
Simultaneous & topologically-safe line
simplification for a variable-scale planar partition

Martijn Meijers

Delft University of Technology (OTB – Department of GIS Technology)
Delft, the Netherlands

Abstract. We employ a batch generalization process for obtaining a vari-
able-scale planar partition. We describe an algorithm to simplify the
boundary lines after a map generalization operation (either a merge or a
split operation) has been applied on a polygonal area and its neighbours.
The simplification is performed simultaneously on the resulting boundaries
of the new polygonal areas that replace the areas that were processed. As
the simplification strategy has to keep the planar partition valid, we define
what we consider to be a valid planar partition (among other requirements,
no zero-sized areas and no unwanted intersections in the boundary poly-
lines). Furthermore, we analyse the effects of the line simplification for the
content of the data structures in which the planar partition is stored.

1 Introduction

A planar partition is a tessellation of the 2D plane into polygonal areas.
These polygonal areas form a complete covering of the domain without
overlaps and gaps. To obtain a variable-scale planar partition stored in the
topological Generalized Area Partition (tGAP) data structures, we employ
an off-line map generalization process as a pre-processing step (before on-
line use, see for more details Van Oosterom 2005; Meijers et al. 2009).
The boundaries of the partition are stored in the form of polylines and to-
pological references. The tGAP structure can be used in a networked con-
text (e.g. the Internet) to supply a vector map at a variety of map scales

© Springer-Verlag Berlin Heidelberg 2011
Lecture Notes in Geoinformation and Cartography 1, DOI 10.1007/978-3-642-19789-5_17,

337S.C.M. Geertman et al. (eds.), Advancing Geoinformation Science for a Changing World,

b.m.meijers@tudelft.nl

mailto:b.m.meijers@tudelft.nl

338 Martijn Meijers

(many more than usually stored in a Multi-Resolution Database (MRDB)).
Initially, for storing the geometry of the boundaries, the use of a forest of
Binary Line Generalisation (BLG) trees was proposed (Van Oosterom
2005). A BLG tree (Van Oosterom 1990) is a binary tree and stores the re-
sult of the Douglas-Peucker line simplification algorithm. Advantages of
employing the forest of BLG trees would be that the data structure would
contain as little geometric redundancy as possible. However, the Douglas-
Peucker algorithm does not give any guarantees on topological correctness
and we noticed that the use of the BLG trees would create communication
overhead in a situation where a client application retrieves the map data
from a server when the trees are only partially transmitted to obtain the
right amount of vertices in the polylines.

An alternative we investigated was not to simplify the boundaries at all,
but to keep the original geometry of the boundaries with which we started.
We quickly noticed that during use of the resulting variable-scale planar
partition in a network context, the number of vertices in the boundaries
was too high, especially for the smaller map scales, leading to a slow per-
forming user interface.

Therefore, we turned back to simplify the boundaries, but now store the
result of the simplification explicitly (thus not deriving the geometry dy-
namically from a special reactive data structure, like with the BLG trees,
as this leads to administrative overhead) and allow some redundancy in the
data structure (but preferably as minimal as possible). The line simplifica-
tion has to be performed without violating any of the requirements for a
valid variable-scale planar partition. In this paper, we give an overview of
how we perform the simplification on a subset of the boundary polylines in
the planar partition (the resulting lines from a higher level generalization
operation, such as aggregation or splitting a polygonal area over its neigh-
bours). The removal of points leads to short cuts in the polylines. It is en-
sured that taking such a short cut does not lead to topological problems
(the boundaries are not allowed to change their relative position). How-
ever, we also observed that a spatial configuration that leads to a problem
(e.g. a change of side or occurrence of an intersection) at first might be
changed later, because another point has been removed. Our approach also
deals with these issues. The simplification is stopped when a certain crite-
rion is reached (enough points have been removed or there are no more
points that can be removed without violating the requirements for a valid
planar partition).

The research questions that we try to answer are:
 How to prevent topological errors and what are sufficient conditions to

guarantee topological correctness in a variable-scale environment
Plümer and Gröger 1997)?

Simultaneous & Topological Safe Line Simplification 339

 Which lines do we simplify after applying a generalization operator on
the polygonal areas?

 When to stop the simplification?
 What are the effects on the contents of the data structures when applying

the line simplification?
The remainder of the paper is structured as follows. We review related

work in Section 2. In Section 3, we formalize the requirements for a vari-
able-scale planar partition. In Section 4, we improve a known method for
topologically safe simplification for more than one polyline as input (cf.
Kulik et al. 2005). The input polylines will be simplified simultaneously –
thus not one after the other. Our improvements focus on an efficient im-
plementation, keeping the polygonal areas explicitly valid (note that the
areas can contain holes in their interior) and the tGAP structure as context.
Furthermore, we use a step-wise generalization process in which we only
simplify a subset of the boundaries, thus not all polylines will be simplified
at the same time. Section 5 shows how we tested and analysed the algo-
rithm. Section 6 concludes the work and gives some suggestions for future
work.

2 Related work

In literature, a multiplicity of methods is known to simplify (cartographic)
lines. Saalfeld (1999) gives a classification of polyline simplification me-
thods:
in vacuo modifies one polyline in isolation, possibly leading to topological

conflicts that have to be resolved by post-processing;
en suite modifies a single polyline in context (looking at topological rela-

tionships with nearby features); and
en mass modifies the complete collection of polylines and all other fea-

tures of a map, taking the topological relationships into consideration
during adjustment.
Apart from the classification given by Saalfeld, the algorithms can be

divided in two main groups: using refinement (i.e. an approach from coarse
to fine, starting with a minimal approximation of a polyline and then add-
ing the most significant points, until a prescribed tolerance is met) or using
decimation (i.e. an approach which starts with the most detailed version of
a polyline and then eliminates the least important points first, thus going
from fine to coarse).

The most known algorithm for simplifying lines, in vacuo using a re-
finement approach, is the Douglas-Peucker line simplification (Ramer

340 Martijn Meijers

1972; Douglas and Peucker 1973). It was modified by Saalfeld (1999) to
work on a polyline en suite. Da Silva and Wu (2006) argued that topologi-
cal errors could still occur and gave an extension to the suggested ap-
proach. However, their approach is not explicitly designed for keeping a
planar partition valid as they cannot ensure that polygonal areas keep size.

Another en suite algorithm is developed by De Berg et al. (1998). The
core of the algorithm is also used for simplifying polylines in a planar sub-
division (en mass), but each polyline in the main loop of their algorithm is
still simplified en suite (so the simplification outcome depends on the or-
der of processing the polygonal chains).

A better approach in this respect is the one given by Kulik et al. (2005),
which simplifies the polylines simultaneously (thus not one after the oth-
er). The basis for their recipe is the algorithm described by Visvalingam
and Whyatt (1993). It is using decimation for simplifying lines in vacuo.
The algorithm of Visvalingam and Whyatt was extended by Barkowsky
et al. (2000) using different criteria for the order in which points will be
removed (leading to different shapes as output). Kulik et al. (2005) devel-
oped the approach for simplifying polylines en mass, but they consider on-
ly a connected graph for the topology aware simplification (the algorithm
in this paper also deals with an unconnected graph, in case of islands in the
polygonal areas, e.g. face 4 in figure 1). Furthermore, in their description
of the algorithm they show that it is necessary to check after every simpli-
fication step whether points that could not be removed before are now al-
lowed to be simplified. It appears that their algorithm in this case can lead
to quadratic running times. Also, it is not clear in their description how
near points that might influence the simplification can be obtained effi-
ciently in an implementation.

Dyken et al. (2009) also present a method for simultaneous simplifica-
tion of a collection of polylines in the plane (simplifying them en mass).
The method is based on building a triangulation. Although this approach
seems promising, building a triangulation after every generalization opera-
tion will be expensive from a computational point of view, mainly because
we already have a topological graph at hand.

It must be noted that none of the methods described above discuss line
generalization in a stepwise generalization process, thus intermingled with
other generalization operations, such as merging and splitting of polygonal
areas (aggregation) in a planar partition for a variable-scale context.

Simultaneous & Topological Safe Line Simplification 341

3 A valid planar partition at a fixed and at a variable
map scale

A planar partition can be fully described by storing a topological structure.
Polylines form the boundaries of the polygonal areas; each polyline has
two endpoints, which we call the exterior points, and the rest of the points
of the polyline are called interior points. Following Gröger and Plümer
(1997), we give a set of requirements for this boundary representation, so
that the resulting model is a valid planar partition of polygonal areas. The
mathematical concept of a graph G(N,E) consists of a set of nodes N and a
set of edges E, where the edges define a relationship between the nodes.
Let us consider the set of instances n N and e E. If a relationship be-
tween a node n0 and an edge e0 exists, the two instances are called inci-
dent. The degree of a node is the number of its incident edges. If a node n1
is also incident to an edge e0, the nodes n0 and n1 are said to be adjacent.
Using the graph concept, we can specify a set of requirements for the
boundaries (as illustrated in figure 1):

1. With a graph G(N,E), we model the geometric relationship of the
endpoints of the polylines: when two endpoints have the exact same
coordinates, they become a node in the graph; thus N is the set of
geometrically unique endpoints and E the set of polylines. We embed
G in the 2D plane by the location of the points of the polylines and
we specify that G is a planar drawing. This implies that polylines are
only allowed to touch at their endpoints, no intersections or overlaps
are present and each polyline must be simple (also no self-
intersections are allowed).

2. All nodes in G must have a degree>1. This prevents having dangling
polylines as a boundary.

3. As a result of the fixed embedding of the graph, we can define each
face f of G as the maximal connected region of the 2D plane where
every two points x and y in f can be connected to each other without
intersecting or touching any edge e G. The edges that delimit f form
its boundary b. The edges e b form one (or more) cycle(s). For each
cycle there exists a path 0 0 1 1 1, , , ,..., in e n e n , in which endpoints and
polylines alternate and where endpoint n0=ni.

4. Each face is delimited by at least 1 cycle (holes in the interior of a
face are thus allowed). If a face has more than 1 cycle, these cycles
have to be nested properly geometrically (if this is the case, one of
these cycles should contain all other cycles). This nesting can only be

342 Martijn Meijers

1 level deep on account of the previous requirement (‘connected inte-
rior’).

5. Each polygonal area in the planar partition corresponds to exactly one
face (thus no multi-part polygonal areas are allowed) and each face
corresponds to exactly one polygonal area. This symmetry enforces
that all polygonal areas form a complete covering of the domain,
without overlaps.

6. In G, there exists one unbounded face (universe), which has exactly
one cycle (geometrically containing the cycles of all other faces). Fur-
thermore, the set of faces f is F.

Fig. 1: Face f0 is delimited by the boundary cycle c (i.e. the

path 0 0 1 1 2 2 0, , , , , ,n e n e n e n). The boundary cycle that delimits f1

(0 6 3 7 3 8 5 4 1 0 0, , , , , , , , , ,n e n e n e n e n e n) is not simple (it passes through n3 twice).
However, f1 forms 1 maximal connected region. Face f3 is delimited by two cycles
(one starting at n5 and one starting atn4), which are properly nested. Node n4 has a
degree=2.

From G(N,E) we can derive its dual G*(F’,E’). This dual graph G*

models the adjacency relationships of the polygonal areas, i.e. in this graph
G* the faces F’ form the nodes and the edges E' are the polylines one has
to cross for neighbouring faces f F'.

So far, we were only concerned about the planar partition at one fixed
map scale. We now extend the approach to a tessellation of the 2D plane at
a variable (i.e. not pre-defined) map scale. For this, we need generalized

Simultaneous & Topological Safe Line Simplification 343

versions of the planar partition P. These versions with a lower level of de-
tail can be seen as a third dimension. To obtain all versions, we iteratively
apply an operation O on the planar partition P, which selects a polygonal
area that should be generalized and modifies P accordingly, outputting P'.
Symbolically, we can describe this as: O(P) P'. The generalization opera-
tor must ensure that the output it delivers (P') is again a valid planar parti-
tion that fulfils all requirements given above, e.g. plain removal of a po-
lygonal area is thus not allowed, as this would violate the requirement of
complete coverage of the domain (and would create a gap).

We allow two types of generalization operators to modify the number of
faces in P: for a merge operation, we remove the boundary polyline(s) be-
tween a candidate and its most compatible neighbour and form a new
boundary cycle for this neighbour; and for a split operation, we remove all
boundaries associated with the polygonal area that is split, we introduce
new boundaries between the neighbours of this area, and we form new
boundary cycles for these neighbours. With both operations the dual graph
G* can be used to find the neighbours.

Based on the observations above, to have a variable-scale tessellation of
the 2D plane, we add two more requirements to our list:

1. Every generalization operator O applied to P must output a valid pla-
nar partition P'.

2. Hierarchically speaking the new polygonal areas and boundaries from
P' must be adjacent to and must not overlap with the remaining and
unchanged areas and boundaries from P (in the map scale dimension).

4 Line simplification

4.1 The need for line simplification

We use a stepwise map generalization process. This process records all
states of the planar partition after applying a generalization operator in a
tree structure. With the obtained hierarchy the average number of polygo-
nal areas shown on a user’s screen can be kept roughly equal, independent
from the size of the user’s view port (by varying the level of detail when a
user zooms in or out, thus showing objects closer to or further from the top
of the hierarchical structure). The removal of area objects (by merging or
splitting them) leads to less objects per region. A user zooming out leads to
an enlarged view port and ascending the hierarchy can supply an equal
number of more generalized (thus larger) area objects to an end user, simi-
lar to the number before the zoom action.

344 Martijn Meijers

(a) Splitting of polygonal areas leads to unwanted nodes

(b) Unwanted nodes also result from merging two polygonal areas. Furthermore,
the average number of coordinates per boundary increases

Fig 2. Both (a) and (b) show that unwanted nodes can exist after a split or a merge
operation. Furthermore, it is illustrated that not simplifying merged edges leads to
an increased average number of coordinates per boundary.

However, the related boundaries of the polygonal objects will get more
coordinates (per object) if the original boundary geometry is kept and not
simplified. As can be observed in Figure 2, a split operation, e.g. imple-
mented using triangulation, like in Bader and Weibel (1997), can lead to
unnecessary nodes in the topology graph (nodes where degree = 2). This
also happens when a merge operation is performed (see Figure 2(b)).
Therefore, we merge the boundaries that are incident to those nodes. How-
ever, this merging leads to boundaries with more coordinates.

The increase in the number of coordinates is illustrated by the example
shown in Figure 2(b). Polygonal areas A and B are merged. This leads to

Simultaneous & Topological Safe Line Simplification 345

two nodes with degree=2. On average, the number of coordinates before
the area merge operation in the boundaries is
(2+2+2+4+7+5+6)/7=28/7=4. After the merge, we can remove the two de-
gree=2 nodes and thus merge the boundaries which leads to: 4+7+5 2=14
coordinates for this new boundary. On average the number of coordinates
of all the boundaries is: (14+2+2+2)/4=20/4=5, which is more than before
the merge operation. According to our rule that we want to keep the num-
ber of vertices per polyline equal, the polylines have to be simplified.

4.2 An overview of the simplification procedure

We employ a decimation approach for simplifying the selected boundary
polylines. The order of removing points is determined by a weight value w,
which we calculate for each interior point of the polylines to be simplified.
For calculating the weight values, we get 3 consecutive points,pi 1, pi, pi+1
from a polyline forming a triangle . In our implementation the weight is
calculated based on the area of the associated triangle , i.e.

1 1(, ,)i i ip p p� , and therefore completely based on geometry (cf. Visval-
ingam and Whyatt 1993). There could be more geometrical criteria, like
sharpness of turn angle, length of sides, ratio of sides, etcetera (alternatives
are discussed in Barkowsky et al. 2000). Note that Kulik et al. (2005) also
assign a ‘semantic’ weight per point (next to the ‘geometric’ weight),
which they base on the feature class of the polyline, where the point be-
longs to and is also dependent on the user’s application domain.

The exterior points of the polylines (forming a node in the planar parti-
tion) cannot be removed. At each step, the interior point pi having the
overall lowest weight value will be removed, leading to a ‘collapse’ of tri-
angle into a short cut 1, 1i ip p . Our simplification strategy has to obey
the requirements that we have given for a planar partition, thus not all
short cuts will be allowed. We observed that a spatial configuration that
leads to a problem at first might be changed later, because another point
has been removed (that was preventing a collapse). The algorithm re-tries
removal of the blocked point in this case.

4.3 Dynamic and static polylines and how to select those

Two types of polylines that play a role in the simplification can be distin-
guished: dynamic polylines that will be simplified, i.e. interior points can
be removed as long as no intersections or degeneracies in the planar parti-

346 Martijn Meijers

tion requirements are caused by this removal; and static polylines that will
not be simplified and for which all points are fixed (these points can forbid
certain short cuts in lines that are simplified). Points of the first type are
termed dynamic points and points of the second type are termed static
points. Points that eventually will be removed by the simplification algo-
rithm have to be interior and dynamic points.

Fig. 3. Dynamic polylines will be simplified (only one in this figure), static poly-
lines can have an influence on the simplification. Note that the alternative is illus-
trated in which only the polylines that are incident to a merge boundary will be
simplified.

After a merge or split generalization operation is finished we must chose
which lines to simplify (thus select the dynamic polylines). Two viable al-
ternative approaches are:

1. Simplify the polylines that are (in case of an area merge operation)
incident to the common merge boundaries or (in case of an area split
operation) simplify the new boundaries that stem from the split opera-
tion; and

2. Simplify all polylines of the resulting new area(s).
As the simplification should be topology-aware, the static polylines in

the neighbourhood also have to be selected as input for our algorithm as
these can influence the outcome of the simplification. For this purpose, we
can use the topology structure to select the lines that are in the vicinity of
the lines that we want to simplify. We use the topology structure as an ini-
tial spatial filter (going from neighbouring areas to their related bounda-
ries); then with a second pass we can select the related boundaries based
on bounding box overlap with the union of the bounding box of all dy-
namic polylines. An alternative approach is to keep an auxiliary data struc-
ture (such as an R-tree or quad-tree) for fast selection of the polylines in

Simultaneous & Topological Safe Line Simplification 347

the vicinity. Downside of this approach is that an auxiliary structure needs
to be kept, while the topology structure is already present. However, the
initial filtering step using the topology structure can be expensive if the
new polygonal area is at the border of the domain (leading to a selection of
all edges at the border of the domain that have to be filtered on their
bounding box).

4.4 A stop criterion for the simplification

We iteratively remove points from all dynamic input polylines, until a cer-
tain optimal goal is reached. We have two main choices for defining this
optimal goal (to stop the simplification):
eps-stop Use a geometric measure as a threshold (all points having their

weight w< should be removed, where w is based on the size of the tri-
angle of 3 consecutive points in the polyline).
Using this approach, we could use a fixed throughout the whole proc-
ess of building the variable-scale hierarchy. This is not a very realistic
option as the number of polygonal areas (and thus the level of detail)
decreases when more generalization operators have been applied (when
more polygonal areas have been merged or split, the remaining bounda-
ries should also be simplified more). A better option is to determine dy-
namically the value of with every generalization step. For this we can:
 take the average or median value of all weight values as (all points

having a weight value smaller than this have to be removed);
 set an based on other criteria, like the smallest segment length of all

polylines taking part in the simplification. Such an alternative choice for
 also means that the weight values w for all interior points have to be

calculated accordingly.
count-stop Use a fixed number of points that we want to see removed.

Using a fixed number of output points as the optimal goal, we can count
the number of points in the input and try to remove a certain percentage.
Two similar, but somewhat different options in this respect are:
 take a local approach: e.g. per input polyline try to remove half of the

points (but do not remove more points from a polyline than half of its
original points); or
 take a regional approach: for all polylines being simplified, count the

total number of points and keep removing points, until in total half of
these points have been removed.

Note that both approaches can leave more points as a result than wished
for, because some of the points can be blocked by others (because topo-

348 Martijn Meijers

logical errors must be prevented), although they fulfil the condition for
removal (e.g. w<). Note also that with both approaches we can vary the
percentage of points that we want to remove (instead of half of the points)
depending on how far we want to ‘push’ the generalization. In an extreme
case, we could set the percentage to such a value that the algorithm will try
to remove all points leading to straight lines as much as possible (only to-
pological ‘problematic’ points are remaining).

4.5 To prevent topological errors

The algorithm

An outline of the procedure is depicted in Algorithm 1. For all dynamic
polylines, a doubly-linked list is created (storing the points in the order in
which they are present in the original polyline, cf. Algorithm 1, line 1).
Further, for all interior points of these polylines, a weight w is calculated.
Important points get a higher weight than less important ones.
All dynamic and interior points are inserted in a priority queue Q, ordered by their
weight values w (Algorithm 1, line 3). In our implementation we use a red-black
tree (Guibas and Sedgewick 1978) for the priority queue. Points with equal
weights are dealt with in the order of insertion. In-order traversal of the red-black
tree Q allows now to find the point with the smallest weight value, which is then
removed from Q. For point pi, its neighbours, pi 1 and pi+1 can be retrieved from

the polyline doubly-linked list. The three points together form the triangle (see
Figure 4).

Fig. 4. As b blocks the removal of pi, the blocks and blocked by lists are filled ac-
cordingly.

Simultaneous & Topological Safe Line Simplification 349

Algorithm 1 Simplification, while keeping a planar partition valid
Input: A set of dynamic polylines and a set of static polylines
Output: A set of simplified polylines
 {pre-processing}
1: Create doubly-linked list for each dynamic polyline
2: Compute weights w for all interior points of dynamic polylines
3: Add dynamic, interior points to priority queue Q based on weights
4: Create pointers between points of static polylines with only 2 points
5: Create kd-tree of all points of both dynamic and static polylines
 {simplifying}
6: while Q not empty do
7: Pop least important pi from Q
 {stop criterion, see section 4.4}
8: if stop criterion met for pi then
9: break
10: allowed True
11: if pi part of loop edge with 4 points then
12: allowed False {no more ‘tries’ for this point}
13: Retrieve (using pi-1 and pi+1 from linked list)
14: vicinity search kd-tree for points near pi using box of
15: for all b vicinity do
16: if b (pi-1, pi , pi+1) and b part of segment 1 1,i ip p then
17: allowed False {no more ‘tries’ for this point}
18: if allowed then
19: for all b vicinity do
20: if b (pi-1, pi , pi+1) and b on then
21: allowed False
22: Append b to pi.blocked_by list
23: Append pi to b.blocks list
24: if allowed then
25: Remove pi from linked list
26: Adjust weights for pi-1 and pi+1
27: Check whether pi-1 and pi+1 are still blocked, otherwise add to Q
28: Mark pi as removed in kd-tree
29: for all u pi.blocks do
30: Remove pi from u.blocked_by list
31: if u.blocked by list empty then
32: Add u to Q
 {output}
33: return Simplified polylines by traversing doubly-linked lists

The short cut that will be taken is 1, 1i ip p . Such a short cut is only al-

lowed if it does not lead to an invalid planar partition, i.e. violates one of
the requirements, as described in section 3. Any intersections of the new
short cut with other polylines or another segment of the polyline itself (i.e.
a line between two consecutive points of the polyline) have to be pre-
vented. As the partition is valid to begin with (which can be ensured by us-

350 Martijn Meijers

ing a constrained triangulation, see Ledoux and Meijers 2010; Ohori,
2010), the polylines of the planar partition do not contain any (self-) inter-
sections. An intersection of the short cut can only be created when a seg-
ment ‘enters’ via the open side 1, 1i ip p (as it is not allowed to enter

or leave the area of via either 1,i ip p or , 1i ip p ; this immediately would
lead to an intersection). A point of must thus be interacting with for an
intersection to happen and it is sufficient to check whether such a point ex-
ists, to prevent this. Points that can influence the collapse are termed
blockers. These blockers stem from:

1. the polyline itself (self-intersection); or
2. other polylines in the vicinity of (both static and dynamic).

To efficiently find those points, we use a kd-tree (not just a regular kd-

tree, but one following Bentley (1990) for which the tree does not need to
be re-organised after removal of points, but to which no extra points can be
added after initial organisation of the tree). All (interior as well as exterior)
points of all polylines taking part in the simplification are inserted in this
kd-tree (algorithm 1, line 5). The bounding rectangle around the triangle
is used to query the kd-tree to find all points in the neighbourhood of this
triangle to see if there are any blockers for creating the shortcut 1, 1i ip p .
If a blocker is found, the short cut is not taken and as pi was removed from
Q it will not turn up in the next iteration.

As the kd-tree contains the points of all dynamic polylines, a potential
blocker b can be a point that forms the triangle . If this happens we do not
check whether b blocks pi (i.e. pi 1, pi+1, nor pi itself can block removal of
pi) or no simplification could take place at all. Since a blocker b can be
removed itself later on and then a short cut for this vertex pi might be al-
lowed, a cross reference is set up between pi and b (b is registered in the
‘blocked by’-list of pi and pi is registered in the ‘blocks’-list of b).

If no blockers were found, pi can be removed from the doubly-linked
polyline list it belongs to (creating a short cut in this polyline). The point is
also marked as removed in the kd-tree. If the removed point pi was a
blocker itself (having one or more points in its ‘blocks’ list), it removes it-
self from the ‘blocked by’ list of these particular points. If for a point u its
‘blocked by’ list becomes empty (because of the removal of pi), u is placed
back again in Q, so it has a chance of being a short cut in the next iteration

Simultaneous & Topological Safe Line Simplification 351

(if then not blocked by any other point and still not having fulfilled the
condition for removal, e.g. having a weight w<). If one of the two neigh-
bouring points pi 1 or pi+1 was blocked, it is also checked whether this is
still the case (the shape of their related triangle also has changed, because
of the short cut operation).

The algorithm ends when the chosen criterion has been met, i.e. there
are no more points that can fulfil the criterion to reach the optimal goal,
and the new polylines are returned.

More cases for validity

Apart from intersection prevention by testing near points, more specific
situations have to be taken into account, because of the validity require-
ments of the planar partition. Two other conditions also have to be checked
(illustrated in Figure 5) to prevent occurrence of zero-sized polygonal ar-
eas:

Fig. 5. If taking a short cut leads to a polygonal area that has no area, we put the
end points as blockers for pi. The result is that pi is not removed, as the endpoints
of the polylines will never be removed.

1. Same polyline (see Algorithm 1, line 11): A special check is per-
formed when pi 1 or pi+1 is the endpoint of a so-called ‘loop’ polyline
(a special case where the 2 exterior points of the polyline are at the
exact same location, cf. Figure 5-left). We now have to check wheth-
er there will still be enough points in the polyline when we take away
pi (because no zero-size area is allowed). We can do this by travers-

352 Martijn Meijers

ing the linked list and check when pi 1 is a loop endpoint, whether
pi+2 is also such an endpoint (similar with pi 2 for pi+1). Note that this
is a rare case (only the two last interior points for a triangular face).

2. Different polyline (see Algorithm 1, line 16): Another check is per-
formed on whether 1, 1i ip p is already connected by another polyline
(by allowing twice such a polyline, a zero-size area would be created,
Figure 5-right). To prevent this, it is necessary to check if a potential
blocking point b returned by the kd-tree is part of such a polyline be-
tween pi 1 and pi+1: a. for a dynamic point returned by the kd-tree, it
is possible to use the doubly-linked list to navigate to the next vertex
and check whether pi 1 and pi+1 are fixed; and b. for a static point re-
turned by the kd-tree, we put an extra pointer to the other endpoint of
the static polyline if the line only consists of two points. This allows
checking whether a static point blocks the collapse of .

5 Experiments

We implemented the line simplification algorithm in our tGAP test envi-
ronment. This environment is using the PostgreSQL1 database system with
PostGIS2 extension. The algorithm is implemented in the Python3 pro-
gramming language. With the implementation we tried different alterna-
tives.

Table 1. Symbolic names of the alternatives that were tested.

 Simplify which edges?
 Merged edges only at All edges of new area
Stop criterion? nodes with degree = 2 (including merged ones)
No simplification at all none none
Count stop (regional, half # of
interior points)

m_ct ct

Eps stop (median of all weights) m_eps eps
As far as possible m_full full

In total, we tested 7 alternatives — with only merge operations applied

to the polygonal areas — for which the symbolic names are shown in Ta-

1 www.postgresl.org
2

3 www.python.org
 postgis.refractions.net

http://www.postgis.refractions.net
http://www.python.org
http://www.postgresl.org

Simultaneous & Topological Safe Line Simplification 353

ble 1. The first alternative (labelled ‘none’ in Table 1) we tested, was
merging edges at nodes with degree=2, but not applying any simplifica-
tion. This was meant as a reference test as we already knew that this would
lead to too many coordinates per boundary. The remaining strategies come
from varying two alternatives: which lines to simplify (only the merged
boundaries, prefixed with ‘m_’ in Table 1, or all boundaries of the new
area); and when to stop the generalization (based on the median -value for
all boundaries being simplified – dynamic eps-stop –based on the number
of points – the regional count-stop approach, or simplify as far as possible,
respectively labelled ‘eps’, ‘ct’ or ‘full’).

Table 2 shows the number of polylines and their average number of co-
ordinates for the datasets we used in our experiment. We tested with three
datasets representing different types of geographic data. We used a topog-
raphic, urban dataset; a topographic, rural dataset; and a land use dataset.
Both topographic datasets represented infrastructure objects, which were
not present in the land use dataset.

Table 2. For the datasets used in our experiment, the number of polygonal areas,
polylines and average number of coordinates per polyline at start.

Dataset # of areas
at start

of polylines
at start

avg # coords
per polyline

total # coords

Topographic, urban 9,381 24,528 4.6 112,828
Topographic, rural 3,286 8,212 10.6 87,047
Land use 5,537 16,592 7.2 119,462

Figure 6 graphically shows some results of a few of the alternatives

tested for the land use dataset. Figure 6(a) shows the result of keeping all
original coordinates of the boundaries, thus not simplifying them. Tiny de-
tails and too many coordinates in the boundaries are the result. It can be
seen in Figure 6(b) that the count-stop approach applied on all boundaries
of the new area leads to a very simplified and coarse version. Both alterna-
tives in which only the merged boundaries are simplified leave more de-
tails (see Figure (c) and (d)), where the count-stop approach is a bit more
‘aggressive’ than the eps-stop approach.

This is also illustrated by the graphs in Figure 7. In each graph, it is
shown how many coordinates there are left for the total map, after every
generalization step. As expected, the line at the top of the graph is the ref-
erence situation, where no coordinates are weeded. As already visually il-
lustrated in Figure 6, it is also clear that the approach, where only the
merged boundaries play a role in the simplification, is gentler in removing
coordinates compared to when all edges of the new area will be simplified.

354 Martijn Meijers

The main cause for this is that if all edges of the new area are simplified,
they will be simplified more often, compared to the situation where only
the merged edges are simplified (i.e. for every generalization step in which
a polygonal area is the area to which a neighbour is merged, its boundary
edges will again be simplified).

Fig. 6. From the land use dataset: ‘Slices’ of variable-scale data that show the re-
sult of the different alternatives for the line simplification, plotted at the same map
scale (within brackets the symbolic name of the tested alternative). Note that the
simplification of the boundaries changes the size of the areas and influences the
order in which the areas are merged; therefore, the boundaries on the 4 maps do
not exactly correspond to each other.

(a) No simplification (none)

(b) Count stop for all edges of new area

(ct)

(c) Epsilon stop, using only merged

edges (m_eps)

(d) Count stop, using only merged

edges (m_ct)

Simultaneous & Topological Safe Line Simplification 355

(c) Land use

Fig. 7. For each dataset, the graph shows the total number of coordinates for the
complete map, in each generalization step (i.e. the number of coordinates in a
‘slice’ of variable-scale data).

Table 3 illustrates the fact that simplifying the boundaries over-and-over
again also has a negative effect on the contents of the hierarchy. Although
the graphs from Figure 7 show that there are less coordinates on average
on every ‘slice’ derived from the variable-scale structures when all boun-
daries of a new face are simplified, the opposite is true for the contents of

(a) Topographic, urban

(b) Topographic, rural

356 Martijn Meijers

the data structures. More coordinates need to be stored, because for every
line that is simplified, a new version with the simplified geometry also has
to be stored in the data structures (e.g. compare alternative ‘m_ct’ with
‘ct’—in all cases more coordinates are stored for the ‘ct’ alternative).
Therefore, simplifying only the merged edges is to be preferred over sim-
plifying all the edges of a new area.

Table 3. Resulting number of polylines in the tGAP hierarchy with their average
number of coordinates per polyline and the sum of coordinates in the total hierar-
chy.

(a) topographic, urban dataset

simplify type total # polylines avg # coords
per polyline

total # coordinates
in hierarchy

None 36,447 7.1 256,969
Ct 60,390 4.3 260,777
Eps 62,006 4.6 284,289
Full 55,084 3.7 205,870
m_ct 36,449 4.6 167,431
m_eps 36,438 4.8 176,350
m_full 36,403 3.8 139,187

(b) topographic, rural dataset

simplify type total # polylines avg # coords
per polyline

total # coordinates
in hierarchy

None 12,347 22.4 276,335
Ct 23,553 8.5 200,860
Eps 24,539 10.1 247,767
Full 19,640 6.7 131,538
M_ct 12,345 11.1 136,940
M_eps 12,343 13.0 160,066
M_full 12,349 7.8 96,665

(c) land use dataset

simplify type total # polylines avg # coords
per polyline

total # coordinates
in hierarchy

None 26,771 15.4 413,250
Ct 54,166 5.8 312,394
Eps 55,603 6.3 348,118
Full 45,040 4.8 216,174
M_ct 26,770 7.5 200,132
M_eps 26,768 8.4 223,623
M_full 26,769 5.3 141,019

Simultaneous & Topological Safe Line Simplification 357

6 Conclusion and future work

We described an algorithm to simplify simultaneously a subset of poly-
lines in a planar partition in a variable-scale context. For this, we formal-
ized what we consider a valid variable-scale planar partition. The algo-
rithm is aware not to introduce any topological errors. Furthermore, we
gave a theoretical description of the options that we have when employing
this algorithm in practice. Another contribution is that we analysed how
much the average number of points in the boundaries of the polygonal ar-
eas would grow without simplification to choose the best simplification
strategy, also from the perspective of the amount of data to be stored in the
data structures. Further we showed some visual results.

Some notes on future work:
 We think that an integrated way of formalizing 2D maps plus 1D for

scale in a 3D space (leading to 3D volume objects, but where not all
axes have the same geometric meaning) could lead to a better axiomatic
description of what we consider to be a valid variable-scale hierarchy.
This could also lead to an even more continuous variable-scale structure
(opposed to our current solution, in which discrete ‘jumps’ still exist) in
which it is possible to gradually morph polylines from the state before
applying an aggregation or split operation to the state afterwards (for a
technical implementation it might be sufficient to store only the begin-
ning and end states in such a model). As such, it could enable smooth
zooming of vector data for an end user.

 We plan to implement the requirements for valid planar partition and
vario-scale hierarchy as check constraints in a DBMS (as technical im-
plementation of the conceptual model).

References

Bader M. and Weibel R. (1997) Detecting and resolving size and proximity con-
flicts in the generalization of polygonal maps. pages 1525–1532.

Barkowsky T., Latecki L. J., and Richter K. F. (2000) Schematizing Maps: Sim-
plification of Geographic Shape by Discrete Curve Evolution. In Spatial Cog-
nition II, volume 1849 of Lecture Notes in Computer Science, pages 41–53.
Springer Berlin / Heidelberg.

Bentley J. L. (1990) K-d trees for semidynamic point sets. In SCG ’90: Proceed-
ings of the sixth annual symposium on Computational geometry, pages 187–
197. ACM, New York, NY, USA.

Da Silva A. C. G. and Wu S. T. (2006) A Robust Strategy for Handling Linear
Features in Topologically Consistent Polyline Simplification. In AMV Mon-

358 Martijn Meijers

teiro and CA Davis, editors, GeoInfo, VIII Brazilian Symposium on Geoin-
formatics, 19-22 November, Campos do Jordão, São Paulo, Brazil, pages 19–
34.

De Berg M., Van Kreveld M., and Schirra S. (1998) Topologically Correct Subdi-
vision Simplification Using the Bandwidth Criterion. Cartography and Geo-
graphic Information Science, 25:243–257.

Douglas D. H. and Peucker T. K. (1973) Algorithms for the reduction of the num-
ber of points required to represent a digitized line or its caricature. Carto-
graphica: The International Journal for Geographic Information and Geovisu-
alization, 10(2):112–122.

Dyken C., Dæhlen M., and Sevaldrud T. (2009) Simultaneous curve simplifica-
tion. Journal of Geographical Systems, 11(3):273–289.

Gröger G. and Plümer L. (1997) Provably correct and complete transaction rules
for GIS. In GIS ’97: Proceedings of the 5th ACM international workshop on
Advances in geographic information systems, pages 40–43. ACM, New York,
NY, USA.

Guibas L. J. and Sedgewick R. (1978) A dichromatic framework for balanced
trees. In 19th Annual Symposium on Foundations of Computer Science, 1978,
pages 8–21.

Kulik L., Duckham M., and Egenhofer M. (2005) Ontology-driven map generali-
zation. Journal of Visual Languages & Computing, 16(3):245–267.

Ledoux H. and Meijers M. (2010) Validation of Planar Partitions Using Con-
strained Triangulations. In Proceedings Joint International Conference on
Theory, Data Handling and Modelling in GeoSpatial Information Science,
pages 51–55. Hong Kong.

Meijers M., Van Oosterom P., and Quak W. (2009) A Storage and Transfer Effi-
cient Data Structure for Variable Scale Vector Data. In Advances in GIS-
cience, Lecture Notes in Geoinformation and Cartography, pages 345–367.
Springer Berlin Heidelberg.

Ohori K. A. (2010) Validation and automatic repair of planar partitions using a
constrained triangulation. Master’s thesis, Delft University of Technology.

Plümer L. and Gröger G. (1997) Achieving integrity in geographic information
systems—maps and nested maps. Geoinformatica, 1(4):345–367.

Ramer U. (1972) An iterative procedure for the polygonal approximation of plane
curves. Computer Graphics and Image Processing, 1(3):244–256.

Saalfeld A. (1999) Topologically Consistent Line Simplification with the Doug-
las-Peucker Algorithm. Cartography and Geographic Information Science,
26:7–18.

Van Oosterom P. (1990) Reactive Data Structures for Geographic Information
Systems. Ph.D. thesis, Leiden University.

Van Oosterom P. (2005) Variable-scale Topological Data Structures Suitable for
Progressive Data Transfer: The GAP-face Tree and GAP-edge Forest. Cartog-
raphy and Geographic Information Science, 32:331–346.

Visvalingam M. and Whyatt J. D. (1993) Line generalisation by repeated elimina-
tion of points. The Cartographic Journal, 30(1):46–51.

	Simultaneous & topologically-safe line simplification for a variable-scale planar partition
	1 Introduction
	2 Related work
	3 A valid planar partition at a fixed and at a variable map scale
	4 Line simplification
	4.1 The need for line simplification
	4.2 An overview of the simplification procedure
	4.3 Dynamic and static polylines and how to select those
	4.4 A stop criterion for the simplification
	4.5 To prevent topological errors

	5 Experiments
	6 Conclusion and future work
	References

