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      Abstract - This paper introduces a new method of 
intelligent control to control the Buck converter using newly 
developed small signal model of the pulse width modulation 
(PWM) switch. The new method uses recurrent supervised 
neural network to estimate certain parameters of the 

transformed system matrix [ A
~

]. Then, a numerical 
algorithm used in robust control called linear matrix 
inequality (LMI) optimization technique is used to 
determine the permutation matrix [P] so that a complete 

system transformation {[ B
~

], [ C
~

], [ E
~

]} is possible. The 
transformed model is then reduced using the method of 
singular perturbation, and state feedback control is applied 
to enhance system performance. The experimental 
simulation results show that the new control methodology 
simplifies the model in the Buck converter and thus uses a 
simpler controller that produces the desired system response 
for performance enhancement.  
 
      Index Terms - Buck Converter, Linear Matrix Inequality 
(LMI), Neural Network (NN), Order Model Reduction 
(OMR), State Feedback Control, Supervised Learning. 
 

1. INTRODUCTION 
 
In recent years, small-signal modeling of dynamic 
behaviors of the open loop dc-to-dc power converters has 
received notable amount of attention, due to the fact that 
these models are the basis to extract accurate transfer 
functions [1,9] which are essential in the feedback control 
design. They are used to design reliable high performance 
regulators, by enclosing the open loop dc-to-dc power 
converters in a feedback loop, to keep the performance of 
the system as close as possible to the desired operating 
conditions. The purpose of this feedback loop is to 
counteract the outside disturbances in the: source voltages, 
duty ratio (the output pulses of the pulse width modulator 
(PWM)), and the load current, in order to regulate the 
output voltage [10,24].  
       These power converters operate in the Continuous 
Conduction Mode (CCM) or in the Discontinuous  
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Conduction Mode (DCM) [1,9]. The CCM mode is 
desirable, as the output ripple of the dc-to-dc power 
converter is very small compared to the dc steady state 
output. A linearized small-signal model is constructed to 
examine the dynamic behaviors of the converter, due to 
the fact that disturbances are of small signal variations. 

Through this model, the necessary open-loop transfer 
functions can be determined and plotted using Bode plots 
[9]. This is needed in order to use compensation to the 
pulse width modulation (PWM) power converters, to meet 
the desired nominal operating conditions, through the 
application of various control methods. These control 
methods can incorporate the approaches of: frequency 
analysis in the classical control theory, time analysis in 
the modern control theory, both frequency analysis and 
time analysis domains in the post modern (digital and 
robust) control theory, and the soft computing (fuzzy 
logic + neural networks + genetic algorithms) in the 
intelligent control theory [6,9,10,15,24]. These control 
methods can be applied to the models of power converters 
that usually work with only one specific control scheme, 
which is pulse width modulation (PWM) through either 
duty-ratio control, or current programming control [9]. In 
this paper, the duty-ratio control is used, in which the 
switch ON-time is controlled externally by comparing a 
sawtooth ramp with the controller voltage [1,9].  
       Various modeling approaches of the PWM power 
converters already exist. These approaches can be 
separated into three main categories. The first modeling 
category aims towards modeling the whole PWM 
converters. Examples for this category are: the volt- 
second and current-second (charge) balance approach, 
and the state-space averaging approach [9]. These 
approaches suffer from inaccurate results in the high 
frequency range. The second modeling category aims 
more specifically towards modeling what is called the 
converter-cell, that includes modeling the basic cell of the 
PWM converter, and ignoring the input (the dc voltage 
source) and the output (the RC filter) parts in the model 
(the cell includes only the PWM switch with the inductors 
and the capacitors associated with it). An example for this 
category is the averaged modeling approach [1,9]. This 
approach also suffers from inaccurate results in the high 
frequency range. The third modeling category aims more 
specifically to model the PWM switch, by itself, in the 
PWM power converters. 
       The previously mentioned modeling approaches 
utilize in general four techniques. The first technique is 
the sampled-data representation technique. The second 
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technique is the averaged technique. The third technique 
is the exact small-signal analysis technique [1,9], and the 
fourth technique combines the averaged technique and the 
sampled-data technique. The averaged technique 
represents the easiest and the most widely used technique. 
It can be used to determine various impedances and 
transfer functions of the converter systems. The basic 
characteristics of this technique are: (1) It uses the 
averaging technique of voltages and currents and (2) It 
gives accurate low frequency results, but inaccurate high 
frequency results.  
       Averaged models can be produced for the nonlinear 
switch in the converter circuits, which is called the PWM 
switch, as well for the converter systems as a whole. This 
switch is usually a single pole double throw (SPDT) 
switch. It is this switch which is responsible for switching 
the converter from one configuration to another during 
each switching period. These models derived for the 
PWM switch are usually easier than the derivation of 
converter models. Yet, it has the limitation of the fact that 
not all the converter topologies have the same PWM 
switch arrangement [1].      
       The exact small-signal technique [1,9] is very 
accurate to a wide range of frequencies. This technique 
can be applied to any converter systems that are: periodic, 
time-varying, and piecewise linear. The trade off for the 
high accuracy occurs in the complexity of the matrix 
manipulations and the time consumed to produce the 
exact results. Yet, it has a great advantage of being 
automated through the use of computer aided design 
(CAD) software packages.  
       The sampled data technique is based on the 
generation of a difference equation that describes the 
propagation of a point on a converter waveform from one 
cycle to another. It is usually used to derive accurate 
response for the PWM current mode control. Yet, the 
price is paid again through the limitation of the upper 
frequency range, to be limited to half the switching 
frequency. The fourth modeling technique combines the 
averaged technique and the sampled-data technique, in an 
effort to gain the main benefits of each technique. 
However, this technique, while improved, is also 
inaccurate [9].  
       From above, it can be seen that there is a need to 
develop a model applicable to various regulating schemes, 
including the most used scheme: the PWM duty ratio and 
current mode control scheme. Therefore, a small-signal 
modeling approach which is applicable to any power 
converter system represented as a two-port network has 
been introduced [1]. This was done through the modeling 
of the nonlinear part in the power converter system, which 
is the PWM switch.  
       In system modeling, sometimes it is required to 
identify some of the system parameters. This objective 
maybe achieved by the use of artificial neural networks 
(ANN), which are considered as the new generation of 
information processing networks. Artificial neural 
systems maybe defined as physical cellular systems which 

have the capability of acquiring, storing, and utilizing 
experiential knowledge [15,29]. In fact, an ANN is a 
mathimatical or computational model based on biological 
neural networks. It consists of an interconnected group of 
artificial neurons and processes information using a 
connectionist approach to computation. In most cases, an 
ANN is an adaptive system that changes its structure 
based on external or internal information that flows 
through the network during the learning phase [29]. The 
basic processing elements of neural networks are called 
neurons. They perform summing operations and nonlinear 
function computations. Neurons are usually organized in 
layers and forward connections. Computations are 
performed in a parallel fashion at all nodes and 
connections. Each connection is expressed by a numerical 
value called a weight.  The learning process of a neuron 
corresponds to a way of changing its weights. In more 
practical terms, neural networks are non-linear statistical 
data modeling tools. They can be used to model complex 
relationships between inputs and outputs or to find 
patterns in data. A neural network is an interconnected 
group of nodes, akin to the vast network of neurons in the 
human brain [5,17,28,29]. 
       When dealing with system modeling and control 
analysis, some equations and inequalities require 
optimized solutions. A numerical algorithm, used in 
robust control called linear matrix inequality (LMI) serves 
as a source of application problems in convex 
optimization [6]. LMI optimization technique started by 
the Lyapunov theory showing that the differential 
equation )()( tAxtx =ɺ  is stable if and only if there exists a 

positive definite matrix [P] such that 0<+ PAPAT  [6]. 

The requirement 0>P , 0<+ PAPAT  is what is known 
as Lyapunov inequality on [P] which is a special case of 

an LMI. By picking any 0>= TQQ  and then solving the 

linear equation QPAPAT −=+ for the matrix [P], it is 

guaranteed to be positive-definite if the given system is 
stable. This LMI was used for stability purposes. Next 
significant work was done by applying Lyapunov method 
to some specific practical problems in control engineering. 
The LMIs that arise in system and control theory can be 
formulated as convex optimization problems that are 
amenable to computer solution and then solved using 
algorithms such as the ellipsoid algorithm. A Lyapunov 
function is formulated as a convex optimization problem, 
and then an algorithm guaranteed to solve the 
optimization problem is applied. In recent works, interior-
point methods that apply directly to convex problems 
involving LMIs were developed [6]. 
       In practical control problems, the first step is to 
obtain a mathematical model in order to examine the 
behavior of the system for the purpose of designing a 
proper controller [10]. Sometimes, this mathematical 
description involves a certain small parameter 
(perturbation). Neglecting this small parameter results in 
simplifying the order of the designed controller by 
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reducing the order model of the system [2,21,22]. A 
reduced order model can be obtained by neglecting the 
fast dynamics (i.e., non-dominant eigenvalues) of the 
system and focusing on the slow dynamics (i.e., dominant 
eigenvalues). This simplification and reduction of system 
modeling leads to controller cost minimization [2,7,21,22]. 
An example is the ICs, where increasing package density 
forces developers to include side effects. Knowing that 
these devices are often modeled by very large RLC 
circuits, this would be too demanding computationally 
due to the detailed modeling of the original system [4]. In 
control system, due to the fact that feedback controllers 
do not usually consider all the dynamics of the system, 
model reduction is a very important issue [26]. Model 
reduction leads to reducing the order of the controller, 
which is directly proportional to the cost [11,12]. 
       One of the methods for order model reduction is 
known as singular perturbation [20,27]. Using the 
quadratic stabilization framework, the work in [13]  
presented the 2H  guaranteed cost control problem for 

singularly perturbed norm-bounded uncertain systems. 
The problem was solved by solving two Riccati equations 
associated with the slow and fast subsystems based on 
properly selected weighting matrices. The investigation of 
the estimator error for the slow states of singularly 
perturbed systems has been performed in [19]. In [21], the 
singular perturbation method was employed to capture the 
multimodel nature of interconnected systems with slow 
and fast dynamics. Systems strongly coupled through 
their slow parts and weakly coupled through their fast 
parts were considered. 
       Figure 1 illustrates the layout of the Buck-based 
converter control methodology used in this paper. Layer 1 
(the base) is the Buck converter model using the new 
small signal modeling approach. Layer 2 is the neural 

network estimation of the transformed system matrix [ A
~

]. 
Layer 3 is the LMI technique used in determining the 
permutation matrix required for system transformation 

{[ B
~

], [ C
~

], [ E
~

]}. Layer 4 is the system transformation. 
Layer 5 presents the order model reduction. Finally, layer 
6 presents the state feedback control.     
 

State Feedback Control 
Order Model Reduction 

System Transformation: {[ B
~

], [ C
~

], [ E
~

]} 

LMI-Based Permutation Matrix: [P] 

Neural-based State Transformation: [ A
~

] 
Buck Converter: {[A], [B], [C], [E]} New 

Small Signal Model 
 

Figure 1. Buck-based converter hierarchical control 
methodology used in this paper. 

 
       Section 2 presents background on the Buck converter, 
recurrent supervised neural network, linear matrix 
inequality, model transformation, and order model 

reduction. Section 3 presents a detailed illustration of the 
recurrent neural network estimation with the LMI 
optimization techniques for order model reduction of the 
Buck converter. An implementation of the neural network 
estimation with the LMI optimization to the Buck 
converter order model reduction is presented in Section 4. 
Section 5 presents the application of state feedback 
controller on the reduced order model of the Buck 
converter. Conclusions and future work are presented in 
Section 6.    
 

2. BACKGROUND 
 
This section presents important background on Buck 
converter, supervised neural network, LMI, and order 
model reduction that will be used in Sections 3, 4 and 5. 
 

2.1 Switching Mode Power Supply (SMPS): The 
Application of the Averaged Modeling 
Approach and the New Small Signal Model 
on the PWM Converters  

  
There are many averaged modeling techniques used to 
model the PWM converters. These techniques include: 
volt-second and current-second balance approach, and the 
state-space averaging approach [1,9]. These techniques 
are used to model the converter systems as a whole, as 
well as to model the pulse width modulation (PWM) 
switch by itself. Yet, these techniques are valid for the 
low frequency range, and they give inaccurate results for 
the dynamic behaviors of the power converters in the high 
frequency ranges [9]. Another modeling approach that 
focuses on modeling the converter-cell, instead of the 
converter as a whole, is used to get averaged models for 
the PWM converters. This approach is also useful for the 
low frequency ranges, but not useful for the high 
frequency ranges. One major advantage of these 
techniques is the fact that they are easy to implement, and 
the results obtained are not in complicated forms. 
 

2.1.1 The Averaged Modeling Approach and its 
Application on the Buck Converter 
   
The averaged modeling approach aims to produce an 
averaged model for a specific cell of the PWM converters. 
This cell is shown in Figure 2, where this basic cell is 
used to explore the dc behaviors, and the ac small-signal 
dynamic behaviors of the PWM Buck  converter. 

 
Figure  2. Basic PWM converter-cell. 
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       It is shown that a dc and ac small-signal averaged 
model of the converter-cell which is shown in Figure 2, 
can be produced as shown in Figure 3, where D is the dc 

value of the duty ratio, d̂  is the small-signal perturbation 
of the duty ratio, and V32 is the dc voltage between 
terminals 3 and 2.  

 
Figure 3. DC and AC small-signal model of the converter-cell 
shown in Figure 2.  
  
       The dc and ac small-signal averaged model, shown in 
Figure 3, will be used to derive the average control-to-
output, input-to-output, input impedance, and the control-
to-input current transfer functions for the Buck converter. 
The averaged model will be used to derive the input-to-
output, control-to-output, input impedance, and control-
to-input current average transfer functions for the PWM 
Buck converter. Figure 4 shows a typical Buck converter. 

 
Figure 4. Typical Buck converter. 

 
       Assuming a small-signal perturbation,gv̂ , in the dc 

voltage source, Vg, and that |ˆ||| gg vV >> . After the 

implementation of the averaged model that was shown 
previously, we get the following small-signal model for 
the PWM Buck converter as shown in Figure 5. 

 
Figure 5. AC small-signal model of the Buck converter 
operating in the continuous conduction mode (CCM). 
 

Nulling the input gv̂ , we get the following control-to-

output transfer function [1]: 

       
2)/(1

1
ˆ

ˆ

LCssRL
V

d

v
g

o

++
=                                    (1) 

Nulling the input d̂ , we get the following input-to-output 
transfer function [1]: 
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Other transfer functions of interest for the Buck converter 
are the input impedance and the control-to-input current 
transfer functions.  

       To get the input impedance ( ivg
ˆ/ˆ ), we null the input 

d̂ , so we get the following equation [1]: 
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       To get the control-to-input current transfer function 

( di ˆ/1̂ ), we null the input gv̂ , so we get the following 

transfer function [1]:  
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2.1.2 New Method for Obtaining an Exact 
Model of the PWM Switch Operating in 
the Duty Ratio Programming Mode 

 
In this subsection, a new approach is developed to 
formulate a new model for the PWM nonlinear switch [1]. 
The Buck converter will be used now as the basic model 
to extract the two-port network parameters. The main 
reason the Buck is used over the other PWM converters, 
is the fact that the Buck converter is a second order 
system, with a simple structure. This will be reflected 
upon the simplicity of the results that will be obtained. 
       Since the ripple voltage is comparatively much 
smaller than the dc voltage across the output capacitor (as 
the Buck converter is operating in the continuous 
conduction mode), the capacitor will be replaced with a 
constant dc voltage source Vc´p. This is illustrated in 
Figure 6. 

 
Figure 6. Alternative Buck configuration. 

 
       From the Buck converter shown in Figure 6, the two-
port augmented equations can be written as follows: 
 

       divyvyi idpcioapia
ˆˆˆˆ

' ++=                                         (5) 

       dvvgizv odapvfcopc
ˆˆˆˆ ' ++=                                                                                                                          (6) 
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A circuit model for the two-port augmented equations, 
which are represented by Equations (5) and (6), can be 
constructed as shown in Figure 7. 
 

 
Figure 7. Circuit model for Equations (5) and (6). 

 
The aim is to develop a new model for the PWM switch, 
which is the nonlinear part of the PWM converter. This 
model can be constructed directly by replacing the values 
of the parameters {yi, yio, iid, zo, gvf, vod} in their simplest 
form [1] in Equations (5) and (6). Thus, the mathematical 
model will be [1]:  
 

       divyvyi idpcioapia
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' ++=                                                                                                                                    
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       By noting that the parameter zo represents an inductor, 
we can “pull” out the zo parameter outside the circuit 
model, which is equivalent to the mathematical model 
represented by Equations (7) and (8), as the zo parameter 
is merely an inductor impedance, which is then multiplied 

by the path current cî , to form a voltage source          

(zo cî ) in series with the voltage sources (gvf apv̂ ) and (vod 

d̂ ). The result of this process is shown in Figure 8. 

 
Figure 8. New circuit model. 

 
       From Figure 8, we can recognize that the circuit 
model between the terminals {a, p, c} is merely the 
switch between these terminals in the original Buck 
converter circuit. So, the equivalent switch model in terms 

of the perturbations {apv̂ , 
pc

v 'ˆ , d̂ } is as shown in Figure 

9. 

 
Figure 9. Circuit model for the PWM switch. 

 
       Now we need to put the switch model in terms of the 

perturbations { apv̂ , cpv̂ , d̂ } instead of the perturbations 

{ apv̂ , 
pc

v 'ˆ , d̂ }. To do so, we note from Figure 8 that: 

 

       ccppc
iLjvv ˆˆˆ ' ω−=                                                                                     (9) 

 
       From Figure 8, we note that the common node (c  ́ ) 
corresponds to the node (c  ́ ) in the Buck converter in 
Figure 6. Multiplying both sides of Equation (9) by the 
parameter yio, we get:  
 

       ccpiopcio iDvyvy ˆˆˆ ' +=                                                                        (10) 

 

       So, we replace the term {
ccpio iDvy ˆˆ + } instead of the 

term { yio pc
v 'ˆ } in the previously derived switch model 

shown in Figure 9, in order to make the new model 

contain the perturbations {apv̂ , cpv̂ , d̂ } instead of the 

perturbations { apv̂ , 
pc

v 'ˆ , d̂ }. The new switch model will 

be as shown in Figure 10. 

 
Figure 10. Alternative circuit model for the PWM switch. 

 
       In order to reduce the number of the dependent 
current sources that appear in the new switch model, 
which are four dependent current sources, we will try to 
reduce the number of terms in the previous mathematical 
switch model. We have:  
 

       apapcp vDdVv ˆˆˆ +=                                                                                 (11) 

 

and as dvvgizv odapvfcopc
ˆˆˆˆ ' ++= , we obtain: 
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       capappc
iLjvDdVv ˆˆˆˆ ' ω−+=∴                                      (12) 

       To develop the first reduced mathematical switch 

model, we see that as: divyvyi idpcioapia
ˆˆˆˆ

' ++= . 

Substituting Equation (12) in Equation (5), and after the 
collection of the similar terms, we get the following 
reduced-form equation:  
 

       cioidapioapioia iLjydiVyvDyyi ˆˆ)(ˆ)(ˆ ω−+++=              (13)  
 
Substituting the values of {yi, yio, i id} in Equation (13), we 
get the following equation [1]:  
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The other equation of the model is Equation (11). So, 
Equations (11) and (14) represent the final reduced 
mathematical model of the PWM switch, replacing the 
model represented in Figure 9. The final equivalent circuit 
model of the switch mathematical model (represented by 
the Equations (11) and (14)) is as shown in Figure 11 [1], 
where: 
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Figure 11. The new small-signal model of the PWM switch. 

 
       The new switch model in Figure 11 is expected to be 
an exact small-signal model, since the mathematical 
equations upon which the whole derivation process was 
built, are exact. Also, we note that two of the dependent 
current sources are frequency dependent, which is 
uncommon for current or voltage dependent sources.  
 

2.1.3 Examining the New Small-Signal: The 
Implementation of the New Small-Signal 
Model of the PWM Switch on the Buck 
Converter  

 

In this subsection, the new small-signal model of the 
PWM switch, that was developed in the previous 
subsection, will be examined on the PWM Buck converter. 
The control-to-output, input-to-output, input impedance, 
and control-to-input current transfer functions will be 
derived for the Buck converter, using the new small-
signal model of the PWM switch. These transfer functions 
will be compared to the corresponding transfer functions, 
that were developed in previous subsections for the 
averaged modeling approach and the exact transfer 
functions for the Buck converter. 
       Applying the PWM switch model, that was 
developed previously on the Buck converter, we get the 
equivalent circuit model as shown in Figure 12. 

 

 
Figure 12. Equivalent circuit model of the PWM Buck 
converter, obtained through the application of the new small-
signal model of the PWM switch. 

 
       Assuming that the input dc voltage source, Vg, has 
small-signal perturbation, gv̂ , and that: |ˆ||| gg vV >> . To 

determine the system quadruple {[A], [B], [C], [E]}, for 

the Buck model shown in Figure 12, for the inputs d̂ and 

gv̂ , we null the dc voltage source, Vg. Then, the following 

equations can be developed for the Buck model shown in 

Figure 12, where lî  is the inductor current, cî  is the 

capacitor current, and oî  is the output current that flows 

in the output resistor. Hence, we have:  
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The output equation is co vvy ˆˆ == . For the converter 
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[ ]10=C , [ ]00=E .  

       To find the control-to-output transfer function, we 

null the input gv̂ . The new system quadruple {[A], [B], 

[C], [E]}, will be [1]: 
 

       A = 








−
−
1/RC  1/C

1/L         0
                                                 (21) 

       B = 








0    

/LV  g
                                                           (22) 

       C = [ ]1       0                                                            (23) 

       E = [ ]0                                                                    (24) 
 

       To find the control-to-output transfer function from 
the system quadruple represented by Equations (21) 
through (24), we apply the Laplace transformation to both 
sides of the state and the output equations represented by 
system state space equations: )()()( tButAxtx +=ɺ  and 

)()()( tEutCxty += . After re-arranging the result terms, 

we get the following general input-to-output transfer 
function: 
 

       EBAsC
u

y +−= −1)( Ι                                            (25) 

 
       By applying Equations (21) through (24) in Equation 
(25), for the circuit values of: Vg = 15 V, R = 18.6 Ω , D 
= 0.4, fs = 40.3 kHz, D´ = 0.6, L = 58 µH, C = 5.5 µF and 
to investigate the accuracy of the new PWM switch model, 
we compare the control-to-output frequency response 
plots of the PWM Buck, obtained through the application 
of the new PWM switch small-signal model, with the 
exact control-to-output frequency response, the averaged 
control-to-output frequency response, and both the exact 
and the averaged control-to-output frequency responses, 
as shown in Figure 13. 

 
 
 
 
 
 
 
 
Figure 13. The control-to-output frequency response of the 
PWM Buck converter, operating in CCM; exact (solid line); 
averaged (dotted line); and the new model (dashed line). 

 
       To get the input-to-output transfer function, we null 

the input d̂ . The system quadruple {[A], [B], [C], [E]} 
will be [1]: 

 

       A = 








−
−
1/RC  1/C

1/L         0
                                                 (26) 

       B = 








0   

D/L
                                                             (27) 

       C = [ ]1       0                                                            (28) 

       E = [ ]0                                                                    (29) 
 

       By applying  Equations (26) through (29) in  
Equation (25),  for the circuit values of: Vg = 15 V, R = 
18.6 Ω , D = 0.4, fs = 40.3 kHz, D´ = 0.6, L = 58 µH, C = 
5.5 µF and to investigate the accuracy of the new PWM 
switch model, we compare the input-to-output frequency 
response plots of the PWM Buck, obtained through the 
application of the new PWM switch small-signal model, 
with the exact input-to-output frequency response, the 
averaged input-to-output frequency response, and both the 
exact and the averaged input-to-output frequency 
responses, as shown in Figure 14. 

 
 
 
 
 
 
 
 
 

Figure 14. The input-to-output frequency response of the PWM 
Buck converter, operating in CCM; exact (solid line); averaged 
(dotted line); and the new model (dashed line). 
 
       From the previous frequency response plots for both 
the control-to-output and the input-to-output transfer 
functions of the PWM Buck converter, operating in the 
CCM, we see that an excellent match occurs between the 
exact and the new model results, as well as between the 
averaged and the new model results. These results 
indicate, for the time being, that the new small-signal 
model of the PWM switch is, in fact, an accurate model 
[1]. Yet, the effect of the new source coefficients h1 and 
h2 that exist in the new model of the PWM switch, does 
not appear in the case of the control-to-output and input-
to-output transfer functions. So, we need the input 
impedance and the control-to-input current transfer 
functions to see the effect of the new source coefficients 
h1 and h2, respectively. 
       By referring to Figure 12, and considering the input 

current aî  to be the output, we get the following output 

equation: aiy ˆ= . For the converter states, x, and the 

inputs, u, where 











=

o

l

v

i

ˆ

ˆ
x , 








=

d

vg

ˆ
ˆ

u , the system 

quadruple {[A], [B], [C], [E]}, will be [1]: 
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0kw  

1kw  

2kw  
∑  

 

)(•ϕ
 

ky  
1x  

px  

Output 

Activation 
Function 

Summing 
Junction 

Synaptic 
Weights 

Input 
Signals 

kv  

Threshold 

kθ  

kpw  

0x  

2x  

       








−
−

=
1/RC  1/C

1/L         0
A , 








=

0           0  

/LV   D/L g
B ,    

       [ ]0       D=C , [ ]21 h       h=E .  
       To find the control-to-input current transfer function, 
we null the input gv̂ . The new system quadruple {[A], 

[B], [C], [E]}, will be [1]: 
 

       








−
−

=
1/RC  1/C

1/L         0
A                                                  (30) 

       







=

0    

/LV  g
B                                                            (31) 

       [ ]0       D=C                                                          (32) 

       [ ]2h=E                                                                   (33) 
 
       To find the control-to-input current transfer function 
from the system quadruple represented by Equations (30) 
through (33), we use the general input-to-output transfer 
function represented by Equation (25). 
       By applying Equations (30) through (33) in Equation 
(25), for the circuit values of: Vg = 15 V, R = 18.6 Ω , D 
= 0.4, fs = 40.3 kHz, D´ = 0.6, L = 58 µH, C = 5.5 µF and 
to investigate the accuracy of the new PWM switch model, 
we compare the control-to-input current frequency 
response plots of the PWM Buck, obtained through the 
application of the new PWM switch small-signal model, 
with the exact control-to-input current frequency response, 
the averaged control-to-input current frequency response, 
and both the exact and the averaged control-to-input 
current frequency responses, as shown in Figure 15. 

 
 
 
 
 

                            
 
 
 
Figure 15. The control-to-input current frequency response of 
the PWM Buck converter, operating in CCM; exact (solid line); 
averaged (dotted line); and the new model (dashed line). 

 
       To get the input impedance transfer function, we null 

the input d̂ . The system quadruple {[A], [B], [C], [E]} 
will be [1]: 

 

       








−
−

=
1/RC  1/C

1/L         0
A                                                  (34) 

       







=

0   

D/L
B                                                              (35) 

       [ ]0       D=C                                                          (36) 

       [ ]1h=E                                                                   (37) 
 

       By applying Equations (34) through (37) in Equation 
(25), for the circuit values of: Vg = 15 V, R = 18.6 Ω , D 
= 0.4, fs = 40.3 kHz, D´ = 0.6, L = 58 µH, C = 5.5 µF and 
to investigate the accuracy of the new PWM switch model, 
we compare the input impedance frequency response 
plots of the PWM Buck, obtained through the application 
of the new PWM switch small-signal model, with the 
exact input impedance frequency response, the averaged 
input impedance frequency response, and both the exact 
and the averaged input impedance frequency responses, as 
shown in Figure 16. 

 
 
 
 
 
 
 

 
Figure 16. The input impedance frequency response of the 
PWM Buck converter, operating in CCM; exact (solid line); 
averaged (dotted line); and the new model (dashed line). 
 
       From the previous frequency response plots of the 
transfer functions of the PWM Buck converter, operating 
in the CCM, we see that a good match occurs between the 
exact and the new model results, as well as between the 
averaged and the new model results, for the frequency 
range up to half the switching frequency [1], although a 
mismatch occurs between the exact and the new model 
results, as well as between the averaged and the new 
model results, for the frequency range higher than half of 
the switching frequency [1]. Yet, in overall performance 
evaluation, the new small signal model behaves in a much 
accurate response than the older averaged modeling 
approach.  
 

2.2 Recurrent Supervised Neural Network 
An artificial neural network is is an emulation of 
biological neural system. The basic model of the neuron is 
founded upon the functionality of a biological neuron, 
where it is the basic signaling unit of the nervous system. 
The process of a neuron may be mathematically modeled 
as shown in Figure 17 [15]. 
 
 
 
 
 
 
 

 
 

 
 
Figure 17. Mathematical model of an artificial neuron. 
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As seen in Figure 17, the internal activity of the 
neuron can be shown to be: 

       ∑
=

=
p

j
jkjk xwv

1

                                   (38) 

  
       In supervised learning, it is assumed that at each 
instant of time when the input is applied, the desired 
response of the system is available. The difference 
between the actual and the desired response represents an 
error measure and is used to correct the network 
parameters externally. Since the adjustable weights are 
initially assumed, the error measure may  be used to adapt  
the network's  weight matrix [W]. A set of input and 
output patterns called a training set is required for this 
learning mode. The training algorithm estimates 
directions of the negative error gradient and reduces the 
error accordingly [29]. 
       For artificial neural network, there are several 
learning rules used to train the neural network. For 
example, in Perceptron learning rule, the learning signal is 
the difference between the desired and the actual neuron's 
response (supervised learning). Another learning rule is 
the Widrow-Hoff learning rule which minimizes the 
squared error between the desired output and the neuron's 
activation value. Backpropagation is also one of the 
important learning algorithms in neural networks [29].  
       The supervised recurrent neural network used for the 
estimation in this paper is based on an approximation of 
the method of steepest descent [15,28,29]. The network 
tries to match the output of certain neurons to the desired 
values of the system output at specific instant of time [28]. 
Consider a network consisting of a total of N neurons with 
M external input connections, as shown in Figure 18 for a 
2nd order system with two neurons and one external input.  

 
Figure 18. A second order recurrent neural network architecture, 
where the estimated matrices are given by: 









=








=

21

11

2221

1211 ~
,

~

B

B
B

AA

AA
A dd  and that [ ]]~

[]
~

[ dd BA=W .  

 
       The variable g(k) denotes the (M x 1) external input 
vector applied to the network at discrete time k. The 

variable y(k + 1) denotes the corresponding (N x 1) vector 
of individual neuron outputs produced one step later at 
time (k + 1). The input vector g(k) and one-step delayed 
output vector y(k) are concatenated to form the ((M + N) x 
1) vector u(k), whose i th element is denoted by ui(k). If Λ 
denotes the set of indices i for which gi(k) is an external 
input, andßdenotes the set of indices i for which ui(k) is 

the output of a neuron (which is yi(k)), the following is 
true:  
 







∈

∈

β  i ,ky 

Λ i ,kg 
 = ku

i

i
i

 if)(

 if)(
)(  

 
The (N x (M + N)) recurrent weight matrix of the network 
is represented by the variable [W]. The net internal 
activity of neuron j at time k is given by: 
 

)()( = )(
 

kukwkv iji

Λi

j ∑
∪∈ β

 

 
where Λ ∪ ß is the union of sets Λ and ß . At the next 

time step (k + 1), the output of the neuron j is computed 
by passing vj(k) through the nonlinearity (.)ϕ  obtaining: 
 

))(( = )1( kvky jj ϕ+  

 
       The derivation of the recurrent algorithm can be 
started by using dj(k) to denote the desired (target) 
response of neuron j  at time k, and ς(k) to denote the set 

of neurons that are chosen to provide externally reachable 
outputs. A time-varying (N x 1) error vector e(k) is 
defined whose j th element is given by the following 
relationship: 
 





 ∈

otherwise               0, 

)(   if  ),( - )( 
 = )(

kjkykd
ke

jj

j

ς
 

 
The objective is to minimize the cost function Etotal which 
is obtained by: 
 

)( = 
 

total kEE
k
∑ , where )( 

2

1
 = )( 2

 

kekE j

j
∑
∈ς

  

  
To accomplish this objective, the method of steepest 
descent which requires knowledge of the gradient matrix 
is used:  
 

       )(  = 
)(

 =  = 
  

total
total kE

kEE
E

kk

WW WW
∇

∂
∂

∂
∂

∇ ∑∑  

 
where )(kEW∇  is the gradient of E(k) with respect to the 

weight matrix [W]. In order to train the recurrent network 

Z-1 
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System 
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in real time, the instantaneous estimate of the gradient is 
used ( ))(kEW∇ .  For the case of a particular weight 

ℓmw (k), the incremental change ℓmw∆ (k) made at time k 

is defined as: 
 

)(

)(
 - = )(

kw

kE
kw

m
m

ℓ
ℓ ∂

∂∆ η  

 
where η is the learning-rate parameter. Hence:   
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To determine the partial derivative )()/( kwky mj ℓ∂∂ , the 

network dynamics are derived. The derivation is obtained 
by using the chain rule which provides the following 
equation: 
         

)(

)(
))(( = 

)(

)(

)(

1)+(
 = 
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1)+(
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j
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Differentiating the net internal activity of neuron j with 

respect to
ℓmw (k) yields: 
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where ( ))()/( kwkw mji ℓ∂∂  equals "1" only when j = m and 

i = ℓ ; otherwise, it is "0". Thus: 
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where δ mj  is a Kronecker delta equal to "1" when j = m 

and "0" otherwise, and: 
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Having those equations provides that: 
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The initial state of the network at time k = 0 is assumed to 
be zero:  
 

0 = 
)0(

(0)

ℓm

i

w

y

∂
∂

, for {j∈ ß , m∈ ß , ℓ ∈ β∪Λ }. 

   
The dynamical system is described by the following triply 

indexed set of variables (jmℓπ ):  
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For every time step k and all appropriate j, m and ℓ , 
system dynamics are controlled by: 

      


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
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)()()(  ))(( = 1)+(
 

kukkwkvk mj
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j
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,     

      with 0 = (0)j
mℓπ . 

The values of  )(kj
mℓπ and the error signal ej(k) are used 

to compute the corresponding weight changes: 

       )()(   = )(
 

kkekw j
mj

j

m πη
ς

ℓℓ ∑
∈

∆                              (39) 

Using the weight changes, the updated weight ℓmw (k + 1) 

is calculated as follows: 
 

       )( + )( = 1)+( kwkwkw mmm ℓℓℓ ∆                             (40) 
 
Repeating this computation procedure provides the 
minimization of the cost function and the objective is 
achieved. 
 
Example 1. The recurrent neural network was 
implemented to estimate the states and [Ad] and [Bd] 
matrices of the propulsion part of an advanced airplane 9th 
order model [2]. Only the 6th, 7th, 8th, and 9th states of the 
complete model were considered in this example. The [Ad] 
and [Bd] matrices were given by:  

 

       [Ad] = 



















1.068-7.954-0.1036-0.03740

0.847690.24-0.11550.2295

10.4027.165.707-0.4263

11.60343.4-6.0224.191-

 

       [Bd] = 



















0.00.00.00.0

0.025.83-43.02-0.0

0.00.00.00.0

0.00.00.00.0
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+ 

       This part is a fourth-order subsystem with four states 
to be estimated. The system was simulated for a specific 
command input and its corresponding output data were 
recorded. The generated pair of input-output data was 
used by the recurrent neural network to estimate the states 
and the [Ad] and [Bd] matrices of the propulsion airplane 
model to provide the estimated matrices within the trained 

weight matrix [ ]]~
[]

~
[ dd BA=W . Results of testing the 

estimated propulsion model showed very close state 
responses to the true system states. This is shown in 
Figure 19. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19. System state response of the original, trained, and 
estimated system: thick blue line: true response, thin red line: 
response while training, light green line: estimated response. 
 
       With the many advantages that the neural network 
has, it is used for parameter estimation in model 
transformation for the purpose of order model reduction 
as will be shown in the following section. 
 

2.3 Linear Matrix Inequality (LMI) and Model 
Transformation 

 
In this section, the detailed illustration of system 
transformation using LMI optimization will be presented. 
Consider the system:  
 
       )()()( tButAxtx +=ɺ                                   (41) 

       )()()( tEutCxty +=                      (42) 
 

The state space system representation of Equations (41) 
and (42) may be described by the block diagram shown in 
Figure 20.  
       In order to determine the transformed [A] matrix, 

which is [A
~

], the discrete zero input response is obtained. 
This is achieved by providing the system with some initial 
state values and setting the system input to zero (u(k) = 0). 
Hence, the discrete system of Equations (41) and (42), 
with the initial condition 0)0( xx = , becomes:  
 

       )()1( kxAkx d=+                                      (43) 

       )()( kxky =                                                            (44) 
 

We need x(k) as a neural network target to train the 

network to obtain the needed parameters in [dA
~

] such 

that the system output will be the same for [Ad] and [ dA
~

]. 

Hence, simulating this system provides the state response 
corresponding to their initial values with only  the [Ad] 
matrix is  being  used.   
 
 
 
 
 
 

Figure 20. State space block diagram. 
 

Once the input-output data is obtained, transforming the 
[Ad] matrix is done using the NN training, as explained in 
Section 3. The estimated transformed [Ad] matrix is then 
converted back into the continuous form which yields: 
 

       







=

o

cr

A

AA
A

0

~
                               (45) 

 

Having the [A] and [A
~

] matrices, the permutation [P] 
matrix is determined using the LMI optimization 
technique, as will be illustrated in later sections. The 
complete system transformation can be achieved as 

follows: assuming that xPx 1~ −= , the system of Equations 
(41) and (42) can be re-written as: 
 

       )()(~)(~ tButxAPtxP +=ɺ ,    

       )()(~)(~ tEutxCPty += , where: ( )()(~ tyty = ). 
 

Pre-multiplying the first equation above by [P-1], we 
obtain: 
 

       )()(~)(~ 111 tBuPtxAPPtxPP −−− +=ɺ ,      

       )()(~)(~ tEutxCPty +=         
 
which yields the following transformed model: 
 

       )(
~

)(~~
)(~ tuBtxAtx +=ɺ                                             (46) 

       )(
~

)(~~
)(~ tuEtxCty +=                                             (47)

  
where the transformed system matrices are given by: 
 

       APPA 1~ −=                                              (48) 

       BPB 1~ −=                                                            (49) 

       CPC =~
                                (50) 

       EE =~
                                 (51) 
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       Transforming the system matrix [A] into the form 
shown in Equation (45) can be achieved based on the 
following definition [18]. 
 

Definition: Matrix nMA∈ is called reducible if either: 
(a)   n = 1 and A = 0; or 
(b)   n ≥ 2, there is a permutation matrix nMP∈ , and 

there is some integer r with 
       11 −≤≤ nr  such that:  
 

       







=−

Z

YX
APP

0
1                                             (52) 

 
where: rrMX ,∈ , rnrnMZ −−∈ , , rnrMY −∈ , , and 

0 rrnM ,−∈  is a zero matrix. 
 
       The attractive features of the permutation matrix [P] 
such as being orthogonal and invertible have made this 
transformation easy to carry out.  However, the 
permutation matrix structure narrows the applicability of 
this method to a very limited category of applications. 
Some form of a similarity transformation maybe used to 

correct this problem; nnnn RRf ×× →: , where f  is a 

linear operator defined by APPAf 1)( −=  [18]. Hence, 

based on the [A] and [A
~

], Linear Matrix Inequalities 
(LMI) are used to obtain the transformation matrix [P]. 
The optimization problem is casted as follows: 
 

ε<−− − AAPPtoSubjectPP o
P

~
min 1                (53) 

 
which maybe written in an LMI equivalent form as: 
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S

ε
       (54) 

      
where S is a symmetric slack matrix [6]. 
 

2.4 Order Model Reduction 
 
Linear time-invariant models of many physical systems 
have fast and slow dynamics, which may be referred to as 
singularly perturbed systems [19]. Neglecting the fast 
dynamics of a singularly perturbed system provides a 
reduced slow model. This gives the advantage of 
designing simpler lower-dimensionality reduced order 
controllers based on the reduced model information.  
       To show the formulation of a reduced order system 
model, consider the singularly perturbed system [2]: 
 

       011211 0     , )( )()( )(  x)x(tuBtAtxAtx =++= ξɺ     (55) 

       022221 0(    , )()()()( ξξξξε =++= )tuBtAtxAtɺ     (56) 

       )()(  )(y 21 tCtxCt ξ+=                               (57) 
  

where  1mx ℜ∈ and 2mℜ∈ξ  are the slow and fast state 

variables, respectively,  1nu ℜ∈ and 2ny ℜ∈ are the input 

and output vectors, respectively, { ][ iiA , [ iB ], [ iC ]} are 

constant matrices of appropriate dimensions with }2,1{∈i , 

and ε  is a small positive constant. The singularly 
perturbed system in Equations (55)-(57) is simplified by 
setting 0=ε  [3,14]. In doing so, we are neglecting the 
fast dynamics of the system and assuming that the state 
variablesξ  have reached the quasi-steady state. Hence, 

setting 0=ε  in Equation (56), with the assumption that 
[ 22A ] is nonsingular, produces:  
 

       )()()( 1
1

2221
1

22 tuBAtxAAt r
−− −−=ξ                (58) 

 
where the index r denotes remained or reduced model. 
Substituting Equations (58) in Equations (55)-(57) yields 
the reduced order model:  
 

            )()(  )( tuBtxAtx rrrr +=ɺ                        (59) 

       )()()( tuEtxCty rrr +=                 (60) 
 

where:  
 

       21
1

221211 AAAAAr
−−=                                (61) 

       2
1

22121 BAABBr
−−=                                (62) 

       21
1

2221 AACCCr
−−=                                (63) 

       2
1

222 BACEr
−−=                   (64) 

 
Example 2. Consider the following first order system: 
 

)(
1

1
)(

408

1530
)( tutxtx 








+









−
−

=ɺ , [ ] )(11)( txty =  

 
Since the system is a 2nd order, there are two eigenvalues 
which are {-22.9584, -47.0416}. As seen from the 
eigenvalues, since there are two distinct categories (fast 
and slow) with big difference between them, the singular 
perturbation reduction may be applied. The reduced 1st 
order model is obtained as: 
 

)(1.375)(27)( tutxtx rr +−=ɺ , )(0.025)(1.2)( tutxty rr +=  
 
System output response plots of simulating this reduced 
order model along with simulating the original system 
model to a step input are shown in Figure 21. As seen in 
the figure, the singular perturbation has provided an 
acceptable response compared with the original response.  
 
Example 3. Consider the following 3rd order system: 
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Figure 21. Output step response of the original and reduced 
order models (___ original model, -.-.-. reduced model). 
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       [ ] )(12.01)( txty =  
 

Since the system is a 3rd order, there are three eigenvalues 
which are {-25.2822, -22, -42.717}. Using the singular 
perturbation technique, the system model is reduced to the 
following 2nd order model: 
 

       )(
1.05

0.775
)(

29.5-8.2

2.7520.9-
)( tutxtx rr 








+








=ɺ   

       [ ] [ ] )(0.0125     )(0.3251.05)( tutxty rr +=  
 
System output response plots of the original system model 
and the reduced model, for a step input, are shown in 
Figure 22. It is seen that the reduced order model is 
performing very well as compared with the original 
system response. 
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Figure 22. Output step response of the original and reduced 
order models (___ original model, -.-.-. reduced model). 
 
Example 4. Consider the 5th order RLC filter shown in 
Figure 23 [16]. It is well known that the capacitor and the 
inductor are dynamical passive elements, which means 
that they have the ability to store energy. The dynamical 
equations may be derived using the Kirchhoff's current 
law (KCL) and Kirchhoff's voltage law (KVL) [16]. It is 
well known that the current for the capacitor is 
proportional to the change of its voltage, that is: 
 

 
 

 
 
 

 
 

Figure 23. A 5th order RLC-based network (circuit). 
 

       
dt

tdv
Cti i

i

c
ic

)(
)( =  

 
and that the voltage across the inductor is proportional to 
the change of its current, that is:   

 

       
dt

tdi
Ltv i

i

L
iL

)(
)( =  

 
In order to obtain a state space model for the above 
system, let the dynamics of the system be designated as 
system states (ix ). This means that there will be a 5th 

order system since there are five dynamical elements in 
the system. The model can be obtained by assigning the 
following states:  : 1x Current of the inductor L1, 

 : 2x Voltage of the capacitor C1,  : 3x Current of the 

inductor L2,  : 4x Voltage of the capacitor C2, and 

 : 5x Current of the inductor L3. 

       Applying KCL at nodes (a) and (b) and KVL for the 
three loops starting from left to right of  Figure 23 yields 
the following differential equations: 

       )(
)(

)( 3
2

11 tx
dt

tdx
Ctx += , )(

)(
)( 5

4
23 tx

dt

tdx
Ctx += ,  

       0)(
)(

)()( 2
1

111 =+−+− tx
dt

tdx
LtxRtvin ,      

       0)(
)(

)( 4
3

22 =++− tx
dt

tdx
Ltx , 

       0)(
)(

)( 52
5

34 =++− txR
dt

tdx
Ltx  

Letting i
i x

dt

dx
ɺ≡  and re-arranging the above equations, 

the following may be obtained: 

       )(
1

)(
1

)()(
1

2
1

1
1

1
1 tv

L
tx

L
tx

L

R
tx in+−−=ɺ ,      

       )(
1

)(
1

)( 3
1

1
1

2 tx
C

tx
C

tx −=ɺ  

       )(
1

)(
1

)( 4
2

2
2

3 tx
L

tx
L

tx +=ɺ ,  

       )(
1

)(
1

)( 5
2

3
2

4 tx
C

tx
C

tx −=ɺ , 

       )()(
1

)( 5
3

2
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3
5 tx

L

R
tx

L
tx −=ɺ  
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Hence, the system may be given by: 
 

       )()()( tButAxtx +=ɺ , )()()( tEutCxty +=  
 

where: 
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       [ ]20000 RC = , [ ]0=E . 
 

       Given the following values: nF, 57.221 == CC  

H9.82 31 µ== LL , H31.8 2 µ=L , Ω== 10021 RR , the 

corresponding 5th order model is obtained. The 
eigenvalues of the system are found to be: 

)7029.30865.5,2839.6,9863.59445.1(106 jj ±−−±−× . 

Performing model reduction, the system is reduced from 
its 5th order to a 4th order by taking the first four rows of 
[A] as the first category represented by Equation (55) and 
taking the fifth row of [A] as the second category 
represented by Equation (56). Simulations of both, the 
original and the reduced models, are shown in Figure 24.  
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Figure 24. System output step response of the original and 
reduced order models (___ original model, -.-.-reduced model). 
 
       As seen in Figure 24, the reduced order model (using 
the singular perturbation method) has provided an 
acceptable response compared with the original system 
response. 

 

3. NEURAL NETWORK ESTIMATION WITH LMI 
OPTIMIZATION FOR THE BUCK MODEL 
REDUCTION  

 
In this work, it is our objective to search for a similarity 
transformation that can be used to decouple a pre-selected 
eigenvalue set from the system matrix [A]. To achieve 
this objective, training the neural network to estimate the 

transformed discrete system matrix [dA
~

] is performed 

[15]. For the system of Equations (55)-(57), the discrete 
model of the Buck converter is obtained as: 
 

       )()()1( kuBkxAkx dd +=+                               (65) 

       )()()( kuEkxCky dd +=                  (66) 
 
The estimated discrete model of Equations (65)-(66) can 
be written in a detailed form (as shown in Figure 18) as: 
 

       )(
)(~
)(~

)1(~
)1(~

21

11

2

1

2221

1211

2

1 ku
B

B

kx

kx

AA

AA

kx

kx




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


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










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
=
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
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+
+

 (67) 

       







=

)(~
)(~

)(~

2

1

kx

kx
ky                                 (68) 

 
where k is the time index. The detailed matrix elements of 
Equation (67)-(68) are shown in Figure 18 in the previous 
section.  
       The recurrent neural network presented in Section 2.2 
can be summarized by defining Λ as the set of indices i 
for which )(kgi is an external input, which in the Buck 
converter system is one external input and by defining ß 
as the set of indices i for which )(kyi is an internal input 

or a neuron output, which in the Buck converter system is 
two internal inputs (two system states). Also, by defining 

)(kui as the combination of the internal and external 

inputs for which ∪∈ ßi Λ. Using this setting, training the 

network depends on the internal activity of each neuron 
which is given by:  
 

       ∑
∪∈

=
βΛi

ijij kukwkv )()()(                 (69) 

 
where wji is the weight representing an element in the 
system matrix or input matrix for ßj ∈  and ∪∈ ßi Λ 

such that [ ]]~
[]

~
[ dd BA=W . At the next time step (k +1), 

the output (internal input) of the neuron j is computed by 
passing the activity through the nonlinearity φ(.) as 
follows: 
 

       ))(()1( kvkx jj ϕ=+                                             (70)

  
With these equations, based on an approximation of the 
method of steepest descent, the network estimates the 
system matrix [Ad] as illustrated in Equation (43) for zero 
input response [15]. That is, an error can be obtained by 
matching a true state output with a neuron output as 
follows: 
 

)(~)()( kxkxke jjj −=      

  
Now, the objective is to minimize the cost function given 
by: 
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)(~ txr

 

       ∑=
k

kEE )(total , where   ∑
∈

=
ςj

j kekE )()( 2
2
1  

 

where ς denotes the set of indices j for the output of the 

neuron structure. This cost function is minimized by 
estimating the instantaneous gradient of E(k) with respect 
to the weight matrix [W] and then updating [W] in the 
negative direction of this  gradient  [15,28]. In steps, this 
may be proceeded as follows: 
 

-       Initialize the weights, [W], by a set of uniformly 
distributed random numbers. Starting at the instant k = 
0, use Equations (69) and (70) to compute the output 
values of the N neurons (where ßN = ).  

 

- For every time step k and all ,ßj ∈  ,ßm∈  and 

∪∈ ßℓ Λ, compute the dynamics of the system 

which are governed by the triply indexed set of 
variables:  

 

     













+=+ ∑

∈ßi
mj

i
mjij

j
m kukkwkvk )()()())(()1( ℓℓℓ

ɺ δπϕπ

       
with initial conditions 0)0( =j

mℓπ  and mjδ  is given by 

( ))()( kwkw mji ℓ∂∂ , which is  equal to "1" only when 

j = m and ℓ=i ; otherwise it is "0". Notice that for 
the special case of a sigmoidal nonlinearity in the 
form of a logistic function, the derivative )(⋅ϕɺ  is 

given by: )]1(1)[1())(( +−+= kykykv jjjϕɺ .    

 
- Compute the weight changes corresponding to the 

error signal and system dynamics:  
 

∑
∈

=∆
ς

πη
j

j
mjm kkekw )()()( ℓℓ                         (71) 

 
- Update the weights in accordance with: 
 

)()()1( kwkwkw mmm ℓℓℓ ∆+=+                   (72) 

 
- Repeat the computation until the desired estimation is 

achieved. 
 
       As illustrated in Equations (43) and (44), for the 
purpose of estimating only the transformed system matrix 

[ A
~

], the training is based on the zero input response. 
Once the training is complete, the obtained weight matrix 
[W] is the discrete estimated transformed system matrix. 
Transforming the estimated system back to the continuous 
form yields the desired continuous transformed system 

matrix [ A
~

]. Using the LMI optimization technique 
illustrated in Section 2.3, the permutation matrix [P] is 

determined. Hence, a complete system transformation, as 
shown in Equations (46) and (47), is achieved.  
       To perform order model reduction, the system in 
Equations (46) and (47) are written as: 
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
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The following system transformation enables us to 
decouple the original system into retained (r) and omitted 
(o) eigenvalues based on the subsystems as shown in 
Figure 25. The retained eigenvalues are the dominant 
eigenvalues that produce the slow dynamics and the 
omitted eigenvalues are the non-dominant eigenvalues 
that produce the fast dynamics. 
 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 25.  System decoupling process of the fast and slow 
eigenvalues. 
 
Equation (73) maybe written as: 

 

       )()(~)(~)(~ tuBtxAtxAtx rocrrr ++=ɺ       

       )()(~)(~ tuBtxAtx oooo +=ɺ      
 

The coupling term )(~ txA oc  maybe compensated for by 

solving for )(~ txo  in the second equation above by setting 

)(~ txo
ɺ  to zero using the singular perturbation method (by 

setting 0=ε ). Doing so, the following is obtained: 
  

       )()(~ 1 tuBAtx ooo
−−=                                 (75) 

 

Using )(~ txo , we get the reduced order model given by:  
 

       )(][)(~)(~ 1 tuBBAAtxAtx roocrrr +−+= −ɺ                 (76) 

       )(][)(~)( 1 tuEBACtxCty ooorr +−+= −                (77) 
 
Hence, the overall reduced order model maybe 
represented by: 
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            )()(~  )(~ tuBtxAtx orrorr +=ɺ                 (78) 

       )()(~)( tuEtxCty orror +=    (79) 
 

where the detail of the {[ orA ], [ orB ], [ orC ], [ orE ]} 

overall reduced matrices are shown in Equations (76) and 
(77). 
 

4. MODEL REDUCTION OF THE BUCK 
CONVERTER USING NEURAL ESTIMATION 
AND LMI OPTIMIZATION 

 
Investigating the proposed method of system modeling 
for the Buck converter using neural network with LMI 
and order model reduction, the input-to-output and 
control-to-output systems were tested on a PC platform 
with hardware specifications of Intel Pentium 4 CPU 2.40 
GHz and 504 MB of RAM, and software specifications of 
MS Windows XP 2002 OS  and Matlab 6.5 simulator. 
 

4.1 Input-to-Output System 
 
The state space model of the input-to-output system is 
given by the following system matrices: 
 

       A = 








−
−
1/RC  1/C

1/L         0
                                                  (80) 

       B = 








0    

/LD 
                                                            (81) 

       C = [ ]1       0                                                            (82) 

       E = [ ]0                                 (83) 
 

       Knowing that this is a second order system, its 
eigenvalues should not be complex in order to perform 
order model reduction. As seen from the system matrix 
[A], the eigenvalues are mainly depending on the 
capacitor and inductor values. Therefore, different values 
of the capacitor and inductor were considered as it will be 
shown in the following examples.  
       As a first example, given that  D = 0.4, R = 18.6 Ω, L 
= 5.8 H, C = 0.55 mF, the eigenvalues were found to be -
3.3196 and  -94.4321. Having the eigenvalue -94.4321 
being much larger than the -3.3196, which shows  two 
categories of eigenvalues, order model reduction may be 
performed. Thus, the system was discretized using 
sampling rate Ts = 0.0005 second. and simulated for a 
zero input, )()( tAxtx =ɺ . Hence, based on the obtained 

simulated output data and using neural network to 
estimate the subsystem matrix [Ac] of Equation (45), the 

following transformed system matrix [A
~

] was obtained: 
 

A
~

  = 








o

cr

A

AA

0
 

 
where [Ar] is set to provide the dominant eigenvalues 
(slow dynamics) and [Ao] is set to provide the non-

dominant eigenvalues (fast dynamics) of the original 
system. It is important to notice that the system 
considered is a second order system. Thus, when training 
the system, the second state )(~ txo of the transformed 

model in Equation (73) is unchanged due to the restriction 

of [0     Ao] seen in [A
~

]. This may lead to an undesired 
starting of the system response, but fast system overall 
convergence (as will be seen and explained in the third 

example). Using [A
~

] along with [A], the LMI is then 

implemented in order to obtain {[B
~

], [ C
~

], [ E
~

]}, which 
makes a complete model transformation. Finally, using 
the singular perturbation technique for order model 
reduction, the reduced order model is obtained. The input-
to-output system responses to a step input of the original 
full order and reduced order models are seen in Figure 26.  
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Figure 26.  Input-to-output system step responses: full order 
system model (solid blue line), transformed reduced order model 
(dashed black line). 
 
       A second example is considering the values: D = 0.4, 
R = 18.6 Ω, L = 580 mH, C = 55 µF. The eigenvalues 
were found to be -33.1963 and -944.3208. Using the same 
procedure that was performed previously, the simulation 
of the full and reduced order models for a step input has 
generated the responses shown in Figure 27. In addition to 
that, the transformed reduced order model response was 
compared with the non-transformed reduced order model. 
It is seen in Figure 27 that the response of the transformed 
reduced order model is more accurate than the response of 
the non-transformed reduced order model.  
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Figure 27. Input-to-output system step responses: full order 
system model (solid blue line), transformed reduced order model 
(dashed black line), and non-transformed reduced order model 
(dashed red line). 
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       In a third example, different values of the capacitor, 
inductor, and resistor are selected such that the values of 
the system eigenvalues are not very high (not very fast 
dynamics), but still one is larger than the other. Hence, 
the following values were considered: D = 0.4, R = 10.1 
Ω, L = 3.305 H, C = 5.5 mF. The eigenvalues were found 
to be -3.901 and -14.099. For a step input, simulating the 
original and transformed reduced order models along with 
the non-transformed reduced order model produced the 
results shown in Figure 28. 
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Figure 28. Input-to-output system step responses: full order 
system model (solid blue line), transformed reduced order model 
(dashed black line), and non-transformed reduced order model 
(dashed red line). 
 
       As seen in Figure 28, the transformed reduced order 
model response is starting a little off from the original 
system response, however, it has a faster convergence 
than the non-transformed reduced order model response. 
The cause of this is due to the construction of the output 
matrix C = [0    1]; given that: 
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where [Ar] is preset to the dominant eigenvalues (slow 
dynamics), [Ao] is preset to the non-dominant eigenvalues 
(fast dynamics), and [Ac] is the neural-estimated sub-
matrix. It is seen that )(~)(~ txty o= , where )(~ txo  is the 

solution of )()(~)(~ tuBtxAtx oooo +=ɺ  after setting it in the 

form: )()(~)(~ tuBtxAtx oooo εεε +=ɺ  and letting 0)(~ =txo
ɺε  

using the singular perturbation method. The sub-matrix 
[Ao] is set to have the fast dynamics (represented by the -
14.099 eigenvalue) regardless of the system response and 
is independent of the neural network training. Hence, 
having )(~ ty depending only on )(~ txo , which was 

independent of the training (i.e., independent of [Ac]), 
makes the transformed system response less accurate. 
However, if the output were to depend on )(~ txr , which 

had the neural network training (i.e., depends on [Ac]), 
such that C =  [1    0], then the response would look as 
seen in Figure 29, which is much better and more accurate 
than the non-transformed reduced order model response. 
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Figure 29. Input-to-output system step responses: full order 
system model (solid blue line), transformed reduced order model 
(dashed black line), and non-transformed reduced order model 
(dashed red line). 
 
       A fourth  example  that will  produce  complex  
eigenvalues  and thus  can  not  be reduced using the 
previously utilized singular perturbation method is as 
follows: if the original  system  element  values are  set to  
D = 0.4, R = 18.6 Ω, L = 58 µH, C = 5.5 µF, then the 
eigenvalues are found to be complex and given by: 

4105.5776)(-0.4888 ×± j . Simulating this system to a 
step input produces the response shown in Figure 30. 
Here, since the system is a 2nd order and has complex 
eigenvalues, order model reduction can not be performed 
using the previously used singular perturbation technique.  
 

 
 
 
 
 
 
 
 

 
 
Figure 30. 2nd order (full order) original system step response. 
 

4.2 Control-to-Output System 
 
The state space model of the control-to-output system is 
given by the system matrices: 
 

       A = 








−
−
1/RC  1/C

1/L         0
                                                  (84) 

       B = 








0    

/LVg                                                            (85) 
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       C = [ ]1       0                                                            (86) 

       E = [ ]0                                                                    (87) 
 
       As seen in the Equations (84)-(87), the system matrix 
[A] of the control-to-output state space model is the same 
as the input-to-output system. The only difference is that 
the input matrix [B] has changed to depend on the 
element Vg instead of D. Hence, the eigenvalues will be 
the same and the response will be of the same type as the 
input-to-output system. For example, considering the 
elements of the system model given by: Vg = 15 V, R = 
18.6 Ω, L = 58 mH, C = 5.5 µF, the system output step 
response is shown in Figure 31. As previously seen, the 
transformed reduced model response has a faster 
convergence than the response of the reduced model 
without system transformation. 
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Figure 31. Control-to-output system step responses: full order 
system model (solid blue line), transformed reduced order model 
(dashed black line), and non-transformed reduced order model 
(dashed red line). 
 

5. THE APPLICATION OF STATE FEEDBACK 
CONTROLLER ON THE REDUCED ORDER 
MODEL OF THE BUCK CONVERTER 

 
We can apply many control techniques such as 

∞H control, robust control, stochastic control, intelligent 

control, etc. on the reduced order model to meet given 
specifications. Yet, in this paper, since the Buck system is 
a 2nd order system reduced to a 1st order, we will 
investigate system stability and enhancing performance 
by considering the s-domain pole replacement. 
       For the reduced order model in the system of 
Equations (78) and (79), a state feedback controller can be 
designed. For example, assuming that a controller is 
needed to provide the system with faster dynamical 
response, this can be achieved by replacing the system 
eigenvalues with new faster eigenvalues. Hence, let the 
control input be given by: 
 

       )()(~)( trtxKtu r +−=                                             (88) 

 
where K is to be designed based on the desired system 
eigenvalues. State feedback control for the transformed 
reduced order model is illustrated in Figure 32.  

 
 
 
 
  
 
 
Figure 32. Block diagram of a state feedback control with  
{[ orA ], [ orB ], [ orC ], [ orE ]} overall reduced order system 

matrices. 

      
       Replacing the control input )(tu  in Equations (78) 

and (79) by the above new control input in Equation (88) 
yields the following reduced system equations: 
 

       )]()(~[)(~)(~ trtxKBtxAtx rorrorr +−+=ɺ                  (89)        

       )]()(~[)(~)( trtxKEtxCty rorror +−+=                (90) 
 
which can be re-written as:  
 

      )()(~)(~)(~ trBtxKBtxAtx orrorrorr +−=ɺ       

       )()(~][)(~ trBtxKBAtx orrororr +−=→ ɺ   

)()(~)(~)( trEtxKEtxCty orrorror +−=    

       )()(~][)( trEtxKECty orroror +−=→   
 
The overall closed-loop system model may then be 
written as:  
 

       )()(~)(~ trBtxAtx clrcl +=ɺ    (91) 

       )()(~)( trEtxCty clrcl +=                 (92) 
 

such that the closed loop system matrix [Acl] will provide 
the new desired system eigenvalues.  
 
Example 5. Consider the input-to-output system 
presented in Section 4, for the case where the eigenvalues 
were -3.901 and -14.099. Using the new transformation-
based reduction technique, one obtains a reduced order 
model given by: 

 

)(]1212.0[)(~]3503.0[)(

)(]8051.5[)(~]901.3[)(~

tutxty

tutxtx

rr

rr

−+−=
−+−=ɺ

 

 
with the eigenvalue of -3.901. Now, suppose that a new 
eigenvalue λ = -9 that will produce faster system 
dynamics is desired for this reduced order model. This 
objective can be achieved by first setting the desired 
characteristic equation as follows: 

 
09 =+λ   

 
      To determine the feedback control gain K, the 
characteristic equation of the closed-loop system is 

Engineering Letter, 17:2, EL_17_2_07
____________________________________________________________________________________

(Advance online publication: 22 May 2009)



 

   

needed. This can be achieved using Equations (89) 
through (91) which yields:  
 

→=− 0)( clAIλ      0][ =−− KBA ororIλ  
 

Knowing that orA = -3.901 and orB = -5.805, the closed-

loop characteristic equation can be compared with the 
desired characteristic equation. Doing so, the feedback 
gain K is found to be -0.8784. Hence, the closed-loop 
system now has the eigenvalue of -9. As stated previously, 
the objective of replacing eigenvalues is to enhance 
system performance. Simulating the reduced order model 
with the new eigenvalue for the same original system 
input (the step input) has generated the response shown in 
Figure 33. 
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Figure 33. Enhanced system step responses based on pole 
placement; full order system model (solid blue line), 
transformed reduced order model (dashed black line), non-
transformed reduced order model (dashed red line), and the 
controlled transformed reduced order (dashed pink line). 
  
       As it is seen in the figure, the new normalized system 
response is faster (enhanced) than the system response 
obtained without pole placement. That is, the settling time 
in the reduced controlled system response is about 0.4 
seconds while in the uncontrolled system response is 
about 1.3 seconds. This shows that even simple state 
feedback control using the transformation-based reduced 
order system model can achieve the equivalent system 
performance enhancement that may be obtained using 
more complex and expensive control on the original full 
order system. 
 

6. CONCLUSIONS AND FUTURE WORK 
 
A new method of intelligent control for the Buck 
converter using a newly developed small signal modeling 
of the pulse width modulation (PWM) switching is 
introduced in this paper. In order to achieve an intelligent 
control, the second order Buck system was simplified by 
reducing it to a first order system. This reduction was 
achieved by the implementation of a recurrent supervised 
neural network to estimate certain elements [Ac] of the 

transformed system matrix [A
~

], while the other elements 
[Ar] and [Ao] are set based on the system eigenvalues 
such that [Ar] contains the dominant eigenvalues (slow 

dynamics) and [Ao] contains the non-dominant 
eigenvalues (fast dynamics). To obtain the transformed 

matrix [A
~

], the zero input response was used in order to 
obtain output data related to the state dynamics, based 
only on the system matrix [A]. After the transformed 
system matrix was obtained, the robust control algorithm 
of linear matrix inequality (LMI) optimization technique 
was used to determine the permutation matrix [P], which 
is required to complete system transformation matrices 

{[ B
~

], [ C
~

], [ E
~

]}. The reduction process was then 
performed using the singular perturbation method, which 
operates on neglecting the faster-dynamics eigenvalues 
and leaving the dominant slow-dynamics eigenvalues to 
control the system. Simple state feedback control using 
pole placement was then applied on the reduced Buck 
model to obtain the desired Buck system response.  
       It is also shown in this paper that the eigenvalues of 
the resulting transformed reduced model are a subset of 
the original non-transformed full-order system, and this is 
important since the eigenvalues in the non-transformed 
reduced order model will be different from the 
eigenvalues of the original full-order system. 
       Future work will investigate the implementation of 
the introduced control methodology upon other converter 
systems such as the boost converter. Future work will also 
investigate the application of the introduced hierarchical 
control methodology used in this paper for the complex-
quadruple transfer functions of control-to-input current 
transfer function and input impedance transfer function 
for the new small signal model of the Buck converter.      
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