Query Subscription in an XML Webhouse*

Benjamin Nguyen! Serge Abiteboulf Grégory Cobena Laurent Mignet!

Abstract

We consider a query subscription system that can provide users with information about web changes
that interest them. We present a query subscription language and a system that combines monitoring of
page changes and continuous queries, i.e., queries that are evaluated regularly.

1 Introduction

The web is huge and keeps growing at a healthy pace [ABS00]. Most of the data is unstructured,
consisting of text (essentially HTML) and multimedia (sound, video, images). Some is structured and
usually stored in relational databases. All this data constitutes the largest body of information accessible
to any individual in the history of humanity. A major evolution is occurring that will dramatically
simplify the task of developing applications with this data, the coming of XML [W3C98]. The current
development of the web and the generalization of XML technology provides a major opportunity for
changing the face of the web in a fundamental way. Typically, web users are not only interested in the
current values of documents but also in their modifications. We consider here query subscriptions that
allow users to obtain information about the web changes they are interested in.

This work is part of the Xyleme [Xyl] project aiming at the development of a dynamic XML warehouse
for the web.The problems we consider are typical warehousing problems [Wid95]. In this presentation,
we focus on a particular aspect, namely the management of subscriptions to changes in the warehouse.
There are three main aspects in the subscription mechanism of Xyleme (see Figure 1), that are to a
certain extent complementary:

e change monitoring, that consists in filtering the flow of documents acquired by Xyleme to detect
documents that may interest certain users based on specifications of these users’ interest.

e continuous queries, that consist in regularly asking the same query of interest to the user automat-
ically.

e the generation of a report from the changes detected and continuous query answers.
Monitoring
Query
Continuous
Query

when
condition

aert

Notification Report

report
condition

Figure 1: Main Components of a Subscription

We have designed a subscription language to combine these aspects. An example of a subscription is
as follows:

*Work supported in part by R.N.R.T.

fI.LN.R.I.A. VERSO, BP 105 78153 Le Chesnay Cedex, France, Email: firstname.lastname@inria.fr

subscription MyXyleme
monitoring

select UpdatedDoc(URL)

where URL extends "http://www.xyleme.com” and modified
monitoring

select NewMember (X)

from X in self//member

where URL = ‘‘http://www.xyleme.com/members.xml’’ and new(X)
report

select...

% possibly an XML query on

% the stream of notifications

when notifications.count > 100
refresh ‘‘http://www.xyleme.com/members.xml’’> biweekly

We also present the general architecture of the subscription system we are implementing. The system
uses intensively other Xyleme modules such as the acquisition mechanism [MAAT00] or the query pro-
cessor [ACVWO00]. A major issue in this context is scalability. Indeed, most of the problems we consider
here would be relatively simple at the level of an Intranet. They are not in the context of the web. XML
is still in its infancy, therefore not much XML can be found on the web. However, we believe that XML
will mature and that these problems will soon become important. Thus, we discuss technical aspects to
allow the scaling of the system to millions of XML and HTML documents per day and the management
of millions of subscriptions.

The main contributions are (i) the general architecture tailored to scaling to large number of doc-
uments and subscriptions; and (ii) the specification language that combines monitoring and continuous
queries, and subscriptions within a flow of several millions per day.

Related works Some of the ideas described here are not new. Some components are inspired by
components found in active databases [WC95]. Web subscription systems have already been proposed

by some sites, like NetMind [Min] or Northern Light [NL]. Continuous query systems have also been
investigated [LPTHO00, Con, LPT99, CDTWO00, Nia].

2 The Subscription system

In this section, we first the general architecture of Xyleme, and then the subscription system.

2.1 Motivations

Change Semantic
Crawler Control View
Acquisition Query
& Refresh Loader Processor

Repository and Index Manager

Figure 2: Xyleme Global Architecture

A complete description of the Xyleme system is beyond the scope of the present paper. We only give
here a brief and partial description of the main features of the system. The main modules are shown
in Figure 2. The lowest layer consists of the XML repository and index manager. The repository called
Natix, that is being developed at Mannheim University [Moe99], is tailored for storing tree-data, e.g.,
XML pages. Above the repository, on the left hand side, are the three modules in charge of populating
and updating the XML warehouse. Since the functionalities of both crawler and loader are be obvious,
let us just say a few words about the data acquisition and refresh module [MAMO00, MAA100]. Its task
is to decide when to (re)read an XML or HTML document. This decision is based on criteria such as the
importance of a document, its estimated change rate or subscriptions involving this particular document.

On the right-hand side, we find the query processor [ACVWO00] that is an XML-tailored query processor
that supports our own XML query language in the (temporary?) absence of a standard. Above it are
the change control and semantic modules. The main role of the semantic module is to classify all the
XML resources into semantic domains and provide an integrated view of each domain based on a single
abstract DTD for this domain. The change control module is the topic of the present paper, and will be
detailed further.

Xyleme runs on a cluster of Linux PCs [PC]. All modules and in particular the XML loaders and the
indexers are distributed between several machines. The repository itself is distributed. Data distribution
is based on an automatic semantic classification of all DTDs. The system tries to cluster as many
documents as possible from the same domain on a single machine. The entire system is written in C++
and uses Corba [Cor] for internal communication and HTTP for external communication.

2.2 Subscription System

In this section, we present the general architecture of the subscription system shown in Figure 3. This
architecture can be broken down into two groups of modules.

e Some generic modules that can be used in a more general change control setting. These are the
Monitoring Query Processor, the Subscription Manager, the Trigger Engine, and the Reporter.

e Some application specific modules that are dedicated to the change control in the Xyleme envi-
ronment. These include the specific Alerters we are using, the Xyleme Query Processor, and some
modules to input subscriptions (Xyleme Subscription Manager) and send results (Xyleme Reporter).

In Figure 3, the dotted lines are used for the flow of commands and the filled lines for the dataflow. The
generic part of the system is within the thick line rectangle.

XYZ
Query
Processor
__ . Trigger
Engine
i
|
XYZ gonitoring 1 reoort XYZ
® uery eporter ® Reporter
Alerter Processor - K : T =l o
f | | ' L)
1 1 L '
| '
! - :
| Subscription e = — — SQL '
Manager DB '
'
T i
® :
'
'
I i
|
XYZ
Subscription® === - 7 -----omo-omooomooooo- = Web Server
Manager '
w)
'
C :
QL :
DB
Web Browser

Figure 3: Architecture for the subscription system

The global system For each document, the Alerters detect some atomic events of interest. If the set
is nonempty, an alert is sent to the Monitoring Query Processor that consists of the set of atomic events
detected together with the requested data. The Monitoring Query Processor determines whether some
subscriptions are concerned with these alerts or whether they should trigger some particular processing.
For instance, the Trigger Engine may start the evaluation of a query. Subscriptions coming from the

Monitoring Query Processor (for monitoring queries) or the Trigger Engine (for continuous queries) of
queries are sent to the Reporter. When some condition holds, the Reporter sends the set of subscriptions
received so far, an XML document, to the Xyleme Reporter that post-processes by applying an XML
query to it. This produces a report that is sent by email, or consulted on the web, with a browser. The
Subscription Manager is in charge of controlling the entire process.

Alerters The whole monitoring is based upon the detection of atomic events. These depend on the
type of documents that are beeing processed. For instance, for HTML documents, typical atomic events
considered are the matching of the URL of the document with some string pattern or the fact that the
document contains a given keyword. For XML documents, we also consider, for instance, the fact that
the DTD of the document is a DTD we are interested in, or that it contains a specific tag, or that a new
element with a tag we are monitoring has been inserted in the document.

The role of the Alerters is to detect these events for each document entering the system, and if this
is the case, to send an alert for the particular document. Thus we see that these modules are application
dependent. We distinguish between three kinds of alerters: (i) URL alerters that handle alerts concerning
some general information such as the URL of a document or the date of the last update, (ii) XML alerters
that are specific to XML documents and (iii) HTML alerters for HTML documents. (Only the first two
have been implemented.)

In our implementation Alerters could easily support the rate of the crawlers (eg 4 Million pages/day)
with a heavy load of atomic events to monitor (1 Million).

Monitoring Query Processor The system must detect conjunctions of atomic events that cor-
respond to subscriptions. We call complex event such a conjunction of atomic events. The role of the
Monitoring Query Processor is, based on the alerts raised by the each document (i.e. a set of atomic
events) the detection of the complex events that the document matches. When such a complex event is
detected, the Monitoring Query Processor sends a notification that consists of the code of the complex
event' along with some additional data (see the select clause further) to the Reporter and/or the Trigger
Engine. The details of the alogorithm we use for this are beyond the scope of the present paper.

Measures show that the current implementation can process close to half a billion sets of atomic
events per day on a standard PC (e.g, the rate of 100 crawlers).

Trigger Engine The Trigger Engine can trigger an external action either upon receiving a notifica-
tion, or at a given date. In our setting, it is in charge of evaluating the continuous queries either when a
particular notification is detected or regularly (e.g., biweekly). The query code combined with the result
of the query forms a notification that is sent to the Reporter.

The (Xyleme) Reporter The Reporter stores the motifications that it receives. When a report
condition is satisfied, it sends these notifications as an XML document. The Xyleme Reporter post
processes this report, basically by applying an XML query to it. Reports are, for the moment, sent by
email. We are considering the support of an access to reports via web publication which seems better for
very large reports. The main difficulty for the Reporter is the management of a heavy load of emails. In
our implementation, the Reporter supports hundreds of thousands of emails a day on a single PC. This
limitation is due to the UNIX send-mail daemon implementation.

The (Xyleme) Subscription Manager The Subscription Manager receives the user requests and
manages the other modules of the subscription system.

3 Subscrition Language

As we have seen in Figure 1, a subscription consists of the following parts: (i) monitoring queries, (ii)
continuous queries, (iii) report specification, and (iv) refresh statements, and takes the following form:

subscription name
monitoring... % (i)
continuous... % (ii)

Tn fact all the complex events are detected on a document simultaneously and thus are sent to the Reporter/Trigger Engine
in one batch.

report when ... % (iii)
refresh... %(iv)

In this section we next consider (i,ii,iii) in turn; (iv) will be ignored in this paper.

A Monitoring Query has the general form:

select result
(from from-clause)?
where condition

The from clause may be omitted because we know the data that is being filtered, i.e., the document
that is currently being processed. The current document is denoted selfin the query. A from clause
may be used to attach variables to elements of the current document.

The select clause describes the data the resulting notification should contain based on constants, self
or elements defined in the from clause. The notification itself is an XML element. For the moment,
we have not implemented this part of the system. Notifications simply return the URL of the
document that triggered the monitoring query and basic information about the document.

The where clause is a condition that consists of a conjunction of atomic conditions.

An atomic condition may be (i) a condition under the URL (extends or equals a string); (ii)
information about the document provided by Alerters or directly by Xyleme, such as :

e (LastAccessed | LastUpdate) <comparator> date;

o (new | unchanged | updated | deleted?) self;

e self contains string.

(iii) element values inside a document following this syntax :

(< change >)? < element-name > (contains string)?
change := new | updated | unchanged

A Continous Query consists of a standard Xyleme query [ACVWO00] plus a condition that specifies
when to apply the query. Typically, this condition involves a frequency (e.g., every week). The continuous
query may also be triggered by a notification sent by the subscription processor. This part of the system
has been specified but not yet implemented.

The Report part of a subscription has the following form:

select c. % report query
when . % reporting condition
(atmost)? . % limiting conditions
g
(archive)? ... % archiving information

The report query is a standard Xyleme query that inputs the current set of notifications, i.e., an XML
document, and produces another XML document. The when clause indicates when to fill in a new report.

The when clause is compulsory whereas the last two clauses are optional. The atmost clause sets a
limit to the reporting query. For instance, atmost 500 means that after 500 notifications, we will stop
registering the new notifications until the next report. Finally the archive clause requests the results
of this particular subscription to be archived for some period of time. For instance, archive monthly
requests the archiving of reports for this particular subscription for a month before garbage collecting
them.

Remark Since some subscriptions may be t0o costly to maintain (e.g. monitoring all the URLs that
extend “http://”) we have a way of controlling subscriptions that we do not detail here.

Acknowledgments We thank Mihai Preda for the core algorithm of the Monitoring Query Processor,
Jeremy Jouglet and David Leniniven for implementing the Reporter, INRIA Postmaster for their support.
Finally members of VERSO groups and XYLEME S.A. provided valuable comments.

2We will not discuss deletions in this paper. It is not an obvious notion since deletion is rarely explicit on the web.

References

[ABS00]

[ACVWO0]

[CDTWO0]

[Con)]
[Cor]
[LPT99]

[LPTHO0]

[MAAT00]
[MAMO0]

[Min]
[Moe99]

[Nia]
NL]
PC]
[W3C98]
[WC95]

[Wid95)

(Xyl]

Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web. Morgan Kaufmann,
California, 2000.

Vincent Aguilera, Sophie Cluet, Pierangelo Veltri, and Fanny Watez. Querying xml doc-
uments in xyleme. ACM SIGIR Workshop on XML and information retrieval, 2000. To
appear.

Jianjun Chen, David DeWitt, Fend Tian, and Yuan Wang. Niagaracq: A scalable continous
query system for the internet databases. ACM SIGMOD, page 379, 2000.

Webcq, opencq webpage. http://www.cc.gatech.edu/projects/disl/WebCQ/.
Corba web page. http://www.omg.org/.

Ling Liu, Calton Pu, and Wei Tang. Continual queries for internet scale event-driven infor-
mation delivery. IEEE TKDE, 11(4):610, 1999.

Ling Liu, Calton Pu, Wei Tang, and Wei Han. Conquer: A continual query system for
update monitoring in the www. International Journal of Computer Systems, Science and
Engineering, 2000.

Laurent Mignet, Serge Abiteboul, Sébastien Ailleret, Bernd Amann, Amélie Marian, and
Mihai Preda. Acquiring xml pages for a webhouse, October 2000. BDA’00.

Amélie Marian, Serge Abiteboul, and Laurent Mignet. Change-centric management of ver-
sions in an xml warehouse, October 2000. BDA’00.

Mind-it web page. http://mindit.netmind.com/.

Guido Moerkotte. The aodb relational system. U. Mannheim, personal communication,
1999.

Niagara webpage. http://www.cs.wisc.edu/niagara/.

Northern light news search. http://www.northernlight.com/news.html.
Information on clusters of pcs. http://www.alinka.com/fr/index.htm.
W3C. eXtensible Markup Language (XML) 1.0, february 1998.

J. Widom and S. Ceri. Active database systems: Triggers and rules for advanced prcessiong.
Morgan-Kaufmann, California, 1995.

Jennifer Widom. Research problems in data warehousing. International Conference on
Information and Knowledge Management (CIKM), 1995.

Xyleme home page. http://www.xyleme.com/.

