
Research Challenges at the Intersection of Computer
Games and Software Engineering

Walt Scacchi
Institute for Virtual Environments and

Computer Games, and
Institute for Software Research
University of California, Irvine

wscacchi@ics.uci.edu

Kendra M. Cooper
Computer Science Department

University of Texas, Dallas
kendra.m.cooper@gmail.com

ABSTRACT
This paper provides an overview and review of R&D studies,
findings, and practices that identify important problems that
constitute an emerging program of future R&D opportunities
relevant to established scholars and new students interested in
computer games and software engineering (CGSE). This includes
examining how computer games may be used to address long-
standing, grand challenge problems in software engineering in
new ways. The review also examines other challenges in game
software requirements engineering, game software design, game
software testing, teamwork processes in CGSE, global CGSE, and
other closely related areas for CGSE research. From these results,
it becomes possible to identify and outline possible areas for
future CGSE research opportunities that may be appropriate for
consideration by students, scholars, or research agencies seeking
to build up scientific and technological capabilities in CGSE
research and educational practice.

Keywords
Computer Games, Software Engineering, Research, Grand
Challenges, Software Engineering Education

1. INTRODUCTION
Over the past five years, 2011-2015, there have been four
international workshops hosted at the International Conference on
Software Engineering that focus on emerging research in Games
and Software (GAS). The 2015 Workshop is scheduled for May in
Florence, Italy (cf. http://2015.gasworkshop.org/). Dozens of
researchers, spanning established senior scholars with long
research legacies to graduate students early in their research
careers and studies, have participated in the workshops. Along the
way, dozens of research papers have been submitted, and smaller
numbers have been selected for presentation and publication in
electronic proceedings hosted by ACM and IEEE Computer
Society. The authors have participated in these workshops as
paper authors, invited speakers, workshop organizers, and
program co-chairs. In recognition of this emerging area of
research that spans the communities of computer game developers
and software engineers, it has been possible to develop a
perspective about many categories of R&D problems that lie at
the intersection of these two distinct communities. Subsequently,

it has been possible to identify and re-examine some of the grand
challenges in software engineering to see how they are manifest in
this cross-disciplinary intersection. The purpose of this paper is
therefore to provide an overview and review of studies, findings,
and practices that identify important problems, and future R&D
opportunities, in computer games and software engineering
(CGSE), that have been informed by the collection of papers and
presentations at the GAS Workshops. Overall, there are many
possible futures for research in CGSE.

Computer games may well be the quintessential domain for
Computer Science and SE R&D. Why? Modern multi-player
online games (MMOG) must address core issues in just about
every major area of CS research and education. Such games entail
the development, integration, and balancing of software
capabilities drawn from algorithm design and complexity,
artificial intelligence, computer graphics, computer-supported
cooperative work/play, database management systems, human-
computer interaction and interface design, operating systems and
resource/storage management, networking, programming or
scripting language design and interpretation, performance
monitoring, and more. Few other software system application
arenas demand such technical mastery and integration skill. Yet
game development is expected to rely on such mastery, and
provide a game play experience that most users find satisfying,
fun, and engaging. Computer games are thus an excellent domain
for which to research and develop new ways and means for
(game) software engineering.

Future R&D opportunities in CGSE are emerging at the
intersections of CG and SE with each other, and with other
disciplines. A starting question to ask is, how CG development
different from SE [18]? More broadly, an overall question for the
student or professional reading this paper is how will future
computer games succeed/fail with/without SE tools, techniques,
and concepts? For example, if SE is mostly irrelevant to the
successful development, deployment, and sustained evolution of
computer games, why is this so? Is (a) traditional SE no longer
relevant overall to upcoming generations of game software
developers, or is (b) there something about the ways and means by
which computer games, game development projects, and game
development organizations operate and engage players that eludes
recognition by SE researchers and educators? While the former (a)
seems unlikely and unpopular to contemplate, the latter (b) points
to opportunities for future research in SE. The challenges are thus
yours to consider and address.

The mainstream CG industry is a global endeavor with multi-
billion dollar game development companies, as well as untold
numbers of independent small-to-mid sized game studios that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
Proceedings of the 10th International Conference on the Foundations of
Digital Games (FDG 2015), June 22-25, 2015, Pacific Grove, CA, USA.
ISBN 978-0-9913982-4-9. Copyright held by author(s).

mailto:wscacchi@ics.uci.edu
http://2015.gasworkshop.org/
mailto:kendra.m.cooper@gmail.com

make games for commercial markets or specialty applications
(e.g., game-based training). CG are the most popular type of
application on mobile devices, based on downloads and time spent
using such apps. So what is going on with game development, and
what role can or should SE play in advancing the commercial
interests of game development firms? What are the technical SE
challenges facing game developers? What are the best
ways/means to engineer fun-filled experience and playful
challenges that millions of players world-wide and across cultures
want through game software?

With questions like this in mind, this paper identifies some future
arenas and issues for research found at the intersections of CGSE.
First, we look to long-term challenges in SE that may be
addressed through the lens of CGSE, to see if there is something
new or different to be learned that may advance our understanding
of how to better address such challenges. Following this, we look
to other grand challenge areas within science and engineering
arenas that span global markets, to help see if there are potential
opportunities for students and scholars in different geographic
regions that may be specific to their industrial workforce, external
research funding bases, and emerging game market opportunities.
This last topic is intended to help broaden the perspective of
seeing the future of research in CGSE is not just something
relevant to the U.S., but is in fact a global opportunity area that
can be advanced both scientifically and socio-economically
through CGSE. As such, we turn to examine opportunities for
future CGSE research that arise in mainstream SE.

2. GRAND CHALENGES IN SOFTWARE
ENGINEERING THROUGH
COMPUTER GAMES

Many traditional grand challenges in SE arise during the
development of computer games as complex software systems.
This includes using game to solve challenge problems in large-
scale software engineering, game software requirements
engineering, game software design and testing, teamwork
processes in game software development, global software
development and global game development, and other problem
areas for future research study. This set of challenges is intended
to be suggestive rather than exhaustive or prioritized by
importance. Each is examined in turn.

2.1 Using games to solve challenge problems
in large-scale software engineering

Engineering large-scale software systems has long been
recognized as a difficult problem in Computer Science. Industry
reports sometimes indicate that as few as one out of three large
software projects can be considered successful, while another
third are outright failures, and the remainder are plagued with
flaws that demand excessive maintenance or provide a
modest/poor level of user satisfaction. It seems unlikely that large-
scale games should be any different at least until it can be
empirically substantiated whether/how game software
development is fundamentally different. CG are still software
applications, so their development is likely similar to other
commercial software development efforts, unless evidence shows
otherwise.

Engineering scalable software systems is often bracketed as its
own family of challenges. These challenges similarly appear in
the development of computer games like MMOG, where millions
of user-players are anticipated, with thousands playing

concurrently any time of day. The CGSE challenges for massively
scalable games include how best to: (a) design and organize
teamwork processes for game development, playtesting and post-
deployment support; (b) divide the CGSE work among developers
with different skills across different development sites; (c)
organize and enact multi-site game software project management;
design scalable game services and supporting infrastructures that
may multiple host server sites; (d) manage concurrent system
configurations and product release versions for multiple end-user
platforms; (e) manage and secure game-based intellectual
property (IP) assets and user-created content; (f) and more.
Conversely, for MMOG clients, how are remote game-based
middleware services to scaled down for delivery of real-time
game play experience that can fit within the game’s client
software deployment? In short, research that informs large-scale
CGSE projects, as well as scalable game system architectures for
integrating remote services, represent an interesting set of
challenges likely to be of great interest to game development
firms.

Beyond scalability, the world of SE is frequently characterized in
modern textbooks as a series of software life cycle engineering
tasks. These SE tasks must be performed systematically, with
care, as well as monitored and measured as a continuously
improvable set of processes. That's what we teach and what we
encourage students and industrial professionals to learn and
practice. But many hard and difficult problems arise along the
way in many SE projects while performing such tasks, and thus
the mainstream SE research community focuses much research
attention to advancing knowledge about tools and techniques for
addressing or resolving the challenges that arise. As such, we turn
to briefly explore other grand challenges of SE, along with modest
enumerations of CGSE research opportunities that may follow.
The interested reader can undoubtedly identify other R&D
opportunities as well.

2.2 Game software requirements
engineering

Software requirements engineering has been a long-term
challenge in SE. It has its own international research conferences
and dedicated journals that are intended to complement
mainstream research in the field of SE. The existence of both the
conferences and journals suggest that international interest in the
research and practice in how best to elicit and articulate software
functional requirements that may be formalized, as well as what to
do with non-functional software requirements, is widespread.
However, with computer game software, it appears that the
practice of game development focuses primary attention on
creating and satisfying non-functional requirements (NFRs) for
the game as product, versus the game software’s functional
requirements which are often tacit and undocumented, or
specified in hindsight [1]. NFRs like “the game must be fun to
play” by a target audience of users/players (e.g., “played by males
18-35 years old” or “be gender neutral”) on a target platform (“for
play on Microsoft Xbox One consoles,” “browser based,”
“integrated with social media sites like Facebook” or “mobile
devices running iOS or Android operating systems”) at some retail
price point or monetization scheme (“free to play, with game-
based micro-transactions using pre-paid user debit accounts” or
monthly subscriptions for user accounts) is much more common
[5]. The SE challenge that thus appears is determining what to do
during game software development to address or satisfy such
NFRs as engineering tasks. Alternatively, challenges also exist for

2

finding how best to gamify the requirements engineering and
other SE activities [8,11].

Game developers have learned that merely providing a game
whose software functions as intended (i.e., meets its functional
requirements), is much less relevant than providing a game that
game playtesting [12,32] empirically demonstrates satisfying
diverse game player focus groups, rather than in-house game
developers. In this regard, NFRs for games are testable for
playability or user experience (UX), but these concerns tend not to
be clearly aligned with the interests of SE testing research.
Instead, it is not surprising to see industry shifting from focus on
large multi-million dollar budget AAA game development
projects, towards games that can be incrementally developed and
released with a minimum set of game play features that can
adaptively be grown to meet informal NFRs. Early success of a
new minimal game with players (e.g., online player reviews, user-
created game play videos, game micro-transaction rates of return)
will determine whether more features will be added or integrated,
thereby realizing that the game system is being developed as an
emerging online interactive gameplay service, rather than just as a
software product. Whether such game development prescribes
“features” as subject to functional or non-functional requirements
is at present an open problem in CGSE, as is the overall game
development process that is driven by features that follow from
incremental deployment of testable game feature sets. This is not
the same as SCRUM or agile development methods, at least as
they have been prescribed in textbooks, but they may represent
some linkage to such practices. So investigating and better
understanding the virtues and vices of new game software
development practices is an open area for future CGSE research.

Another observation on requirements for game development
arises with recognition that some game developers are committed
end-users of the games they play [26]. Compared to traditional SE
project situations where developers and users are distinct groups
[1], elicitation of functional requirements can be less complicated
when users are developers. This is primarily the situation for
game modders, people who intentionally act to modify an existing
game, where the released game includes access to a software
development kit (SDK) that is pre-configured to afford certain
types of changes to the game's appearance, rules of play, play
experience or game purpose [25]. As modders act as both
developer of (new) game functionality, as well as an end-user to
be satisfied, there may be no communication/interest gap between
developers and users. Thus, there may be no need for traditional
software requirements elicitation or specification, and instead the
developer-user can iteratively explore, try-out, and rapidly adapt
their needs to what they can accomplish. Therefore, what is the
role or value of requirements engineering in support of game
modding as a development modality, is a question for further
investigation and empirical exploration.

2.3 Game software design

Another classic challenge for SE is determining how best to
design a software system to satisfy its requirements or
specifications. As noted, computer game requirements may be
dominated by NFRs, rather than functional specifications that can
be formalized, verified, and validated. Thus game software design
may need to account for such bias or focus.

For students and would-be game developers, many textbooks and
practitioner guides target game design [e.g., 12,16,21,32], rather
than game software design. Whether such texts should be
considered relevant to game software design may hinge on the

expectation as to whether prior software design concepts, tools
and techniques are employed or ignored. For example, game
design texts often focus attention on how to address NFRs for the
appearance and animated “emotional” behavior of in-game
characters, choice of game mechanics well-suited for the game’s
genre, the look and feel of game level or world design, user
interface design and overlay, in-game artwork asset development
and fix-up of technical art mismatches, etc. As such, these texts
say little about the game’s software functional requirements. This
means that alternatives about game software architecture are
unclear. Thus architectural design of games, and how to make
trade-offs therein, remains an open challenge.

It appears that game designers are assumed or directed to employ
a game SDK or development framework (e.g., Construct 2,
GameMaker: Studio, GameSalad, Microsoft XNA Game Studio,
Project Spark, PyGame, Steam, Unity, Unreal Development Kit)
to realize their game design. However, as many have observed,
the selection of a game development environment constrains or
pre-determines what kind of computer game may be more readily
developed (e.g., many SDKs primarily support development of
2D games, but not 3D games; some SDKs feature drag-and-drop
game development with little ability to include new source code).
Thus the game development environment encroaches into the
functional requirements or NFRs space. This side steps the
engineering of game software design, and instead replaces it with
a development paradigm focused on game design as found in
textbooks, rather than on software system design as found in SE
textbooks. Similarly, if an envisioned game to be developed
requires unfamiliar or unprecedented game functionality, it may
be necessary to develop a game run-time environment (game
engine as a software system), as well as one/more games that
operate with the new game engine.

Next, as multi-player online games are complex software systems,
then we can consider how the underlying software architecture
facilitates or constrains how the game can be initially designed
and configured, built from existing components, as well as further
developed, modded, or evolved. Games are often configured using
different middleware libraries or external service components that
must be integrated with new game software functions, features or
capabilities. However, commercial multiplayer games may
incorporate twenty or more libraries of external services including
user registration, micro-transaction payment, anti-cheating
security, in-game or around-game online chat, behavioral
character and non-player character artificial intelligence, database
management, and others. Further, as some of these capabilities
become further specialized, their software gives rise to their own
autonomous architectural representation. Thus, the challenge
arises for how best to mix, match, or reuse heterogeneous game
software sub-system architectures in ways that are open to
component replacement, architectural reconfiguration, multi-
version run-time platforms, and even intellectual property license
changes [29,30].

Another matter that arises in game software design is the
development and review of game design documents. Oftentimes,
the game design document is what is first produced, along with
samples of in-game characters, play levels or worlds, narrative
storyline for the game (if relevant), description of game play
mechanics, embedded challenges or puzzles for players to
overcome, and intended game play experience. As before, most of
these items do not naturally map into an interconnected
configuration of functional system modules, but may be more
suggestive of feature-based or event-driven systems. Investigating

how game design documents compare to software design
documents would be valuable, especially as new generations of
students are often eager to engage in game development [6].
Similar studies may also investigate the role of other online
development artifacts widely used in free/open source software
(FOSS) development projects, including online chat transcripts
and social media where game/software design rationales are
captured, that game developers employ to support their game
development projects [10,13,22,23].

2.4 Game software testing

Given the emerging story of how the development of new
computer games will require new methods and technologies for
game software requirements and design engineering, so to we
should expect game software testing to evolve and adapt. For
example, game “playtesting” focuses on the playability of a new
game, along with what affects the fun of its play experiences,
thereby crossing testing of game software NFRs and quality
assurance with human-computer interaction and user experience
(UX)—an under-explored composition of CGSE interests.
Alternatively, we might look for new ways and means for
engaging software developers in peer-to-peer software coding-
testing duels [41]. Such approaches might be further explored in
the context of software module integration or configuration
management game challenges, that in turn might automatically
evaluate whether the resulting system can be automatically built,
packaged for remote installation, and regression tested. The Darpa
Verigames initiative (described below), explores the potential for
crowdsourcing approaches to testing problems found in formal
software verification. But there is still much to be explored
through software testing supporting CG development efforts.

Consider the challenge of addressing how best to validate NFRs
for games, like “the game must be fun to play,” or “operate on
PCs, consoles, and mobile devices.” Assessing a game’s initial
playability or players experience of fun, can entail eliciting end-
users opinions, feedback, or concerns about their UX with current
game features or capabilities [18]. In contrast, validating that a
given game can operate on different platforms is a much more
operational concept. Thus, what is to be determined is what game
play functionality is common for focused testing, while other
functionality like user interface controls may be specific to the
play device platform.

An informed game software design may specify where such
platform-specific customizations are to be made through
functional factoring, so such design can inform subsequent
testing. Formal software architectural designs may also help
facilitate automated testing, as may other techniques, in ways that
merit careful empirical study [18]. Additionally, how is game play
UX to be assessed across platforms, since platform-specific
specializations may (or not) affect the end-users play experience.
Perhaps game software components and integrated configurations
may be subjected to system integration testing duels. Overall,
these options point to the need for one or more alternative
schemes for a game software testing and playtesting hybrid
regime that can assess common versus platform-specific game
functionality, features and UX, as well as other NFRs.

The last area to address concerns recent interest in investigating
whether computer games can be used to solve difficult problems
in software verification. In the U.S., the Defense Advanced
Research Project Agency (Darpa) has initiated a research program
(known as Verigames) to see what advances can be realized
through games designed for play by large distributed and loosely

coordinated “crowds” of players. An initial set of games has been
developed and deployed on the Web (and in one case, exclusively
for a mobile platform like the Apple iPad)-- see Verigames Project
Site [39]. Each game takes on an approach that decomposes
problems of software verification into simpler ones, such as
proving loop invariance properties [14]. Collectively, these
crowdsourced games are envisioned as a fundamentally new
approach to the long-standing problem of formal software
verification. Of course, the games themselves must also be
playable, interesting, and fun to external game players who have
little/no interest in software verification challenges. Said
differently, a game that satisfies its functional requirements (e.g.,
implements a class of loop invariance testing play mechanics)
does not necessarily make the game interesting and fun to external
users. Conversely, an interesting and fun game that introduces a
new game mechanic, such as for determining loop invariants,
might itself be an innovation in computer games, whether it does
or does not solve practical problems in software verification.
Nonetheless, the effort to verify large software system elements
using a crowdsource approach like Verigames is a bold research
undertaking near the center of future CGSE R&D.

2.5 Teamwork processes and game jams in
CGSE

Many students and independent game developers participate in
computer game development competitions or “game jams”
[19,20,27,35,42]. These jams usually focus on clean-sheet
production of a playable game usually in a limited time frame,
like 24 or 48 hours, though shorter and longer competitions have
been engaged. Sometimes these jams have external for-profit or
non-profit sponsors, who in turn may offer financial or technology
product rewards. Other times, jams offer no tangible rewards, but
instead focus on going “for the win,” résumé building, and shared
learning experience as the desired outcome. Game jams may also
be located in academic settings, so that both intra-mural (within
school) and inter-mural (across schools) game jams can be
undertaken in ways that complement SE Education [6,7,27,35,40].

An interesting set of research questions arises associated with
game jams, perhaps most relevant to empirical studies of
alternative game/software development processes, practices,
methods or tools used. For example, within intra-mural game
jams, it may be possible to structure and balance the game
development teams by team size, game developer role and SE
skill level from students at hand. Students can indicate their skill
level and developer role preference, then have participants be
randomly assigned to teams in ways that balance team size, role
and skill level. This can mitigate against pre-formed teams with
established collaborators, high skill distribution, and relatively
mature game development capabilities.

Short duration jams mitigate against the consequences of team
failure or participant drop out, and instead make these events
more of a CGSE learning experience. In this way, in addition to
focusing on game production, the overall game jam serves as a
“field site” where selected CG design, SE processes and
technologies [e.g., 19,42] can be comparatively investigated,
following empirical SE approaches introduced 25-30 years ago
[cf. 3,4]. Such field sites allow for careful empirical study of
teams using a new game SDK or development technique (e.g.,
SCRUM, agile development, or game modding) vs. those who do
not; or those who produce traditional SE documents (requirements
specifications, architectural designs, test plans) and follow SE
processes for their game vs. those who just focus on game design

4

methods. Intra-mural game jams may therefore be well-suited for
longer durations (e.g., 1-2 weeks). These jams may stress short
duration and co-location, along with targeted game production on
a topic that is announced at the beginning of the competition.
Inter-mural or open participation game jams may not be so readily
structured or balanced at little cost, but instead may address other
CGSE questions that better match their natural field organization
and project heterogeneity.

More generally, game jams offer the opportunity to organize,
design, and conduct empirical studies in CGSE that can inform
both new game design practices or processes, as well as new SE
practices and technologies [9]. These jams can be used to address
CGSE research questions in ways underutilized in SE research.
Ultimately, this can mean that SE can be viewed as a competitive
team-based sport activity that can be fun for students, as well as
structured to support careful empirical study [27], rather than SE
being a business endeavor to produce application systems hosted
on back-end infrastructures accompanied by documents that few
will ever read. It also suggests that game jams may be designed as
a kind of meta-game, so as to structure the outcomes (i.e., the
games produced) to embody certain functional features, or the
game production process to reward accumulative levels of
progress achieved or skills mastered by different teams (“leveling
up”), rather than leading to winning and losing teams.

2.6 Global software development and global
CGSE

Global software development (GSD) focuses attention to
challenges that arise when large software development projects
are distributed in geographic space, or across many time zones.
GSD often involves software development tasks being performed
by teams that are culturally diverse, so that many developers will
not share a first native language, but often may rely on local SE
teamwork activities conducted in one's native language, while
inter-site development activities and project management may be
conducted and coordinated in another language (most often
English). Yet many large-budget AAA games are developed in
multiple international sites, or for use in global markets with
different user language cultures. This implies not just the need for
internationalization (or localization) of game user interfaces, but
also for international game production management. It should
therefore be unsurprising that culturally grounded
misunderstandings and miscommunications arise during game
software development, much like they do in other GSD projects.

While business efforts to reduce software development costs (e.g.,
through offshoring certain tasks to lower cost software labor
markets) are being tried both with traditional software
applications and CG, it is also apparent that critical product design
feature choices or system integration activities are closely held by
the lead development organization. So some software product
knowledge is purposely withheld in proprietary GSD projects
from global collaborators. In contrast, free/open source software
(FOSS) development of commercial games is not (yet) widely
practiced [22], so it is unclear whether such approaches [13,23]
can overcome the challenges found in proprietary GSD projects
[37]. In sum, most of this is still poorly understood from a
research perspective, and few tools and techniques are being
investigated to address cultural challenges in GSD, yet alone in
Global CGSE.

2.7 Game-based software engineering
education

There are many different ways and means for engineering of CG
software systems, and some of these are now a major focus for
software engineering education (SEE). To no surprise, we find
that the other challenges for CGSE identified in Sections 2.1 to
2.6 are appropriate candidates for exploration through SEE project
coursework.

Engineering CG software requirements, (architectural) design,
testing (including UX playtesting and coding duels), teamwork
processes and global CG software development are all open for
application and experimentation by SEE innovators. Even large-
scale CGSE may be explored through SEE, though this will
demand additional expertise by SE educators in knowing how to
mobilize open software infrastructural services for use within
academic SEE coursework.

SEE project coursework may be organized and structured about
team-based game development competitions. The goal of such
competitions is not so much determination of winners and losers,
but of creating CG development challenges that require,
incentivize, or reward the use of SE methods for CG
requirements, design, and testing using game SDKs and/or remote
middleware services. Similarly, accommodating game
development competitions that elicit submissions from
international or globally dispersed SEE student project teams
might therefore also focus comparative assessment on how well
student teams practice and demonstrate GSD concepts and
techniques through their CG development efforts.

Finally, other areas of SE research and practice, such as
configuration management, build and release management,
reverse engineering, FOSS development, agile development,
classroom coursework [34], and more may all be seen as potential
candidates for gamification in ways that may be engaged through
SEE coursework and team projects.

3. OTHER RESEARCH OPPORTUNITY
AREAS FOR CGSE

There are of course many other areas and topics that lie at the
intersection of CGSE that do not specifically target grand
challenge problems in SE, but that represent substantial
communities of interest from a CGSE perspective. These include
automated generations of games, could-based game services and
infrastructure, and game software repositories and data
management services.

3.1 Automated generation of computer
games

One area of CGSE research interest not addressed above focuses
on the creation of new technologies for (semi-) automated
generation of computer games [cf. 28]. This kind of research may
focus on the invention of new concepts, techniques, or tools for
the generation of ready-to-play games based on specifications of
game play narrative (like feature film scripts or screenplays),
emergent agent-based interaction rules, or functional game
software specifications. Such efforts represent a reconstitution of
automatic programming or knowledge-based software
development approaches once avidly explored in SE research, but
now displaced by more conventional programming-centric
approaches that average programmers can perform. While there is

an active community of researchers working on computational
intelligence, agent-based systems, and procedurally generated
worlds for games, much of these efforts are not (yet) well
addressed from a CGSE perspective. For example, current efforts
at procedural generation of game worlds often focuses attention to
the generation of visual in-game object models or composed
levels, such as automatically generated trees/vegetation, buildings,
building interiors, cityscapes, waterways and geographic terrains
[36,38]. However, these efforts do not generate in-game
characters with complex social behaviors in different roles that
operate within socio-political cultural systems that may/not
feature emergent competitive or combative dynamics, nor utilize
engines that provide complex physical or ecosystem simulations
(e.g., processes like digestion, reproduction, speciation, or
ecosystem evolution) at different physical scales (from Nano to
human scale, or from human to cosmological scale) [2,24,28].
Thus much innovation is possible in this area.

3.2 Cloud-based game software services

In other research, there is growing interest in determining whether
or how best to employ and engineer cloud-based computing
infrastructure and services to support online games [13,17].
Cloud-based software system architectures are recognized to offer
scalable services, especially for remote storage, file sharing and
content distribution, commercial (payment) transactions, and
remote computation among others. These architectures may
inform the deployment of CG where such scalability is relevant to
game publishing business ventures. However, one nagging
challenge for CGSE is how best to develop games that can exploit
such capabilities, rather than supporting current/legacy games that
were developed without dependence or integration of cloud-based
services. For example, cloud-based CG R&D efforts are seeking
to host game play computations in the cloud while streaming
visual and audio content updates to remote player clients. This
resembles a “fat server, thin client” architectural model that
contrasts to the currently “thin server, fat client” model more
common in networked multiplayer games. Both models, along
with others like massively scaled peer-to-peer or Hypergrid
architectures [15], represent different assumptions about preferred
business models, financial investments, intellectual property
protection, network bandwidth and latency quality of service, and
anticipated advances in computing technology.

Cloud-based streaming of game content/sessions is also being
actively pursued by large IT firms, perhaps inspired by the success
of asynchronous, on-demand streaming video/audio distribution
ventures that are displacing traditional synchronous, on-schedule
media content broadcasters. But game play is interactive and
experiential in ways that passive media (films, recorded music,
television programs) are not. So it is not surprising to see that
game play streaming services often provide reduced visual display
resolution (to reduce bandwidth and latency) with game content
that can be more easily cached (e.g., pre-recorded game video
content), since wide-area network protocols are not yet developed
to meet the performance and “quality of experience” (QoE)
requirements that game players expect [17]. Thus CGSE
challenges here include identifying how best to design games for
cloud-based deployment infrastructure, and how to design the
software infrastructure (including network protocols) for cloud-
based games [13].

3.3 Game software repositories and data
management services

The development, use, and ongoing support for CG requires or
benefits from systematic approaches to game data management.
As CG often support in-game objects, levels, or worlds as
structured data sets that may span megabytes or gigabytes of data,
that may often need to be rolled in/out depending on game play
dynamics, then game data management emerges as a core
technical challenge in game software engineering. At least five
repositories or formal databases can be found supporting CGSE:
(1) repositories for capturing game play telemetry data for
analytics applications [33]; (2) game source code and content
asset files and directories with version management (e.g.,
GitHub); (3) online game publisher repositories for remote
database services for user registration, account management,
player-specific in-game resource holdings and character
personalizations, and (5) external game asset repositories and
currency/banking services (micro-transactions supporting game
asset purchase for free-to-play games).

Many challenges follow from different ways and means for
orchestrating the movement of game data and resource files
within and between repositories. This also points to challenges
that arise when seeking to identify how best to manage game
resources associated with game characters that can transition
across game server shards, networked execution domains, or
interoperable virtual worlds [15,24] via teleportation or similar
methods. Game characters are increasingly becoming mobile code
objects or databases, so how best to engineer game software data
management across repositories will likely remain an active area
of R&D interest, including within the commercial game industry.

4. DISCUSSION

The areas identified throughout this paper for future research in
CGSE are a small sample rather than a comprehensive set. CGSE
itself represents a new arena for SE research and development.
Other CGSE challenges may be found in how best to:

* engineer cybersecurity software capabilities for multiplayer
games where financial services, user privacy, and anti-cheating
requirements must be addressed while insuring online
socialization and convivial/competitive game play;

* integration of CG with social media services and other cloud-
based services;

* developing frameworks or SDKs for implementing games that
incorporate heterogeneous devices arising within an Internet of
Things;

* develop automated or semi-automated game production tools
that allow non-engineers to rapidly produce and deploy serious
games for non-entertainment and scientific research applications
[28];

* engineering remote game client services for display update
management and run-time monitoring to improve game QoE;

* investigate software architectural alternatives for orthogonal,
multi-tier middleware services (for game character AI, data
analytics, financial payment services, user account management,
etc.) developed by independent game service providers;

* design of rapid, iterative and incremental approaches to develop
minimally playable games (or game feature sets) that allow

6

remote user play to help drive subsequent game play features and
functionality, as well as how to adapt such an approach to non-
game applications;

* articulating techniques that combine playtesting with play
analytics and advanced visualizations (e.g., using synthetic,
procedurally generated game worlds to visualize game play data
sets and temporal relationships) [33];

* develop games, game engines, or game development
frameworks for educational games in other CS sub-disciplines
(e.g., serious games for network protocol design, database
management, compiler construction, operating system
configuration); and

* investigate the roles of FOSS tools and techniques for game
development in enabling SE Education, global knowledge
transfer, and socio-economic development of local game
development enterprises.

The concept and the initiative of using games to explore new
ways and means for solving long-standing problems in SE is
profound, bold and ambitious. Whether it succeeds is an open
issue for now. But whether it can and will be adopted to explore
other challenges in SE is therefore an opportunity at hand.
Similarly, whether such effort can be mobilized and deployed on a
regional, national, or global scale without a large government
research investment is also a challenge to be addressed. However,
we should look for (and perhaps encourage) such efforts to
address challenges in CGSE, whereby game software
development serves game play whose purpose is to inform new
ways to design games.

5. CONCLUSIONS

This paper reviews and identifies a number of outstanding R&D
problems that can be found at the intersection of computer game
and software engineering. Students and scholars of games or
software development may therefore find a new fertile space for
emerging research opportunity to explore, cultivate or embrace.
The research objective in this paper is to share these results with
others looking for challenging problems to pose and pursue.

Overall, the future of CGSE is filled with many diverse
opportunities for research studies and technology development.
These opportunities may be of some interest to the extant
computer game industry, but the likelihood of interest for near-
term research funds may be found outside of the entertainment-
focused computer game studios [28]. Whether government
agencies and corporate sponsors who do support high-risk
research projects will embrace CGSE as a new opportunity area is
an open question, but one that readers of this paper may be
compelled to advocate and pursue.

Finally, we do not expect the world of SE to suddenly pivot
around the emerging area of CGSE, though it might be interesting
to see and experience such a transformation. Similarly, it will take
time for our colleagues in mainstream Computer Science to come
to recognize how computer games are engaging a new generation
of students and researchers, though the emergence of new
academic research centers and degree programs for (Computer)
Game Science are just beginning to appear. Nonetheless, we
believe there is a future to research in CGSE, and this future may
need to find its home and advocates in the periphery of disciplines
where new lines of research and practice are more likely to
emerge. Thus, we encourage you to do so to pursue your interests
in CGSE research and practice.

6. ACKNOWLEDGMENTS

Research support for Scacchi was provided by grant #1256593
from the National Science Foundation. No review, approval, or
endorsement is implied. Materials appearing in Sections 2 and 3
also appear in [31], and are included by permission of the
publisher.

7. REFERENCES
[1] Alspaugh.T.A. and Scacchi, W. (2013). Ongoing Software

Development without Classical Requirements, Proc. 21st

IEEE Intern. Conf. Requirements Engineering (RE'21), Rio
de Janeiro, Brazil, 165-174, 15-19 July 2013.

[2] Bartle, R.A. (2004). Designing Virtual Worlds, New Riders,
Indianapolis, IN.

[3] Bendifallah, S. and Scacchi, W. (1989). Work Structures and
Shifts: An Empirical Analysis of Software Specification
Teamwork, Proc. 11th. Intern. Conf. Software Engineering,
Pittsburgh, PA, ACM and IEEE Computer Society, 260-270.

[4] Boehm, B., Gray, T., and Seewaldt, T. (1984). Prototyping
Versus Specifying: A Multiproject Experiment. IEEE Trans.
Software Engineering, 10(3): 290–303.

[5] Callele, D., Neufeld, E., and Schneider, K. (2005).
Requirements Engineering and the Creative Process in the
Video Game Industry, Proc. 13th Intern. Conf. Requirements
Engineering, (RE'05) 240-250.

[6] Claypool, K. and Claypool, M. (2005). Teaching Software
Engineering through Game Design, in Proc. 10th SIGCSE
Conf. Innovation and Technology in Computer Science
Education (ITiCSE '05), pp. 123–127, Portugal.

[7] Cooper, K. and Longstreet, C. (2015) Integrating Learning
Objectives for Subject Specific Topics and Transferable
Skills, in Cooper, K. and Scacchi, W. (Eds.), Computer
Games and Software Engineering, CRC Press, Taylor &
Francis, Boca Raton, FL (to appear).

[8] Cooper, K., Nasr, E., and Longstreet, C.L. (2014). Towards
Model-Driven Requirements Engineering for Serious
Educational Games: Informal, Semi-formal, and Formal
Models. In Proc. 20th Intern. Working Conference on
Requirements Engineering: Foundation for Software Quality,
Lecture Notes in Computer Science, V. 8396, 17-22.

[9] Dorling, A. and McCaffery, F. (2012). The Gamification of
SPICE, in Software Process Improvement and Capability
Determination, Communications in Computer and
Information Science, Volume 290, Springer, 295-301.

[10] Elliott, M.S., Ackerman, M.S., and Scacchi, W. (2007).
Knowledge Work Artifacts: Kernel Cousins for Free/Open
Source Software Development, Proc. ACM Conf. Support
Group Work (Group07), Sanibel Island, FL, 177-186,
November.

[11] Fernandes, J., Duarte, D., Ribeiro, C., et al. (2012). iThink: A
Game-Based Approach Towards Improving Collaboration
and Participation in Requirement Elicitation, Procedia
Computer Science, 15, 66-77, DOI:
10.1016/j.procs.2012.10.059

[12] Fullerton, T., Swain, C., Hoffman, S. (2004). Game Design
Workshop: Designing, Prototyping and Playtesting Games.
CMP Books, February 2004.

[13] Huang, C-Y., Chen, K-T., Chen, D-Y, et al. (2014). Gaming
Anywhere: The First Open Source Cloud Gaming System,
ACM Trans. Multimedia Computing Communications and
Applications, 10(1).

[14] Logas, H., Whitehead, J., Mateas, M., et al. (2014), Software
Verification Games: Designing Xylem, The Code of Plants,
Proc. 9th International Conf. Foundations of Digital Games
(FDG 2014), Ft. Lauderdale, FL, USA.

[15] Lopes, C. (2011). Hypergrid: Architecture and Protocol for
Virtual World Interoperability, IEEE Internet Computing,
15(5), 22-29.

[16] Meigs, T. (2003). Ultimate Game Design: Building Game
Worlds, McGraw-Hill, New York.

[17] Mishra, D., El Zarki, M., Erbad, A., Hsu, C-H., and
Venekatasubramanian, N. (2014). Clouds + Games: A
Multifacted Approach, IEEE Internet Computing, May-June
2014, 20-27.

[18] Murphy-Hill, E., Zimmerman, T., and Nagappan, N. (2014).
Cowboys, Ankle Sprains, and Keepers of Quality: How is
Video Game Development Different from Software
Development? Proc. 36th Intern. Conf. Software Engineering
(ICSE 2014), ACM, Hyderabad, India, 1-11, June.

[19] Musil, J. Schweda, A., Winkler, D., and Biffl, S. (2010).
Synthesized Essence: What Game Jams Teach about
Prototyping of New Software Products, Proc. 32nd Intern.
Conf. Software Engineering (ICSE'10), ACM, Cape Town,
SA, 183–186.

[20] Preston, J. A., Chastine, J., O’Donnell, C., Tseng, T., &
MacIntyre, B. (2012). Game Jams: Community, motivations,
and learning among jammers. Intern. J. Game-Based
Learning, 2(3), 51-70.

[21] Rogers, S. (2010). Level Up!: The Guide to Great Video
Game Design, Wiley, New York.

[22] Scacchi, W. (2004). Free/Open Source Software
Development Practices in the Game Community, IEEE
Software, 21(1), 59-67, January/February.

[23] Scacchi, W. (2010). Collaboration Practices and Affordances
in Free/Open Source Software Development, in I. Mistrík, J.
Grundy, A. van der Hoek, and J. Whitehead, (Eds.),
Collaborative Software Engineering, Springer, New York,
307-328, 2010.

[24] Scacchi, W. (2010). Game-Based Virtual Worlds as
Decentralized Virtual Activity Systems, in W.S. Bainbridge
(Ed.), Convergence of the Real and the Virtual, 225-236,
Springer, New York.

[25] Scacchi, W. (2010). Computer Game Mods, Modders,
Modding, and the Mod Scene, First Monday, 15(5), May.

[26] Scacchi, W. (2011). Modding as an Open Source Software
Approach to Extending Computer Game Systems, Intern. J.
Open Source Software and Processes, 3(3), 36-47, July-
September 2011.

[27] Scacchi, W. (2012). Competitive Game Development:
Software Engineering as a Team Sport. Keynote Address, 2nd
Intern. Workshop on Games and Software Engineering
(GAS2012), Intern. Conf. Software Engineering, Zurich,
CH., May 2012.

[28] Scacchi, W. (Ed.), (2012). The Future of Research in
Computer Games and Virtual Worlds: Workshop Report,

Technical Report UCI-ISR-12-8, Institute for Software
Research, University of California, Irvine, Irvine, CA. July.

[29] Scacchi, W. (2015). Repurposing Game Mechanics as a
Technique for Developing Game-Based Virtual Worlds ,in
Cooper, K. and Scacchi, W. (Eds.), Computer Games and
Software Engineering, CRC Press, Taylor & Francis, Boca
Raton, FL (to appear).

[30] Scacchi, W. and Alspaugh, T.A. (2012). Understanding the
Role of Licenses and Evolution in Open Architecture
Software Ecosystems, J. Systems and Software, 85(7), 1479-
1494, July.

[31] Scacchi, W. and Cooper, K.M. (2015). Emerging Research
Challenges in Computer Games and Software Engineering,
in Cooper, K. and Scacchi, W. (Eds.), Computer Games and
Software Engineering, CRC Press, Taylor & Francis, Boca
Raton, FL (to appear).

[32] Schell, J. (2008). The Art of Game Design: A book of lenses,
Morgan Kauffman/Elsevier, Burlington, MA.

[33] Seif El-Nasr, M., Drachen, A.,Canossa, A. (2013). Game
Analytics: Maximizing the Value of Player Data, Springer,
New York.

[34] Sheldon, L. (2011). The Multiplayer Classroom: Designing
Coursework as a Game, Cengage Learning PTR,
Independence, KY.

[35] Shin, K., Kaneko, K., Matsui, M., et al. (2012). Localizing
Global Game Jam: Designing Game Development for
Collaborative Learning in the Social Context, in Nijholt, A.
Romano, T., and Reidsma, D., (Eds). Advances in Computer
Entertainment, Lecture Notes in Computer Science, Vol.
7624, Springer, Berlin, 117-132.

[36] Smelik, R.M., Tutenel,T., Bidarra, R., and Benes, B. (2014).
A Survey on Procedural Modeling for Virtual Worlds,
Computer Graphics Forum, DOI:10.1111/cgf.12276

[37] Smite, D. and Wohlin, C. (2011). A Whisper of Evidence in
Global Software Engineering, IEEE Software, 28(4), 15-18,
July-August.

[38] Smith, G., Whitehead, J., Mateas, M., et al. (2011).
Launchpad: A Rhythm-Based Level Generator for 2-D
Platformers, IEEE Trans. Computational Intelligence and AI
in Games (TCIAIG), 3(1), March 2011.

[39] VERIGAMES (2015). http://www.verigames.com/, accessed
June 2014 and February 2015.

[40] Wang, A.I. (2015). The Use of Game Development in
Computer Science and Software Engineering Education, in
Cooper, K. and Scacchi, W. (Eds.), Computer Games and
Software Engineering, CRC Press, Taylor & Francis, Boca
Raton, FL (to appear).

[41] Xie, T., Tillman, N., de Halleux, J. and Bishop, J. (2015).
Educational Software Engineering: Where Software
Engineering, Education, and Gaming Meet, in Cooper, K.
and Scacchi, W., Computer Games and Software
Engineering, CRC Press, Taylor & Francis Inc., Baco Raton,
FL (to appear).

[42] Zook, A. and Riedl. M.O. (2013). Game Conceptualization
and Development Processes in the Global Game Jam, Proc.
Foundations of Digital Games Workshop on the Global
Game Jam, Crete, GR.

8

http://www.verigames.com/

	1. INTRODUCTION
	2. GRAND CHALENGES IN SOFTWARE ENGINEERING THROUGH COMPUTER GAMES
	2.1 Using games to solve challenge problems in large-scale software engineering
	2.2 Game software requirements engineering
	2.3 Game software design
	2.4 Game software testing
	2.5 Teamwork processes and game jams in CGSE
	2.6 Global software development and global CGSE
	2.7 Game-based software engineering education

	3. OTHER RESEARCH OPPORTUNITY AREAS FOR CGSE
	3.1 Automated generation of computer games
	3.2 Cloud-based game software services
	3.3 Game software repositories and data management services

	4. DISCUSSION

