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Abstract

In all scienti�c domains causality plays a sig-
ni�cant role. This study focused on eval-
uating and re�ning e�cient algorithms to
learn causal relationships from observational
data. Evaluation of learned causal output
is di�cult, due to lack of a gold standard
in real-world domains. Therefore, we used
simulated data from a known causal network
in a medical domain|the Alarm network.
For causal discovery we used three variants
of the Local Causal Discovery (LCD) algo-
rithms, that are referred to as LCDa, LCDb
and LCDc. These algorithms use the frame-
work of causal Bayesian Networks to repre-
sent causal relationships among model vari-
ables. LCDa, LCDb and LCDc take as input
a dataset and a partial node ordering, and
output purported causes of the form vari-

able Y causally in
uences variable Z. Using
the simulated Alarm dataset as input, LCDa
had a false positive rate of 0.09, LCDb 0.08,
and LCDc 0.04. All the algorithms had a
true positive rate of about 0.27. Most of the
false positives occurred when a causal rela-
tionship was confounded. LCDc output as
causal only those causally confounded pairs
that had very weak confounding. We identify
and discuss the causally confounded relation-
ships that often seem to induce false positive
results.

1 INTRODUCTION

Seeking causes for various phenomena is a signi�cant
part of human endeavor. Causal knowledge aids plan-
ning and decision making in almost all �elds. For
example, in the domain of medicine, determining the
cause of a disease helps in prevention and treatment.

Well designed experimental studies, such as random-
ized control trials, are typically employed in assessing
causal relationships. Here the value of the variable
postulated to be causal is set randomly and its ef-
fects measured. These studies are appropriate in cer-
tain situations, for example, animal studies and stud-
ies involving human subjects that have undergone a
thorough procedural and ethical review. Experimental
studies may not, however, be feasible in many contexts
due to ethical, logistical, or cost considerations. These
practical limitations of experimental studies heighten
the importance of exploring, evaluating and re�ning
techniques to learn more about causal relationships
from observational data, for example, data routinely
collected in astronomy, earth sciences or healthcare.
The goal is not to replace experimental studies, which
are extremely valuable in science, but rather to aug-
ment and guide experimental studies when feasible.

This paper introduces three algorithms called LCDa,
LCDb and LCDc that are designed for e�cient discov-
ery of possible causal relationships from large observa-
tional databases. In this study we apply them to a
simulated dataset obtained from a known causal net-
work (Alarm) and evaluate the output. We have pre-
viously applied LCD (Cooper, 1997) to a population-
based infant birth and death dataset of 41,000 in-
stances and 87 attributes. We obtained nine relation-
ships out of which eight seemed plausibly causal (Mani
& Cooper, 1999). The present simulation study is a
prelude to further work using large real-world medi-
cal datasets. By improving performance from insights
gained through simulation experiments, such as the
one reported here, we expect later to do better on real-
world datasets.

2 METHODS

2.1 Assumptions for Causal Discovery

In the research reported here, we use causal Bayesian
networks to represent causal relationships among



model variables. This section provides a brief intro-
duction to causal Bayesian networks, as well as a de-
scription of the assumptions we used to apply these
networks for causal discovery.

A causal Bayesian network (or causal network for
short) is a Bayesian network in which each arc is in-
terpreted as a direct causal in
uence between a parent
node (variable) and a child node, relative to the other
nodes in the network (Pearl, 1991). Figure 1 illus-
trates the structure of a hypothetical causal Bayesian
network structure, which contains �ve nodes. Due to
limited space, the states of the nodes and the proba-
bilities that are associated with this structure are not
shown.

76540123v1

~~||
||
||
||
|

!!B
BB

BB
BB

BB
History of
Smoking

Chronic
Bronchitis

76540123v2

!!B
BB

BB
BB

BB
76540123v3

~~||
||
||
||
|

!!B
BB

BB
BB

BB
Lung Cancer

Fatigue 76540123v4 76540123v5
Mass Seen on
Chest X-ray

Figure 1: A hypothetical causal Bayesian network
structure

The causal network structure in Figure 1 indicates, for
example, that a History of Smoking can causally in
u-
ence whether Lung Cancer is present, which in turn
can causally in
uence whether a patient experiences
Fatigue or presents with a Mass Seen on Chest X-ray.

The causal Markov condition gives the indepen-
dence relationships1 that are speci�ed by a causal
Bayesian network:

A variable is independent of its non-
descendants (i.e., non-e�ects) given just its
parents (i.e., its direct causes).

According to the Markov condition, the causal network
in Figure 1 is representing that the chance of a Mass

Seen on Chest X-ray will be independent of a History

of Smoking, given that we know whether Lung Cancer
is present or not. While the causal Markov condition
speci�es independence relationships among variables,
the causal faithfulness condition speci�es depen-

dence relationships:

Variables are independent only if their in-
dependence is implied by the causal Markov
condition.

1We use the terms independence and dependence in this
section in the standard probabilistic sense.

For the causal network structure in Figure 1, three ex-
amples of the causal faithfulness condition are (1) His-
tory of Smoking and Lung Cancer are probabilistically
dependent, (2) History of Smoking and Mass Seen on

Chest X-ray are dependent, and (3) Mass Seen on

Chest X-ray and Fatigue are dependent. The intuition
behind that last example is as follows: a Mass Seen

on Chest X-ray increases the chance of Lung Cancer

which in turn increases the chance of Fatigue; thus, the
variables Mass Seen on Chest X-ray and Fatigue are
expected to be probabilistically dependent. In other
words, the two variables are dependent because of a
common cause (i.e., a confounder).

The causal Markov and faithfulness conditions de-
scribe probabilistic independence and dependence re-
lationships, respectively, that are represented by a
causal Bayesian network. In causal discovery, we do
not know the probabilistic relationships among vari-
ables precisely, because we only have a �nite amount
of data. Thus, we make the following statistical test-
ing assumption:

A statistical test performed to determine
independence (or alternatively dependence)
given a �nite dataset will be correct relative
to independence (dependence) in the joint
probability distribution that is de�ned by the
causal process under study.

That is, we assume our statistical test gives valid inde-
pendence and dependence results about the generating
causal process. We are empirically investigating the
dependence/independence hypotheses in context using
varying sample sizes. In general, the greater the num-
ber of records in a dataset, the more likely it is that
the statistical testing assumption will hold. But at
very large sample sizes spurious correlations can also
emerge eroding the validity of statistical tests. The
reader is referred to chapters 8{11 of the book (Gly-
mour & Cooper, 1999) for a detailed discussion of this
and other related issues. Since a simulated dataset
was used, the sample size could be varied easily in our
experiments.

2.2 An Algorithm for Causal Discovery

In this section, we introduce the LCD algorithm on
which we based several variant algorithms. LCD as-
sumes the following:

Assumption 1: The causal Markov condition
Assumption 2: The causal faithfulness condi-
tion
Assumption 3: The statistical testing assump-
tion

In addition, LCD makes the following assumption:



Assumption 4: Given measured variables X,
Y , and Z, if Y causes Z, and Y and Z are not
confounded, then one of the causal networks in
Figure 2 must hold.

Assumption 4 implicitly states that X is not causally
in
uenced by Y or by Z. As we discuss in later sec-
tions, in our experiments we chose X so that this as-
sumption is tenable.

Before introducing the LCD algorithm in more detail,
we de�ne some terms. Let IndependentT (A, B) denote
that A and B are independent according to test T ap-
plied to our dataset. Let IndependentT (A, B given C)
denote that A and B are independent given C, accord-
ing to T . Finally, let DependentT (A, B) denote that
A and B are dependent according to T 2. These in-
dependence and dependence tests are labeled as given
below for easy reference.

Test1. DependentT (X, Y)
Test2. DependentT (Y, Z)
Test3. DependentT (X, Z)
Test4. IndependentT (X, Z given Y)

If all these four tests are satis�ed then LCD outputs
that Y causally in
uences Z. The �rst network in Fig-
ure 2 violates Test1, and thus, LCD is unable to detect
that Y causally in
uences Z in such situations. Un-
der Assumptions 1 through 3, the other three networks
in Figure 2 satisfy Test1 through Test4. In (Cooper,
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Figure 2: Causal models in which Y causes Z.

1997), it is shown that if Y and Z are confounded, then
one or more of the four tests will be violated. As an
example, Figure 3 shows an important case in which
Y and Z are confounded by a hidden variable H. For
this causal network, it follows from Assumptions 1 and
2 that X and Z will be dependent given Y , and thus,
Test4 will fail.

2Although the three tests in this paragraph should tech-
nically be distinguished from each other by using separate
labels, such as T1, T2, and T3, for simplicity of notation
we use a single label T .
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Figure 3: Causal model in which X causes Y , and Y

and Z are dependent due to confounding by a hidden
variable(s) represented by H.

To summarize, under Assumptions 1 through 4, when
Y causally in
uences Z and these two variables are
unconfounded, the four tests hold (unless X and Y

are independent). Conversely, when Y and Z are con-
founded (or when X and Y are independent), one or
more of the four tests will fail. From these proposi-
tions, we can conclude that if the four tests hold, then
one of the three causal networks (2,3,4) in Figure 2
must hold, and thus, we can determine that Y causes
Z and the two variables are unconfounded.

2.3 LCD variants|LCDa, LCDb and LCDc

The motivation for considering variants of LCD came
from the observation that in all the false positive
\causal" output from LCD based on Alarm data, the
independence test (Test4) was returned as positive
when it should have failed. LCD output 45 true
causal relationships, 21 causally-confounded and 21
confounded by a common ancestor (Section 2.5.1 con-
tains a detailed description of these categories). The
dependence tests (Test1 through Test3) did not fail.
This led us to explore more stringent tests of indepen-
dence. For example, performing an increased number
of independence tests for the same Y Z pair using dif-
ferent X nodes might improve independence testing
resulting in a more accurate assessment of the causal
in
uence of Y on Z. This was our working hypothe-
sis in the design of LCD variants LCDa, LCDb, and
LCDc.

We now describe these variants in greater detail.
The LCDa, LCDb and LCDc algorithms apply Test1
through Test4 in exploring a database for possible
causal relationships. These variants make an addi-
tional assumption apart from the four given earlier.

Assumption 5: The variables in the dataset are
assigned a partial ordering.

The algorithms are given as input an ordered set of
variables V. Let the total number of observed vari-
ables be n. A partial ordering will give k partitions
of the variables, where k is less than n. If the vari-
ables are completely ordered, the number of partitions
k will be equal to n. A partial ordering is a su�-
cient input to the algorithm. Even though a partial
ordering with one partition containing all the variables



will satisfy this assumption, for our causal discovery
framework to output purported causal relationships
we should have at least three non-empty partitions.
We obtained a partial ordering of the variables of the
Alarm network by performing a modi�ed topological
sort on the Alarm network. In a real-world dataset,
one could do a temporal ordering or ask an expert to
provide an ordering of the variables. Table 1 gives the

Table 1: Partitioning (ordering) of the variables of the
hypothetical network with �ve nodes

Partition Variables

p0 v1 (History of Smoking)

p1 v2,v3 (Chronic Bronchitis, Lung Cancer)

p2 v4,v5 (Fatigue, Mass seen on Chest X-ray)

partial ordering of the variables of the network given
in Figure 1. In general, the �rst partition (p0) con-
tains the root node(s) and the last one (pk) the leaf
nodes (nodes having no descendents). The algorithm
evaluates each triplet XYZ satisfying the following two
constraints.

1. The nodes of the triplet belong to di�erent parti-
tions.

2. Let there be k partitions p0 . . . pk. If X is in pi,
Y is in pj , and Z is in pk, then i < j < k.

The algorithms LCDa, LCDb and LCDc perform
Test1 through Test3 for all such triplets XYZ in the
database. Test1 through Test3 output many triplets
XYZ such that for the same pair YZ there often is
more than one X. In such situations Test4 could be
taken as positive if it is satis�ed for any one such triplet
(LCDa), satis�ed by any two such triplets (LCDb) or
satis�ed by all such triplets (LCDc). All three of these
algorithms were used in the causal discovery study re-
ported here. Note that if there is only one triplet for
a pair Y Z, LCDa, LCDb and LCDc perform Test4
on just that one triplet XY Z. Simple variations of
the Independence and Dependence tests described in
(Cooper, 1997) were used. Both tests have O(m) time
complexity, where m is the number of records (cases)
in the database. If all four tests are passed, LCDa,
LCDb and LCDc output that Y causally in
uences Z
and the two variables are unconfounded (under As-
sumptions 1{5), and the probability distribution of Z
given Y is displayed.

2.4 Related work

Traditional statistical approaches using �2 tests or
logistic regression can establish dependence between

variables. Likewise, machine learning algorithms such
as decision tree learners (e.g., C4.5 and CART), rule
inducers (e.g., C4.5Rules and FOCL) and neural net-
works can build useful domain models from data and
capture the inter-dependence among the variables.
But none of these techniques is intended to establish
causal relationships of the form Y causally in
uences
Z.

Structural equation models (SEMs) (Bollen, 1989), rep-
resent causal relationships, thus going beyond correla-
tion and dependence. The emphasis in SEM research
is on hypothesis testing of manually speci�ed mod-
els, rather than on automated search over the space of
models. Typically the SEM assumes linear relation-
ships (with statistical noise) among the model vari-
ables than modeling with discrete variables, although
more recently non-linear relationships are modeled.

A review of the philosophical literature on causality is
beyond the scope of this paper. For a detailed discus-
sion of the relationship between statistical association
and causation, including philosophical issues, see for
example (Fetzer, 1989) and (Salmon, 1997).

Constraint-based approaches to causal discovery were
put forward by Pearl and Verma (Pearl & Verma,
1991) and by Spirtes, Glymour, and Scheines (Spirtes
et al., 1991). The PC and FCI algorithms, for instance,
take a global approach to causal discovery and output
a graph with di�erent types of edges between all the
variables to represent for example that X causes Y , X
does not cause Y , or the causal direction is undeter-
mined (Spirtes et al., 1993). The FCI can also model
latent variables.

Earlier research on learning Bayesian networks from
data using a Bayesian approach (Cooper & Herskovits,
1992; Heckerman et al., 1995) has simultaneouslymod-
eled all the causal relationships among the model vari-
ables. These global approaches have worst-case search
time complexities that are exponential in the number
of measured variables V . LCD constrains the search
space to triplets of variables.

LCD and its variants (LCDa, LCDb and LCDc) output
only causes of the form Y causes Z and take a local
approach to causal discovery (evaluate only triplets of
the formXY Z). By searching only for pairwise causal
relationships, they trade o� completeness for e�ciency.

Recently, Silverstein and others have used a variant
of LCD to perform market basket analysis to discover
causal association rules (Silverstein et al., 2000). Their
algorithm uses in addition patterns such as A! C  
B to infer that A and B cause C, assuming no hidden
variables and confounding.



2.4.1 Time Complexity of LCDa, LCDb and

LCDc

We assume here that the number of levels (states) of
any of the variables in V is bounded by some constant.
We have used a statistical test based on a Bayesian
scoring metric for establishing dependence and inde-
pendence. The time complexity is O(m) where m is
the size of the dataset (number of instances). If there
are n variables in the database, the time complexity of
the LCD variants is O(mn2r), where m is the number
of records in the database, n is the number of variables
and r is the number of variables of type X. If we re-
strict the number of variables of type X in the search,
so that r is bounded above by some constant, then the
time complexity is O(mn2). Likewise, if we focus on
a bounded number of e�ects of interest (variable Z),
the time complexity becomes O(mn). The space com-
plexity of these algorithms is also O(mn), which is the
size of the database.

The e�ciency can be further improved if we are in-
terested in just answering the question whether some
particular Yi causes a particular Zj . Based on the or-
dering (partitioning) only a limited number of X vari-
ables will be required to determine the causal in
uence
of Yi on Zj . If we restrict our choice to a constant
number k of such variables, the time complexity and
space complexity can be reduced to just O(km) and
hence O(m). Using this framework we can assess the
causal in
uence of any one arbitrary node Y on Z in
O(m) time and space requirements. Note though that
the LCD variants are incomplete algorithms i.e. in gen-
eral they cannot �nd all the unconfounded causal in
u-
ences. Hence the absence of an output of the form Yi
causally in
uences Zj , does not guarantee the absence
of such a relationship between them.

Further, all these algorithms can be implemented in
an anytime framework, to output the causes as they
are discovered. The time complexity of LCDa, LCDb
and LCDc makes them appropriate for exploring pos-
sible causal relationships in databases that contain a
very large number of records (on the order of hundreds
of thousands) and a moderately large number of mea-
sured variables per record (on the order of hundreds).

2.5 Experimental Methods

In the evaluation of causal output, we have to consider
two dimensions|qualitative or structural and quanti-
tative or parameterization. The output of the algo-
rithm can be evaluated for causal in
uences|both in
terms of structure and parameterization of the vari-
ables of interest. These are compared with the true
structure and scored as explained below.

2.5.1 The Alarm network and dataset

In this study, we used as gold standard a causal model
that was constructed by an expert|the Alarm causal
Bayesian network, which contains 37 nodes and 46
causal arcs. Each node can have two to four possi-
ble states. Beinlich developed Alarm to model poten-
tial interactions in the operating room while providing
anesthesia to the patient (Beinlich et al., 1990). His
expertise as an anesthesiologist and medical knowledge
from literature went into the development of the Alarm
network. Alarm has been used extensively in evalua-
tions of Bayesian network induction. We believe it
remains a useful standard benchmark. The total num-
ber of possible distinct pairs in the Alarm network is
666. Each pair (Y,Z) is categorized as follows:

Causal and not confounded(C) There is a directed
path from Y to Z, and there is no common ances-
tor X that has a directed path to Y and a directed
path to Z that does not traverse Y. The nodes Lung
Cancer and Mass seen on Chest X-ray in Figure 1 are
causal.

Causally-confounded (CC) There is a directed path
from Y to Z, and there is a common ancestor X that
has a directed path to Y, and a directed path to Z

that does not traverse Y. The nodes Chronic Bron-
chitis and Fatigue in Figure 1 are causally-confounded
by History of Smoking and Lung Cancer.

Confounded-only (CO) There is no directed path be-
tween Y and Z, and there is a common ancestor X
that has a directed path to Y, and a directed path to Z
that does not traverse Y. The nodes Chronic Bronchi-
tis and Lung Cancer in Figure 1 have the confounded-
only relationship.

Independent (I) There is no d-connecting path (Pearl,
1991) between Y and Z. There are no independent
node pairs in Figure 1.

Table 2: Categories of node pairs in the Alarm network

Description Abbreviation Number

Causal C 167

Causally-confounded CC 56
Confounded-only CO 78

Independent I 365
Total 666

Table 2 gives the distribution of these di�erent cate-
gories for the actual ALARM network. Note that for
causal and causally-confounded pairs, directionality is
also to be considered while evaluating the output of an
algorithm. When categorizing a pair (Y,Z) as causal or
causally-confounded, the direction of the arc between
Y and Z is important. If the direction is incorrect,
two types of mis-categorization can occur: causally-

reversed and causally-confounded-reversed. But since
in the study reported here, we assume an ordering of



the variables, the causally-reversed and the causally-

confounded-reversed are not possible. For causal dis-
covery we generated a set of 5000 instances by simu-
lation from the Alarm network. The number of these
instances that we applied in our experiments varied
from 50 to 5000.

2.5.2 Evaluation Metrics

Error metrics have been proposed to predict the dis-
tribution of Z given that Y is observed and also to pre-
dict the distribution of Z given that Y is manipulated
(Cooper & Yoo, 1999). We adapted these metrics. In
particular, since our study focused on causal discovery
from observational data, we derive the following met-
ric (see Equation 1) where we manipulate the nodes in
the true Alarm network but use the simulated data as
observational. In Equation 1, y refers to an arbitrary
state of Y and z an arbitrary state of Z. The nota-
tion manip(Y = y) means that Y is manipulated to
the state y. PA(Z = zjmanip(Y = y)) is the condi-
tional probability inferred from Alarm when observing
Z is z while Y is manipulated to be y. If Y causes Z
and the two variables are not confounded, then in the
large sample limitPA(Z = zjmanip(Y = y)) will equal
PE(Z = zj(Y = y)), where PE(Z = zj(Y = y)) is an
estimate from the dataset of the conditional probabil-
ity of Z given Y . rY and rZ denote the number of
states of variable Y and Z respectively. The manipu-
lation observation prediction error for a pair of nodes
Y; Z is computed as follows:

MOPErrY;Z (D) =
X

y

1

rY
[
1

rZ
:

P
z
jPA(Z = zjmanip(Y = y))� PE (Z = zj(Y = y))j] (1)

Equation 1 derives the average absolute error in the
predicted probabilities for the states of Z given a uni-
form random manipulation of Y . The metric was com-
puted for 534 pairs3 out of the total possible 666 pairs
(Y,Z). PE(Z = zj(Y = y)) was estimated from each of
the datasets and error metrics were computed for the
12 di�erent dataset sizes.

2.5.3 Experimental Runs

LCDa, LCDb and LCDc were run as follows. We used
12 di�erent dataset sizes, varying from 50 to 5000
instances. The causal output was categorized as de-
scribed in section 2.5.1. Due to the ordering schema
used, the categories of causally-reversed and causally-

confounded-reversed are not output by LCDa, LCDb,
and LCDc. This reduces the false positive base (de-
nominator) to 4994, which is used to calculate the false
positive rate (FPR). We used the total causal pairs in
Alarm (167) as the base for computing the true pos-
itive rate (TPR). For each causal output, error rates

3The number of pairs are lower due to the ordering of
the nodes.

4This was obtained as follows. Total number of pairs in
Alarm (666) minus the unconfounded causal pairs (167).

were derived using Equation 1. Mean errors were com-
puted separately for each category of output (causal,
causally-confounded, and confounded-only) for each
training set size.

3 RESULTS AND DISCUSSION

Table 3: LCDa output at di�erent dataset sizes. In-
tegers indicate instance counts and reals denote mean
error rates.

Inst C C err CC CC err CO CO err

50 15 0.0530 7 0.0732 0 0

100 24 0.0501 9 0.0727 4 0.2688
200 29 0.0374 14 0.0666 4 0.2282

300 32 0.0290 16 0.0699 8 0.2007
400 32 0.0260 20 0.0591 7 0.1912

500 33 0.0251 21 0.0611 6 0.1878
750 32 0.0202 24 0.0509 5 0.1774

1000 36 0.0185 25 0.0435 6 0.1944
2000 41 0.0115 38 0.0469 2 0.1809

3000 43 0.0108 42 0.0457 2 0.1379
4000 44 0.0097 41 0.0430 2 0.1375

5000 45 0.0102 43 0.0378 1 0.0759

Inst{Instances, C{Causal, CC{Causally-confounded, CO{

Confounded-only, err{error

Table 4: LCDb output at di�erent dataset sizes

Inst C C err CC CC err CO CO err

50 15 0.0530 6 0.0745 0 0

100 20 0.0444 9 0.0727 1 0.3069
200 27 0.0374 11 0.0568 2 0.2545

300 31 0.0286 16 0.0699 2 0.2059
400 32 0.0260 17 0.0633 1 0.2281

500 33 0.0251 18 0.0608 1 0.2331
750 32 0.0202 20 0.0485 2 0.1988

1000 35 0.0183 25 0.0435 1 0.2426
2000 41 0.0115 34 0.0359 0 0

3000 43 0.0108 38 0.0347 0 0
4000 44 0.0097 38 0.0340 0 0

5000 45 0.0102 39 0.0316 0 0

Tables 3, 4, and 5 summarize the respective perfor-
mance of LCDa, LCDb and LCDc. Figure 4 gives
the true positive rates (TPR) and false positive rates
(FPR) for these LCD variants. Regarding TPR, LCDa
and LCDb converge at the dataset size of 2000, and
LCDc approaches LCDa and LCDb curves at the
training set size of 3000. On the other hand, the
FPR is consistently di�erent across the datasets, with
FPR.c < FPR.b < FPR.a. With LCDc only one
false positive category (causally-confounded) is out-
put. This is also true of LCDb with a training set size



Table 5: LCDc output at di�erent dataset sizes

Inst C C err CC CC err CO CO err

50 15 0.0530 5 0.0302 0 0
100 19 0.0444 2 0.0341 0 0

200 25 0.0388 6 0.0286 0 0
300 24 0.0283 5 0.0534 0 0

400 25 0.0273 6 0.0431 0 0
500 26 0.0270 6 0.0450 0 0

750 24 0.0213 9 0.0295 0 0
1000 30 0.0184 10 0.0203 0 0

2000 38 0.0112 19 0.0164 0 0
3000 42 0.0109 19 0.0138 0 0

4000 42 0.0097 18 0.0116 0 0
5000 44 0.0104 19 0.0126 0 0

of 2000 and above. The confounded-only pattern out-
put of LCDa reduces to 1 at the training set size of
5000.

The TPR for LCDa and LCDb is 0.27 (45 causal pairs
out of the total possible 167) when all the 5000 in-
stances are used. The TPR for LCDc is 0.26 (44 causal
pairs). These three LCD variants can in theory detect
only 53 out of this 167. This is because the algorithms
cannot detect causes which originate from the �rst par-
tition. Twelve root nodes in Alarm formed the �rst
partition (p0), and there are 114 causal relationships
originating from any one of these root nodes. This
shows that the algorithms actually �nd more than 80
percent of the true causal relationships they can pos-

sibly �nd.
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Figure 4: TPR and FPR of structural error for the
LCDa, LCDb and LCDc algorithms

The manipulation-observation error for the relation-
ships that are output by the three algorithms are given
in Tables 3, 4, and 5 (see the C err, CC err, and
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Figure 5: Causal and causally-confounded error rates
of LCDa, LCDb and LCDc

the CO err columns). Figure 5 graphically displays
these errors. In Figure 5, the dark lines show the error
in predicting the probability distribution of Z, given
manipulation of Y , even when an algorithm correctly
concludes that Y causes Z (C err). These errors are
due to estimating a conditional probability using a �-
nite sample of instances. The lighter lines (CC err

and CO err) indicate errors due to sample size and to
incorrectly assuming that Y and Z are unconfounded.
Remarkably, LCDc has an error rate that reduces al-
most to sample size induced error. This result sug-
gests that any confounded relationships being output
by LCDc as causal and unconfounded are indeed only
very weakly confounded.

LCDb and LCDc make use of more independence tests
when there is more than one X variable for a pair
Y; Z. This results in elimination of pairs with rela-
tively higher manipulation-observation error which is
an index of the parameters of the X;Y pair. (See
CC-error plots in Figure 5) Qualitatively we identi�ed
the causally-confounded patterns which were output
by LCDa but not by LCDb and LCDc. Figure 6 shows
a representative example.
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Figure 6: A causally-confounded pattern output by
LCDa, but not by LCDb or LCDc. A double arrow
denotes a path length greater than one.



In this example LCDa output Y causally in
uences
Z, while LCDb and LCDc did not. The indepen-
dence test|(IND (x1; ZjY )) was positive while (IND
(x2; ZjY )) was negative. Since LCDa requires only one
positive independence test, it output Y ! Z. This
can be explained by the fact that with x2 confound-
ing is more direct and local. The x1 confounding path
(x1! Y  x2! Z) is longer than the x2 confound-
ing path (x2! Z).

4 CONCLUSION AND FUTURE

WORK

LCDa, LCDb, and LCDc are e�cient algorithmswhich
use the local causal discovery framework. By making
use of more independence tests LCDb and LCDc were
able to reduce the FPR and causally-confounded error
rates monotonically while at su�cient sample size ob-
taining the TPR of LCDa. All these LCD variants (in
particular LCDb and LCDc) appear to be good candi-
date algorithms for e�cient causal datamining. Since
the motivation for this work arose from analyzing the
false positive ouput of LCD on Alarm, testing LCD
variants on a di�erent network(s) will be important.

We plan to explore two future algorithmic directions.
One is to develop more sensitive independence tests to
reduce further the FPR. The other is to try to develop
new search techniques to improve the accuracy of the
causal output, yet retain computational e�ciency. We
also plan to use additional causal networks to evaluate
the algorithms.
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