
overhead in a situation where a client application retrieves the map data 
from a server when the trees are only partially transmitted to obtain the 
right amount of vertices in the polylines. 

An alternative we investigated was not to simplify the boundaries at all, 
but to keep the original geometry of the boundaries with which we started. 
We quickly noticed that during use of the resulting variable-scale planar 
partition in a network context, the number of vertices in the boundaries 
was too high, especially for the smaller map scales, leading to a slow per-
forming user interface. 

Therefore, we turned back to simplify the boundaries, but now store the 
result of the simplification explicitly (thus not deriving the geometry dy-
namically from a special reactive data structure, like with the BLG trees, 
as this leads to administrative overhead) and allow some redundancy in the 
data structure (but preferably as minimal as possible). The line simplifica-
tion has to be performed without violating any of the requirements for a 
valid variable-scale planar partition. In this paper, we give an overview of 
how we perform the simplification on a subset of the boundary polylines in 
the planar partition (the resulting lines from a higher level generalization 
operation, such as aggregation or splitting a polygonal area over its neigh-
bours). The removal of points leads to short cuts in the polylines. It is en-
sured that taking such a short cut does not lead to topological problems 
(the boundaries are not allowed to change their relative position). How-
ever, we also observed that a spatial configuration that leads to a problem 
(e.g. a change of side or occurrence of an intersection) at first might be 
changed later, because another point has been removed. Our approach also 
deals with these issues. The simplification is stopped when a certain crite-
rion is reached (enough points have been removed or there are no more 
points that can be removed without violating the requirements for a valid 
planar partition). 

The research questions that we try to answer are: 
 How to prevent topological errors and what are sufficient conditions to 

guarantee topological correctness in a variable-scale environment 
Plümer and Gröger 1997)?   
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 Which lines do we simplify after applying a generalization operator on 
the polygonal areas?   

 When to stop the simplification?   
 What are the effects on the contents of the data structures when applying 

the line simplification?  
The remainder of the paper is structured as follows. We review related 

work in Section 2. In Section 3, we formalize the requirements for a vari-
able-scale planar partition. In Section 4, we improve a known method for 
topologically safe simplification for more than one polyline as input (cf.  
Kulik et al. 2005). The input polylines will be simplified simultaneously – 
thus not one after the other. Our improvements focus on an efficient im-
plementation, keeping the polygonal areas explicitly valid (note that the 
areas can contain holes in their interior) and the tGAP structure as context. 
Furthermore, we use a step-wise generalization process in which we only 
simplify a subset of the boundaries, thus not all polylines will be simplified 
at the same time. Section 5 shows how we tested and analysed the algo-
rithm. Section 6 concludes the work and gives some suggestions for future 
work. 

2 Related work 

In literature, a multiplicity of methods is known to simplify (cartographic) 
lines. Saalfeld (1999) gives a classification of polyline simplification me-
thods: 
in vacuo modifies one polyline in isolation, possibly leading to topological 

conflicts that have to be resolved by post-processing; 
en suite modifies a single polyline in context (looking at topological rela-

tionships with nearby features); and 
en mass modifies the complete collection of polylines and all other fea-

tures of a map, taking the topological relationships into consideration 
during adjustment.  
Apart from the classification given by Saalfeld, the algorithms can be 

divided in two main groups: using refinement (i.e. an approach from coarse 
to fine, starting with a minimal approximation of a polyline and then add-
ing the most significant points, until a prescribed tolerance is met) or using 
decimation (i.e. an approach which starts with the most detailed version of 
a polyline and then eliminates the least important points first, thus going 
from fine to coarse). 

The most known algorithm for simplifying lines, in vacuo using a re-
finement approach, is the Douglas-Peucker line simplification (Ramer 
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1972; Douglas and Peucker 1973). It was modified by Saalfeld (1999) to 
work on a polyline en suite. Da Silva and Wu (2006) argued that topologi-
cal errors could still occur and gave an extension to the suggested ap-
proach. However, their approach is not explicitly designed for keeping a 
planar partition valid as they cannot ensure that polygonal areas keep size. 

Another en suite algorithm is developed by De Berg et al. (1998). The 
core of the algorithm is also used for simplifying polylines in a planar sub-
division (en mass), but each polyline in the main loop of their algorithm is 
still simplified en suite (so the simplification outcome depends on the or-
der of processing the polygonal chains). 

A better approach in this respect is the one given by Kulik et al. (2005), 
which simplifies the polylines simultaneously (thus not one after the oth-
er). The basis for their recipe is the algorithm described by Visvalingam 
and Whyatt (1993). It is using decimation for simplifying lines in vacuo. 
The algorithm of Visvalingam and Whyatt was extended by Barkowsky 
et al. (2000) using different criteria for the order in which points will be 
removed (leading to different shapes as output). Kulik et al. (2005) devel-
oped the approach for simplifying polylines en mass, but they consider on-
ly a connected graph for the topology aware simplification (the algorithm 
in this paper also deals with an unconnected graph, in case of islands in the 
polygonal areas, e.g. face 4 in figure 1). Furthermore, in their description 
of the algorithm they show that it is necessary to check after every simpli-
fication step whether points that could not be removed before are now al-
lowed to be simplified. It appears that their algorithm in this case can lead 
to quadratic running times. Also, it is not clear in their description how 
near points that might influence the simplification can be obtained effi-
ciently in an implementation. 

Dyken et al. (2009) also present a method for simultaneous simplifica-
tion of a collection of polylines in the plane (simplifying them en mass). 
The method is based on building a triangulation. Although this approach 
seems promising, building a triangulation after every generalization opera-
tion will be expensive from a computational point of view, mainly because 
we already have a topological graph at hand. 

It must be noted that none of the methods described above discuss line 
generalization in a stepwise generalization process, thus intermingled with 
other generalization operations, such as merging and splitting of polygonal 
areas (aggregation) in a planar partition for a variable-scale context. 
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3 A valid planar partition at a fixed and at a variable 
map scale  

A planar partition can be fully described by storing a topological structure. 
Polylines form the boundaries of the polygonal areas; each polyline has 
two endpoints, which we call the exterior points, and the rest of the points 
of the polyline are called interior points. Following Gröger and Plümer 
(1997), we give a set of requirements for this boundary representation, so 
that the resulting model is a valid planar partition of polygonal areas. The 
mathematical concept of a graph G(N,E) consists of a set of nodes N and a 
set of edges E, where the edges define a relationship between the nodes. 
Let us consider the set of instances n N and e E. If a relationship be-
tween a node n0 and an edge e0 exists, the two instances are called inci-
dent. The degree of a node is the number of its incident edges. If a node n1 
is also incident to an edge e0, the nodes n0 and n1 are said to be adjacent. 
Using the graph concept, we can specify a set of requirements for the 
boundaries (as illustrated in figure 1):  

1. With a graph G(N,E), we model the geometric relationship of the 
endpoints of the polylines: when two endpoints have the exact same 
coordinates, they become a node in the graph; thus N is the set of 
geometrically unique endpoints and E the set of polylines. We embed 
G in the 2D plane by the location of the points of the polylines and 
we specify that G is a planar drawing. This implies that polylines are 
only allowed to touch at their endpoints, no intersections or overlaps 
are present and each polyline must be simple (also no self-
intersections are allowed). 

2. All nodes in G must have a degree>1. This prevents having dangling 
polylines as a boundary. 

3. As a result of the fixed embedding of the graph, we can define each 
face f of G as the maximal connected region of the 2D plane where 
every two points x and y in f can be connected to each other without 
intersecting or touching any edge e G. The edges that delimit f form 
its boundary b. The edges e b form one (or more) cycle(s). For each 
cycle there exists a path 0 0 1 1 1, , , ,..., in e n e n , in which endpoints and 
polylines alternate and where endpoint n0=ni.  

4. Each face is delimited by at least 1 cycle (holes in the interior of a 
face are thus allowed). If a face has more than 1 cycle, these cycles 
have to be nested properly geometrically (if this is the case, one of 
these cycles should contain all other cycles). This nesting can only be 



342      Martijn Meijers 

1 level deep on account of the previous requirement (‘connected inte-
rior’). 

5. Each polygonal area in the planar partition corresponds to exactly one 
face (thus no multi-part polygonal areas are allowed) and each face 
corresponds to exactly one polygonal area. This symmetry enforces 
that all polygonal areas form a complete covering of the domain, 
without overlaps. 

6. In G, there exists one unbounded face (universe), which has exactly 
one cycle (geometrically containing the cycles of all other faces). Fur-
thermore, the set of faces f is F. 

  

Fig. 1: Face f0 is delimited by the boundary cycle c (i.e. the 

path 0 0 1 1 2 2 0, , , , , ,n e n e n e n ). The boundary cycle that delimits f1 

( 0 6 3 7 3 8 5 4 1 0 0, , , , , , , , , ,n e n e n e n e n e n ) is not simple (it passes through n3 twice). 
However, f1 forms 1 maximal connected region. Face f3 is delimited by two cycles 
(one starting at n5 and one starting atn4), which are properly nested. Node n4 has a 
degree=2. 

 
From G(N,E) we can derive its dual G*(F’,E’). This dual graph G* 

models the adjacency relationships of the polygonal areas, i.e. in this graph 
G* the faces F’ form the nodes and the edges E' are the polylines one has 
to cross for neighbouring faces f F'. 

So far, we were only concerned about the planar partition at one fixed 
map scale. We now extend the approach to a tessellation of the 2D plane at 
a variable (i.e. not pre-defined) map scale. For this, we need generalized 
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versions of the planar partition P. These versions with a lower level of de-
tail can be seen as a third dimension. To obtain all versions, we iteratively 
apply an operation O on the planar partition P, which selects a polygonal 
area that should be generalized and modifies P accordingly, outputting P'. 
Symbolically, we can describe this as: O(P) P'. The generalization opera-
tor must ensure that the output it delivers (P') is again a valid planar parti-
tion that fulfils all requirements given above, e.g. plain removal of a po-
lygonal area is thus not allowed, as this would violate the requirement of 
complete coverage of the domain (and would create a gap). 

We allow two types of generalization operators to modify the number of 
faces in P: for a merge operation, we remove the boundary polyline(s) be-
tween a candidate and its most compatible neighbour and form a new 
boundary cycle for this neighbour; and for a split operation, we remove all 
boundaries associated with the polygonal area that is split, we introduce 
new boundaries between the neighbours of this area, and we form new 
boundary cycles for these neighbours. With both operations the dual graph 
G* can be used to find the neighbours. 

Based on the observations above, to have a variable-scale tessellation of 
the 2D plane, we add two more requirements to our list: 

1. Every generalization operator O applied to P must output a valid pla-
nar partition P'. 

2. Hierarchically speaking the new polygonal areas and boundaries from 
P' must be adjacent to and must not overlap with the remaining and 
unchanged areas and boundaries from P (in the map scale dimension).  

4 Line simplification 

4.1 The need for line simplification 

We use a stepwise map generalization process. This process records all 
states of the planar partition after applying a generalization operator in a 
tree structure. With the obtained hierarchy the average number of polygo-
nal areas shown on a user’s screen can be kept roughly equal, independent 
from the size of the user’s view port (by varying the level of detail when a 
user zooms in or out, thus showing objects closer to or further from the top 
of the hierarchical structure). The removal of area objects (by merging or 
splitting them) leads to less objects per region. A user zooming out leads to 
an enlarged view port and ascending the hierarchy can supply an equal 
number of more generalized (thus larger) area objects to an end user, simi-
lar to the number before the zoom action. 
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(a) Splitting of polygonal areas leads to unwanted nodes 

(b) Unwanted nodes also result from merging two polygonal areas. Furthermore, 
the average number of coordinates per boundary increases 

Fig 2. Both (a) and (b) show that unwanted nodes can exist after a split or a merge 
operation. Furthermore, it is illustrated that not simplifying merged edges leads to 
an increased average number of coordinates per boundary. 

However, the related boundaries of the polygonal objects will get more 
coordinates (per object) if the original boundary geometry is kept and not 
simplified. As can be observed in Figure 2, a split operation, e.g. imple-
mented using triangulation, like in Bader and Weibel (1997), can lead to 
unnecessary nodes in the topology graph (nodes where degree = 2). This 
also happens when a merge operation is performed (see Figure 2(b)). 
Therefore, we merge the boundaries that are incident to those nodes. How-
ever, this merging leads to boundaries with more coordinates.  

The increase in the number of coordinates is illustrated by the example 
shown in Figure 2(b). Polygonal areas A and B are merged. This leads to 
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two nodes with degree=2. On average, the number of coordinates before 
the area merge operation in the boundaries is 
(2+2+2+4+7+5+6)/7=28/7=4. After the merge, we can remove the two de-
gree=2 nodes and thus merge the boundaries which leads to: 4+7+5 2=14 
coordinates for this new boundary. On average the number of coordinates 
of all the boundaries is: (14+2+2+2)/4=20/4=5, which is more than before 
the merge operation. According to our rule that we want to keep the num-
ber of vertices per polyline equal, the polylines have to be simplified. 

4.2 An overview of the simplification procedure 

We employ a decimation approach for simplifying the selected boundary 
polylines. The order of removing points is determined by a weight value w, 
which we calculate for each interior point of the polylines to be simplified. 
For calculating the weight values, we get 3 consecutive points,pi 1, pi, pi+1 
from a polyline forming a triangle . In our implementation the weight is 
calculated based on the area of the associated triangle , i.e.  

1 1( , , )i i ip p p� , and therefore completely based on geometry (cf. Visval-
ingam and Whyatt 1993). There could be more geometrical criteria, like 
sharpness of turn angle, length of sides, ratio of sides, etcetera (alternatives 
are discussed in Barkowsky et al. 2000). Note that Kulik et al. (2005) also 
assign a ‘semantic’ weight per point (next to the ‘geometric’ weight), 
which they base on the feature class of the polyline, where the point be-
longs to and is also dependent on the user’s application domain. 

The exterior points of the polylines (forming a node in the planar parti-
tion) cannot be removed. At each step, the interior point pi having the 
overall lowest weight value will be removed, leading to a ‘collapse’ of tri-
angle  into a short cut 1, 1i ip p . Our simplification strategy has to obey 
the requirements that we have given for a planar partition, thus not all 
short cuts will be allowed. We observed that a spatial configuration that 
leads to a problem at first might be changed later, because another point 
has been removed (that was preventing a collapse). The algorithm re-tries 
removal of the blocked point in this case. 

4.3 Dynamic and static polylines and how to select those 

Two types of polylines that play a role in the simplification can be distin-
guished: dynamic polylines that will be simplified, i.e. interior points can 
be removed as long as no intersections or degeneracies in the planar parti-
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tion requirements are caused by this removal; and static polylines that will 
not be simplified and for which all points are fixed (these points can forbid 
certain short cuts in lines that are simplified). Points of the first type are 
termed dynamic points and points of the second type are termed static 
points. Points that eventually will be removed by the simplification algo-
rithm have to be interior and dynamic points. 

Fig. 3. Dynamic polylines will be simplified (only one in this figure), static poly-
lines can have an influence on the simplification. Note that the alternative is illus-
trated in which only the polylines that are incident to a merge boundary will be 
simplified. 

After a merge or split generalization operation is finished we must chose 
which lines to simplify (thus select the dynamic polylines). Two viable al-
ternative approaches are:  

1. Simplify the polylines that are (in case of an area merge operation) 
incident to the common merge boundaries or (in case of an area split 
operation) simplify the new boundaries that stem from the split opera-
tion; and 

2. Simplify all polylines of the resulting new area(s).  
As the simplification should be topology-aware, the static polylines in 

the neighbourhood also have to be selected as input for our algorithm as 
these can influence the outcome of the simplification. For this purpose, we 
can use the topology structure to select the lines that are in the vicinity of 
the lines that we want to simplify. We use the topology structure as an ini-
tial spatial filter (going from neighbouring areas to their related bounda-
ries); then with a second pass we can select the related boundaries based 
on bounding box overlap with the union of the bounding box of all dy-
namic polylines. An alternative approach is to keep an auxiliary data struc-
ture (such as an R-tree or quad-tree) for fast selection of the polylines in 
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the vicinity. Downside of this approach is that an auxiliary structure needs 
to be kept, while the topology structure is already present. However, the 
initial filtering step using the topology structure can be expensive if the 
new polygonal area is at the border of the domain (leading to a selection of 
all edges at the border of the domain that have to be filtered on their 
bounding box). 

4.4 A stop criterion for the simplification 

We iteratively remove points from all dynamic input polylines, until a cer-
tain optimal goal is reached. We have two main choices for defining this 
optimal goal (to stop the simplification): 
eps-stop Use a geometric measure as a threshold  (all points having their 

weight w<  should be removed, where w is based on the size of the tri-
angle of 3 consecutive points in the polyline). 
Using this approach, we could use a fixed  throughout the whole proc-
ess of building the variable-scale hierarchy. This is not a very realistic 
option as the number of polygonal areas (and thus the level of detail) 
decreases when more generalization operators have been applied (when 
more polygonal areas have been merged or split, the remaining bounda-
ries should also be simplified more). A better option is to determine dy-
namically the value of  with every generalization step. For this we can:  
 take the average or median value of all weight values as  (all points 

having a weight value smaller than this have to be removed);  
 set an  based on other criteria, like the smallest segment length of all 

polylines taking part in the simplification. Such an alternative choice for 
 also means that the weight values w for all interior points have to be 

calculated accordingly.  
count-stop Use a fixed number of points that we want to see removed. 

Using a fixed number of output points as the optimal goal, we can count 
the number of points in the input and try to remove a certain percentage. 
Two similar, but somewhat different options in this respect are:  
 take a local approach: e.g. per input polyline try to remove half of the 

points (but do not remove more points from a polyline than half of its 
original points); or 
 take a regional approach: for all polylines being simplified, count the 

total number of points and keep removing points, until in total half of 
these points have been removed.  

Note that both approaches can leave more points as a result than wished 
for, because some of the points can be blocked by others (because topo-
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logical errors must be prevented), although they fulfil the condition for 
removal (e.g. w< ). Note also that with both approaches we can vary the 
percentage of points that we want to remove (instead of half of the points) 
depending on how far we want to ‘push’ the generalization. In an extreme 
case, we could set the percentage to such a value that the algorithm will try 
to remove all points leading to straight lines as much as possible (only to-
pological ‘problematic’ points are remaining).  

4.5 To prevent topological errors 

The algorithm 

An outline of the procedure is depicted in Algorithm 1. For all dynamic 
polylines, a doubly-linked list is created (storing the points in the order in 
which they are present in the original polyline, cf. Algorithm 1, line 1). 
Further, for all interior points of these polylines, a weight w is calculated. 
Important points get a higher weight than less important ones.  
All dynamic and interior points are inserted in a priority queue Q, ordered by their 
weight values w (Algorithm 1, line 3). In our implementation we use a red-black 
tree (Guibas and Sedgewick 1978) for the priority queue. Points with equal 
weights are dealt with in the order of insertion. In-order traversal of the red-black 
tree Q allows now to find the point with the smallest weight value, which is then 
removed from Q. For point pi, its neighbours, pi 1 and pi+1 can be retrieved from 

the polyline doubly-linked list. The three points together form the triangle  (see 
Figure 4). 

Fig. 4. As b blocks the removal of pi, the blocks and blocked by lists are filled ac-
cordingly. 
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Algorithm 1 Simplification, while keeping a planar partition valid 
Input: A set of dynamic polylines and a set of static polylines 
Output: A set of simplified polylines 
 {pre-processing} 
1: Create doubly-linked list for each dynamic polyline 
2: Compute weights w for all interior points of dynamic polylines 
3: Add dynamic, interior points to priority queue Q based on weights 
4: Create pointers between points of static polylines with only 2 points 
5: Create kd-tree of all points of both dynamic and static polylines 
 {simplifying} 
6: while Q not empty do 
7:  Pop least important pi from Q 
 {stop criterion, see section 4.4} 
8: if stop criterion met for pi then 
9:   break 
10:  allowed  True 
11:  if pi part of loop edge with 4 points then 
12:   allowed  False {no more ‘tries’ for this point} 
13:  Retrieve  (using pi-1 and pi+1 from linked list) 
14:  vicinity  search kd-tree for points near pi using box of  
15:  for all b  vicinity do 
16:   if b  (pi-1, pi , pi+1) and b part of segment 1 1,i ip p  then 
17:    allowed  False {no more ‘tries’ for this point} 
18:  if allowed then 
19:   for all b  vicinity do 
20:    if b  (pi-1, pi , pi+1) and b on  then 
21:     allowed  False 
22:     Append b to pi.blocked_by list 
23:     Append pi to b.blocks list 
24:  if allowed then 
25:   Remove pi from linked list 
26:   Adjust weights for pi-1 and pi+1 
27:   Check whether pi-1 and pi+1 are still blocked, otherwise add to Q 
28:   Mark pi as removed in kd-tree 
29:   for all u  pi.blocks do 
30:    Remove pi from u.blocked_by list 
31:    if u.blocked by list empty then 
32:     Add u to Q 
 {output} 
33: return Simplified polylines by traversing doubly-linked lists 
 
The short cut that will be taken is 1, 1i ip p . Such a short cut is only al-

lowed if it does not lead to an invalid planar partition, i.e. violates one of 
the requirements, as described in section 3. Any intersections of the new 
short cut with other polylines or another segment of the polyline itself (i.e. 
a line between two consecutive points of the polyline) have to be pre-
vented. As the partition is valid to begin with (which can be ensured by us-
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ing a constrained triangulation, see Ledoux and Meijers 2010; Ohori, 
2010), the polylines of the planar partition do not contain any (self-) inter-
sections. An intersection of the short cut can only be created when a seg-
ment  ‘enters’  via the open side 1, 1i ip p  (as it is not allowed to enter 

or leave the area of  via either 1,i ip p  or , 1i ip p ; this immediately would 
lead to an intersection). A point of  must thus be interacting with  for an 
intersection to happen and it is sufficient to check whether such a point ex-
ists, to prevent this. Points that can influence the collapse are termed 
blockers. These blockers stem from:  

1. the polyline itself (self-intersection); or 
2. other polylines in the vicinity of  (both static and dynamic). 

 
To efficiently find those points, we use a kd-tree (not just a regular kd-

tree, but one following Bentley (1990) for which the tree does not need to 
be re-organised after removal of points, but to which no extra points can be 
added after initial organisation of the tree). All (interior as well as exterior) 
points of all polylines taking part in the simplification are inserted in this 
kd-tree (algorithm 1, line 5). The bounding rectangle around the triangle  
is used to query the kd-tree to find all points in the neighbourhood of this 
triangle to see if there are any blockers for creating the shortcut 1, 1i ip p . 
If a blocker is found, the short cut is not taken and as pi was removed from 
Q it will not turn up in the next iteration. 

As the kd-tree contains the points of all dynamic polylines, a potential 
blocker b can be a point that forms the triangle . If this happens we do not 
check whether b blocks pi (i.e. pi 1, pi+1, nor pi itself can block removal of 
pi) or no simplification could take place at all. Since a blocker b can be 
removed itself later on and then a short cut for this vertex pi might be al-
lowed, a cross reference is set up between pi and b (b is registered in the 
‘blocked by’-list of pi and pi is registered in the ‘blocks’-list of b). 

If no blockers were found, pi can be removed from the doubly-linked 
polyline list it belongs to (creating a short cut in this polyline). The point is 
also marked as removed in the kd-tree. If the removed point pi was a 
blocker itself (having one or more points in its ‘blocks’ list), it removes it-
self from the ‘blocked by’ list of these particular points. If for a point u its 
‘blocked by’ list becomes empty (because of the removal of pi), u is placed 
back again in Q, so it has a chance of being a short cut in the next iteration 
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(if then not blocked by any other point and still not having fulfilled the 
condition for removal, e.g. having a weight w< ). If one of the two neigh-
bouring points pi 1 or pi+1 was blocked, it is also checked whether this is 
still the case (the shape of their related triangle also has changed, because 
of the short cut operation). 

The algorithm ends when the chosen criterion has been met, i.e. there 
are no more points that can fulfil the criterion to reach the optimal goal, 
and the new polylines are returned. 

More cases for validity 

Apart from intersection prevention by testing near points, more specific 
situations have to be taken into account, because of the validity require-
ments of the planar partition. Two other conditions also have to be checked 
(illustrated in Figure 5) to prevent occurrence of zero-sized polygonal ar-
eas: 

Fig. 5. If taking a short cut leads to a polygonal area that has no area, we put the 
end points as blockers for pi. The result is that pi is not removed, as the endpoints 
of the polylines will never be removed. 

1. Same polyline (see Algorithm 1, line 11): A special check is per-
formed when pi 1 or pi+1 is the endpoint of a so-called ‘loop’ polyline 
(a special case where the 2 exterior points of the polyline are at the 
exact same location, cf. Figure 5-left). We now have to check wheth-
er there will still be enough points in the polyline when we take away 
pi (because no zero-size area is allowed). We can do this by travers-
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ing the linked list and check when pi 1 is a loop endpoint, whether 
pi+2 is also such an endpoint (similar with pi 2 for pi+1). Note that this 
is a rare case (only the two last interior points for a triangular face). 

2. Different polyline (see Algorithm 1, line 16): Another check is per-
formed on whether 1, 1i ip p  is already connected by another polyline 
(by allowing twice such a polyline, a zero-size area would be created, 
Figure 5-right). To prevent this, it is necessary to check if a potential 
blocking point b returned by the kd-tree is part of such a polyline be-
tween pi 1 and pi+1: a. for a dynamic point returned by the kd-tree, it 
is possible to use the doubly-linked list to navigate to the next vertex 
and check whether pi 1 and pi+1 are fixed; and b. for a static point re-
turned by the kd-tree, we put an extra pointer to the other endpoint of 
the static polyline if the line only consists of two points. This allows 
checking whether a static point blocks the collapse of . 

5 Experiments 

We implemented the line simplification algorithm in our tGAP test envi-
ronment. This environment is using the PostgreSQL1 database system with 
PostGIS2 extension. The algorithm is implemented in the Python3 pro-
gramming language. With the implementation we tried different alterna-
tives. 

Table 1. Symbolic names of the alternatives that were tested. 

 Simplify which edges?   
 Merged edges only at All edges of new area 
Stop criterion?  nodes with degree = 2 (including merged ones) 
No simplification at all none none 
Count stop (regional, half # of 
interior points) 

m_ct ct 

Eps stop (median of all weights) m_eps eps 
As far as possible m_full full 

 
In total, we tested 7 alternatives — with only merge operations applied 

to the polygonal areas — for which the symbolic names are shown in Ta-
                                                      
1 www.postgresl.org 
2

3 www.python.org 
 postgis.refractions.net 

http://www.postgis.refractions.net
http://www.python.org
http://www.postgresl.org


Simultaneous & Topological Safe Line Simplification      353 

ble 1. The first alternative (labelled ‘none’ in Table 1) we tested, was 
merging edges at nodes with degree=2, but not applying any simplifica-
tion. This was meant as a reference test as we already knew that this would 
lead to too many coordinates per boundary. The remaining strategies come 
from varying two alternatives: which lines to simplify (only the merged 
boundaries, prefixed with ‘m_’ in Table 1, or all boundaries of the new 
area); and when to stop the generalization (based on the median -value for 
all boundaries being simplified – dynamic eps-stop –based on the number 
of points – the regional count-stop approach, or simplify as far as possible, 
respectively labelled ‘eps’, ‘ct’ or ‘full’).  

Table 2 shows the number of polylines and their average number of co-
ordinates for the datasets we used in our experiment. We tested with three 
datasets representing different types of geographic data. We used  a topog-
raphic, urban dataset;  a topographic, rural dataset; and a land use dataset. 
Both topographic datasets represented infrastructure objects, which were 
not present in the land use dataset. 

Table 2.  For the datasets used in our experiment, the number of polygonal areas, 
polylines and average number of coordinates per polyline at start. 

Dataset # of areas 
at start 

# of polylines 
at start 

avg # coords 
per polyline 

total # coords 

Topographic, urban 9,381 24,528 4.6 112,828 
Topographic, rural 3,286 8,212 10.6 87,047 
Land use 5,537 16,592 7.2 119,462 
 
Figure 6 graphically shows some results of a few of the alternatives 

tested for the land use dataset. Figure 6(a) shows the result of keeping all 
original coordinates of the boundaries, thus not simplifying them. Tiny de-
tails and too many coordinates in the boundaries are the result. It can be 
seen in Figure 6(b) that the count-stop approach applied on all boundaries 
of the new area leads to a very simplified and coarse version. Both alterna-
tives in which only the merged boundaries are simplified leave more de-
tails (see Figure (c) and (d)), where the count-stop approach is a bit more 
‘aggressive’ than the eps-stop approach. 

This is also illustrated by the graphs in Figure 7. In each graph, it is 
shown how many coordinates there are left for the total map, after every 
generalization step. As expected, the line at the top of the graph is the ref-
erence situation, where no coordinates are weeded. As already visually il-
lustrated in Figure 6, it is also clear that the approach, where only the 
merged boundaries play a role in the simplification, is gentler in removing 
coordinates compared to when all edges of the new area will be simplified. 
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The main cause for this is that if all edges of the new area are simplified, 
they will be simplified more often, compared to the situation where only 
the merged edges are simplified (i.e. for every generalization step in which 
a polygonal area is the area to which a neighbour is merged, its boundary 
edges will again be simplified).  

Fig. 6. From the land use dataset: ‘Slices’ of variable-scale data that show the re-
sult of the different alternatives for the line simplification, plotted at the same map 
scale (within brackets the symbolic name of the tested alternative). Note that the 
simplification of the boundaries changes the size of the areas and influences the 
order in which the areas are merged; therefore, the boundaries on the 4 maps do 
not exactly correspond to each other. 

 
 

 

 
(a) No simplification (none) 

 
(b) Count stop for all edges of new area 

(ct) 

 
(c) Epsilon stop, using only merged 

edges (m_eps) 

 
(d) Count stop, using only merged 

edges (m_ct) 
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(c) Land use 

Fig. 7. For each dataset, the graph shows the total number of coordinates for the 
complete map, in each generalization step (i.e. the number of coordinates in a 
‘slice’ of variable-scale data). 

Table 3 illustrates the fact that simplifying the boundaries over-and-over 
again also has a negative effect on the contents of the hierarchy. Although 
the graphs from Figure 7 show that there are less coordinates on average 
on every ‘slice’ derived from the variable-scale structures when all boun-
daries of a new face are simplified, the opposite is true for the contents of 

 
(a) Topographic, urban 

 
(b) Topographic, rural 
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the data structures. More coordinates need to be stored, because for every 
line that is simplified, a new version with the simplified geometry also has 
to be stored in the data structures (e.g. compare alternative ‘m_ct’ with 
‘ct’—in all cases more coordinates are stored for the ‘ct’ alternative). 
Therefore, simplifying only the merged edges is to be preferred over sim-
plifying all the edges of a new area. 

Table 3. Resulting number of polylines in the tGAP hierarchy with their average 
number of coordinates per polyline and the sum of coordinates in the total hierar-
chy. 

(a) topographic, urban dataset 

simplify type total # polylines avg # coords 
per polyline 

total # coordinates 
in hierarchy 

None 36,447 7.1 256,969
Ct 60,390 4.3 260,777
Eps 62,006 4.6 284,289
Full 55,084 3.7 205,870
m_ct 36,449 4.6 167,431
m_eps 36,438 4.8 176,350
m_full 36,403 3.8 139,187

(b) topographic, rural dataset 

simplify type total # polylines avg # coords 
per polyline 

total # coordinates 
in hierarchy 

None 12,347 22.4 276,335
Ct 23,553 8.5 200,860
Eps 24,539 10.1 247,767
Full 19,640 6.7 131,538
M_ct 12,345 11.1 136,940
M_eps 12,343 13.0 160,066
M_full 12,349 7.8 96,665

(c) land use dataset 

simplify type total # polylines avg # coords 
per polyline 

total # coordinates 
in hierarchy 

None 26,771 15.4 413,250
Ct 54,166 5.8 312,394
Eps 55,603 6.3 348,118
Full 45,040 4.8 216,174
M_ct 26,770 7.5 200,132
M_eps 26,768 8.4 223,623
M_full 26,769 5.3 141,019
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6 Conclusion and future work 

We described an algorithm to simplify simultaneously a subset of poly-
lines in a planar partition in a variable-scale context. For this, we formal-
ized what we consider a valid variable-scale planar partition. The algo-
rithm is aware not to introduce any topological errors. Furthermore, we 
gave a theoretical description of the options that we have when employing 
this algorithm in practice. Another contribution is that we analysed how 
much the average number of points in the boundaries of the polygonal ar-
eas would grow without simplification to choose the best simplification 
strategy, also from the perspective of the amount of data to be stored in the 
data structures. Further we showed some visual results. 

Some notes on future work: 
 We think that an integrated way of formalizing 2D maps plus 1D for 

scale in a 3D space (leading to 3D volume objects, but where not all 
axes have the same geometric meaning) could lead to a better axiomatic 
description of what we consider to be a valid variable-scale hierarchy. 
This could also lead to an even more continuous variable-scale structure 
(opposed to our current solution, in which discrete ‘jumps’ still exist) in 
which it is possible to gradually morph polylines from the state before 
applying an aggregation or split operation to the state afterwards (for a 
technical implementation it might be sufficient to store only the begin-
ning and end states in such a model). As such, it could enable smooth 
zooming of vector data for an end user. 

 We plan to implement the requirements for valid planar partition and 
vario-scale hierarchy as check constraints in a DBMS (as technical im-
plementation of the conceptual model).  
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