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Soft Computing Using Neural Estimation with L M1-Based
Model Transformation for OM R-Based Control of
the Buck Converter

Anas N. Al-Rabadi and Othman M.K. Alsmadi

Abstract - This paper introduces a new method of
intelligent control to control the Buck converter using newly
developed small signal model of the pulse width modulation
(PWM) switch. The new method uses recurrent supervised
neural network to estimate certain parameters of the

transformed system matrix [ A ]. Then, a numerical
algorithm used in robust control called linear matrix
inequality (LMI) optimization technique is used to
determine the permutation matrix [P] so that a complete

system transformation {{ B], [C], [ E ]} is possible. The
transformed mode is then reduced using the method of
singular perturbation, and state feedback control is applied
to enhance system performance. The experimental
simulation results show that the new control methodology
simplifies the model in the Buck converter and thus uses a
simpler controller that producesthe desired system response
for performance enhancement.

Index Terms - Buck Converter, Linear Matrix Inequality
(LM1), Neural Network (NN), Order Model Reduction
(OMR), State Feedback Control, Supervised L earning.

1. INTRODUCTION

Conduction Mode (DCM) [1,9]. The CCM mode is
desirable, as the output ripple of the dc-to-dc @ow
converter is very small compared to the dc steddtes
output. A linearized small-signal model is constegcto
examine the dynamic behaviors of the converter, tdue
the fact that disturbances are of small signalatenms.
Through this model, the necessary open-loop transfe
functions can be determined and plotted using Budes
[9]. This is needed in order to use compensatioth&
pulse width modulation (PWM) power converters, teetn
the desired nominal operating conditions, througb t
application of various control methods. These cantr
methods can incorporate the approaches of: frequenc
analysis in the classical control theory, time gsial in
the modern control theory, both frequency analysid
time analysis domains in the post modern (digitadl a
robust) control theory, and the soft computing £fuz
logic + neural networks + genetic algorithms) ire th
intelligent control theory [6,9,10,15,24]. Thesentol
methods can be applied to the models of power cterge
that usually work with only one specific controhsene,
which is pulse width modulation (PWM) through eithe

In recent years, small-signal modeling of dynami@uty-ratio control, or current programming contf@]. In

behaviors of the open loop dc-to-dc power converters
received notable amount of attention, due to tloe theat

this paper, the duty-ratio control is used, in \khibe
switch ON-time is controlled externally by compayia

these models are the basis to extract accurateféran Sawtooth ramp with the controller voltage [1,9].

functions [1,9] which are essential in the feedbeaitrol
design. They are used to design reliable high padace

Various modeling approaches of the PWM power
converters already exist. These approaches can be

converters in a feedback loop, to keep the perfonaaf

category aims towards modeling the whole PWM

the system as close as possible to the desirechtoper converters. Examples for this category are: thet-vol
conditions. The purpose of this feedback loop is t8¢cond and current-second (charge) balance approach

counteract the outside disturbances in the: sotoltages,
duty ratio (the output pulses of the pulse widthdodator
(PWM)), and the load current, in order to reguldte
output voltage [10,24].

These power converters operate in the Coaotis
Conduction Mode (CCM) or in the Discontinuous
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and the state-space averaging approach [9]. These
approaches suffer from inaccurate results in thgh hi
frequency range. The second modeling category aims
more specifically towards modeling what is calldub t
converter-cell, that includes modeling the basit afethe
PWM converter, and ignoring the input (the dc vgd#ta
source) and the output (the RC filter) parts in nhedel
(the cell includes only the PWM switch with the irotiors
and the capacitors associated with it). An exarfgai¢his
category is the averaged modeling approach [1,Bis T
approach also suffers from inaccurate results éenhigh
frequency range. The third modeling category ainosem
specifically to model the PWM switch, by itself, the
PWM power converters.

The previously mentioned modeling approaches
utilize in general four techniques. The first teiciue is
the sampled-data representation technique. Thendeco
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technique is the averaged technique. The thirdnigcle have the capability of acquiring, storing, and izitilg
is the exact small-signal analysis technique [138}] the experiential knowledge [15,29]. In fact, an ANN as
fourth technique combines the averaged techniqdele mathimatical or computational model based on biicklg
sampled-data technique. The averaged techniqueural networks. It consists of an interconnecteadg of
represents the easiest and the most widely ushditpe. artificial neurons and processes information usig
It can be used to determine various impedances aodnnectionist approach to computation. In most aae
transfer functions of the converter systems. Theicha ANN is an adaptive system that changes its stractur
characteristics of this technique are: (1) It uske based on external or internal information that #ow
averaging technique of voltages and currents andt(2 through the network during the learning phase [29le
gives accurate low frequency results, but inaceurégh basic processing elements of neural networks dtedca
frequency results. neurons. They perform summing operations and neaitin
Averaged models can be produced for theimeat function computations. Neurons are usually orgahire
switch in the converter circuits, which is calléetPWM layers and forward connections. Computations are
switch, as well for the converter systems as a ehbhis performed in a parallel fashion at all nodes and
switch is usually a single pole double throw (SPDTgonnections. Each connection is expressed by amecahe
switch. It is this switch which is responsible fwitching value called aveight The learning process of a neuron
the converter from one configuration to anotherirtyr corresponds to a way of changing its weights. Irremo
each switching period. These models derived for thgractical terms, neural networks are non-lineatissieal
PWM switch are usually easier than the derivatidn adata modeling tools. They can be used to model t@mp
converter models. Yet, it has the limitation of fhet that relationships between inputs and outputs or to find
not all the converter topologies have the same PWphtterns in data. A neural network is an intercoted

switch arrangement [1]. group of nodes, akin to the vast network of neuiartbe
The exact small-signal technique [1,9] isryve human brain [5,17,28,29].
accurate to a wide range of frequencies. This igcien When dealing with system modeling and cdntro

can be applied to any converter systems that aréogic, analysis, some equations and inequalities require
time-varying, and piecewise linear. The trade off the optimized solutions. A numerical algorithm, used in
high accuracy occurs in the complexity of the nxatrirobust control called linear matrix inequality (L)Mderves
manipulations and the time consumed to produce tl@s a source of application problems in convex
exact results. Yet, it has a great advantage ofgbeioptimization [6]. LMI optimization technique stattéy
automated through the use of computer aided desigme Lyapunov theory showing that the differential
(CAD) software packages. equationx(t) = Ax(t) is stable if and only if there exists a
s e st aefinte matr) such tta”P-+PA0 (5
propagation of a point on a converter waveform frame  The requiremen® >0, ATP+PA<O0 is what is known
cycle to another. It is usually used to derive aatai as Lyapunov inequality orP] which is a special case of
response for the PWM current mode control. Yet, thgn LMI. By picking anyQ:QT >0 and then solving the
rice is paid again through the limitation of thpper . . . o
?requenc;) rang%, to be gI]imited to half the svp\)/ﬁ@in linear equationA” P+ PA=-Q for the matrix P], it is
frequency. The fourth modeling technique combires t guaranteed to be positive-definite if the giventsysis
averaged technique and the sampled-data techriigae, Stable. This LMl was used for stability purposeexN
effort to gain the main benefits of each techniquesignificant work was done by applying Lyapunov noeth

However, this technique, while improved, is alsd0 some specific practical problems in control eegring.
inaccurate [9]. The LMiIs that arise in system and control theory ba

From above, it can be seen that there i®edrto formulated as convex optimization problems that are
develop a model applicable to various regulatiftestes, amenable to computer solution and then solved using
including the most used scheme: the PWM duty ratio  algorithms such as the ellipsoid algorithm. A Lyapu
current mode control scheme. Therefore, a smatflagig function is formulated as a convex optimizationhseon,
modeling approach which is applicable to any powetnd then an algorithm guaranteed to solve the
converter system represented as a two-port netivask Optimization problem is applied. In recent workgerior-
been introduced [1]. This was done through the riogle Point methods that apply directly to convex protdem

of the nonlinear part in the power converter systehiich ~ involving LMIs were developed [6]. _ '
is the PWM switch. In practical control problems, the first stés to

In system modeling, sometimes it is requited ©Obtain a mathematical model in order to examine the
identify some of the system parameters. This object behavior of the system for the purpose of desigrang
maybe achieved by the use of artificial neural meks Proper controller [10]. Sometimes, this mathematica
(ANN), which are considered as the new generatibn élescription involves a certain small parameter
information processing networks. Artificial neural(perturbation). Neglecting this small parametewuitssin
systems maybe defined as physical cellular systemich ~ simplifying the order of the designed controller by
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reducing the order model of the system [2,21,22]. Aeduction. Section 3 presents a detailed illustratf the
reduced order model can be obtained by neglectieg trecurrent neural network estimation with the LMI
fast dynamics (i.e., non-dominant eigenvalues) lué t optimization techniques for order model reductidrth
system and focusing on the slow dynamics (i.e.,idam  Buck converter. An implementation of the neuralwaek
eigenvalues). This simplification and reductionsgétem estimation with the LMI optimization to the Buck
modeling leads to controller cost minimization [2,7,22]. converter order model reduction is presented ini@ed.

An example is the ICs, where increasing packageitjen Section 5 presents the application of state feddbac
forces developers to include side effects. Knowtihgt controller on the reduced order model of the Buck
these devices are often modeled by very large RLEnverter. Conclusions and future work are preskirte
circuits, this would be too demanding computatipnal Section 6.

due to the detailed modeling of the original sysfdinin

control system, due to the fact that feedback ctlets 2. BACKGROUND

do not usually consider all the dynamics of thetesys . . .
model reduction is a very important issue [26]. Mod This section presents important background on Buck

reduction leads to reducing the order of the cdieiro Converter, supervised neural network, LMI, and orde
which is directly proportional to the cost [11,12]. model reduction that will be used in Sections and 5.

One of the methods for order model reducti®n o .
known as singular perturbation [20,27]. Using thg'l S’V't(,:h'n_g Mode Power Supply (SMPS): The
quadratic stabilization framework, the work in [13] APplication of the Averaged Modeling
presented theH, guaranteed cost control problem for ~ APproach and the New Small Signal Model

singularly perturbed norm-bounded uncertain systems on the PWM Converters
The problem was solved by solving two Riccati etuet There are many averaged modeling techniques used to

associated with the .SIO‘.N and f‘?lSt subsystemg_ based model the PWM converters. These techniques include:
properly selected weighting matrices. The invesiigeof volt-second and current-second balance approachthen

the estimator error for the slow states of sindylar . :

) state-space averaging approach [1,9]. These tackmiq
p_erturbed systems has been performed in [19]. 1p [Ae are used to model the converter systems as a wasle,
singular perturbation method was employed to capthe —\ o) 45 o model the pulse width modulation (PWM)
multimodel nature of interconnected systems withwsl witch by itself. Yet, these techniques are vabd the
and fast dynamics. Systems strongly coupled throu frequency range,, and they give inaccurate tesar

their slow parts.danddweakly coupled through theist f the dynamic behaviors of the power converters énhiigh

parts were Conﬁl' ered. he | f th q frequency ranges [9]. Another modeling approacht tha
Figure 1 illustrates the ayout_o t e Bumse focuses on modeling the converter-cell, insteadthef

converter control methodology used in this pqpayelr 1 converter as a whole, is used to get averaged mddel

: X ; &he PWM converters. This approach is also usefuttfe
small signal modeling approach. Layer 2 is the~abur|ow frequency ranges, but not useful for the high
network e_stimation of the transformed_system m_qit_ﬁix]. frequency ranges. One major advantage of these
Layer 3 is the LMI technique used in determining thtechniques is the fact that they are easy to imgfgnand
permutation matrix required for system transforomati the results obtained are not in complicated forms.

{ B 1 [C~:], [E]}. Layer 4 is the system transformation. ] )
Layer 5 presents the order model reduction. Finiyer 2.1.1 The Averaged Modeling Approach and its

6 presents the state feedback control. Application on the Buck Converter
State Feedback Control The averaged modeling approach aims to produce an
Order Mode Reduction averaged model for a specific cell of the PWM coters.
. == This cell is shown in Figure 2, where this basid
System Transformation: {[B],[C], [E]} used to explore the dc behaviors, and the ac sialhl
LMI-Based Permutation Matrix: [P] dynamic behaviors of the PWM Buck converter.
Neural-based State Transformation: [A ] T i,
Buck Converter: {[A], [B], [C], [E]} New . ' 5 -~
Small Signal M odel

Figure 1. Buck-based converter hierarchical control
methodology used in this paper. i

Section 2 presents background on the Buokexter, 3

recurrent supervised neural network, linear matrix Figure 2. Basic PWM converter-cell.
inequality, model transformation, and order model
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It is shown that a dc and ac small-signagraged
model of the converter-cell which is shown in Figu,
can be produced as shown in Figure 3, wiikie the dc

value of the duty ratioc] is the small-signal perturbation
of the duty ratio, andvs, is the dc voltage between

terminals 3 and 2.

133 .
lc 1y —_ [ lzﬁz
24 A
D* I
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D

Y]

i

3
3

Figure 3. DC and AC small-signal model of the converter-cell

shown in Figure 2.

The dc and ac small-signal averaged motelys in
Figure 3, will be used to derive the average caittro
output, input-to-output, input impedance, and tbetil-
to-input current transfer functions for the Buckigerter.
The averaged model will be used to derive the Hbput
output, control-to-output, input impedance, and tan
to-input current average transfer functions for ER&M
Buck converter. Figure 4 shows a typical Buck catere

L
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14 Y

|

Vap ez

!

[

Figure 4. Typical Buck converter.

Assuming a small-signal perturbatiﬁg, in the dc

voltage sourceV, and that|V, |>>|\79| . After the

implementation of the averaged model that was shown

previously, we get the following small-signal modet
the PWM Buck converter as shown in Figure 5.
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Figure 5. AC small-signal model of the Buck converte
operating in the continuous conduction mode (CCM).

Nulling the inputv,, we get the following control-to-

g 1
output transfer function [1]:
Vy _ 1

F_ g 1+(L/R)s+LCs?

)

Nulling the input& , we get the following input-to-output
transfer function [1]:

V 1

g 1+(L/R)s+LCs
Other transfer functions of interest for the Buckeerter

are the input impedance and the control-to-inputeru
transfer functions.

To get the input impedancég(/f ), we null the input

d , SO we get the following equation [1]:
Vg _ R 1+(L/R)s+LCs’ @)
i, D2 1+ RCs
To get the control-to-input current transfanction

(il/& ), we null the inputv,, so we get the following

g ’
transfer function [1]:

Vg DRC+LI3 LISRC | »
- 1+( )s+( )s
ip _VgD+RI3 VgD +RI3 VgD +RI3 4)
d R 1+(L/ R)s+LCs?

2.1.2 New Method for Obtaining an Exact
Model of the PWM Switch Operatingin
the Duty Ratio Programming M ode

In this subsection, a new approach is developed to
formulate a new model for the PWM nonlinear switth
The Buck converter will be used now as the basideho
to extract the two-port network parameters. Thenmai
reason the Buck is used over the other PWM conngerte
is the fact that the Buck converter is a seconderord
system, with a simple structure. This will be refts
upon the simplicity of the results that will be aioted.

Since the ripple voltage is comparatively cmu
smaller than the dc voltage across the output d@pdeas
the Buck converter is operating in the continuous
conduction mode), the capacitor will be replacethve
constant dc voltage sourcé:, This is illustrated in
Figure 6.

L ’
s
N T

| | |

:
Figure6. Alternative Buck configuration.

From the Buck converter shown in Figureh&, two-
yport augmented equations can be written as follows:

la = yiVap + yiovc'p +|idd

(®)
(6)

Vc'p =Zle + gvaap +Vodd

(Advance online publication: 22 May 2009)
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A circuit model for the two-port augmented equagion
which are represented by Equations (5) and (6), man

constructed as shown in Figure 7.

| |

Py Y b

-+ -+
7

A
EvfVap

voed

A
Ly o g

o

Figure 7. Circuit model for Equations (5) and (6).

The aim is to develop a new model for the PWM switc
which is the nonlinear part of the PWM convertehisT

of the perturbations {y, Oc‘p , d}is as shown in Figure

a
la

J i

A A s L8
Yivap | Yiovcp 1jgd

A
i
D

op

Figure 9. Circuit model for the PWM switch.

Now we need to put the switch model in teahthe
perturbations {,,, Vg, d } instead of the perturbations

\Y

model can be constructed directly by replacingvhlees { \7ap, Ac‘p , a}. To do so, we note from Figure 8 that:
of the parametersy{ Vi, iid, Zo» Gt Voo} iN their simplest
form [1] in Equations (5) and (6). Thus, the mathéoal

model will be [1]:

la = yivap + yiovc‘p +|idd

_ L1321+ jwDTs) +1- jaDTs—,Bl—,BZ\A/

TsaPL(L- B132)

- Jﬂz(l_'BJ.)Vap&
(1= £if)
= ZoiAc + gvf\’}ap +Vodd

LD
V.
cp

—jadiy + DUy +Vypd

ap

(@)

(8)

v.
cp

=V — jabie )

From Figure 8, we note that the common n@deg
corresponds to the node” () in the Buck converter in
Figure 6. Multiplying both sides of Equation (9) bty
parametey;,, we get:

yioOc'p = yioocp + Di’\c (10)

So, we replace the ternyig\‘/cp + ch} instead of the

term { vy \7c.p} in the previously derived switch model

By noting that the parametgmrepresents an inductor,shown in Figure 9, in order to make the new model

we can “pull” out thez, parameter outside the circuit
model, which is equivalent to the mathematical nhode

represented by Equations (7) and (8), asztfgarameter perturbations {,,, V_

is merely an inductor impedance, which is then ipilidtd

by the path current

c !

to form a voltage source

(21, ) in series with the voltage sourceslap) and fog

&). The result of this process is shown in Figure 8.

A
i
D

7/
MM ¢

Figures.

[
New circuit model.

From Figure 8, we can recognize that theudir
model between the terminals {a, p, c} is merely the

switch between these terminals in the original Buck y

converter circuit. So, the equivalent switch mddekerms

contain the perturbations\,,, V

.+ d1} instead of the

o &}. The new switch model will
be as shown in Figure 10.

o

la, [ A AN
YiVap| Yio Vep ijgd Dicl
L | 1 1

A
i
p

op
Figure 10. Alternative circuit model for the PWM switch.

In order to reduce the number of the depende
current sources that appear in the new switch model
which are four dependent current sources, we wilta
reduce the number of terms in the previous matheaiat
switch model. We have:

ep = Vapd + DV, (11)

and asV,, = Zyic + GyrVap +Voqd , W obtain:

(Advance online publication: 22 May 2009)
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O Oc‘p =V,pd + DOap - jakig (12)
To develop the first reduced mathematicaltcw

model, we see that asf,=y\Vap+ VoV, +ijyd
Substituting Equation (12) in Equation (5), anceathe
collection of the similar terms, we get the followgi
reduced-form equation:

ia =(¥i +Vio DWVap + (YioVap *id )& - yioakic (13)
Substituting the values o¥/{ Vi, iig} in Equation (13), we
get the following equation [1]:

TsePL(L-e 195 wL

" jvap je—J(uDTs(l_e—l]wDTs)Vap i+,
wl wL(l—e_JwTS)

N _[e‘jw—rs’(hijTs)+1—j(uDTs—e'j‘"DTS—e'j‘"D'TS jD2]A
la= +=—— Nigp +

(14)

In this subsection, the new small-signal model loé t
PWM switch, that was developed in the previous
subsection, will be examined on the PWM Buck coterer
The control-to-output, input-to-output, input impede,
and control-to-input current transfer functions |wile
derived for the Buck converter, using the new small
signal model of the PWM switch. These transfer fioms
will be compared to the corresponding transfer fioms,
that were developed in previous subsections for the
averaged modeling approach and the exact transfer
functions for the Buck converter.

Applying the PWM switch model, that was
developed previously on the Buck converter, wetbet
equivalent circuit model as shown in Figure 12.

1=
|

Figure 12. Equivalent circuit model of the PWM Buck

The other equation of the model is Equation (11, Sconverter, obtained through the application of tiesv small-
Equations (11) and (14) represent the final reduceshnal model of the PWM switch.
mathematical model of the PWM switch, replacing the

model represented in Figure 9. The final equivabéraiit

model of the switch mathematical model (represebted

the Equations (11) and (14)) is as shown in Fidurél],
where:

by = e 19T8(1 4 jDTs) +1- jwDTs—e 1WDTS _g-jwDTs . D2 (15)
Tsw?L(-e 19TS) wL

jDvap je—ij‘Ts(l_ e—ijTs)Va p
wL wlLa-e 1979

hp =1Ix+ (16)

A
> p
Figure 11. The new small-signal model of the PWM switch.

The new switch model in Figure 11 is expedtebe

an exact small-signal model, since the mathematical

Assuming that the input dc voltage soungg, has
small-signal perturbation?g, and that||V, |>>|\7g |. To
determine the system quadrupl@]] [B], [C], [E]}, for

the Buck model shown in Figure 12, for the inpatand
\7g , we null the dc voltage sourcé,. Then, the following

equations can be developed for the Buck model shiown
Figure 12, wherei, is the inductor currenti, is the

capacitor current, anfg is the output current that flows
in the output resistor. Hence, we have:

U =0, § =T+, =+ 27, (7)
X 1~ 1 .
Ov, ==—ij, ———V, 18
c CI RC c ( )
Oapzﬁg (19)
—D\7g—cAng+Lﬂ +V, =0
A DA Vg N 1,\
O =—v,+—d-—Vv 20
Vot Ve (20)

equations upon which the whole derivation proceas w

built, are exact. Also, we note that two of the elagent

current sources are frequency dependent, which

uncommon for current or voltage dependent sources.

2.1.3 Examining the New Small-Signal: The
Implementation of the New Small-Signal
Model of the PWM Switch on the Buck
Converter

The output equation iy =V, =V, . For the converter

Vo

system quadruple f], [B], [C], [E]} will be [1]:

0 -1/L D/L V¢/L
A= , B= ,
1/C -1/RC 0 0

is N A
v,
statesx, and the inputs), wherex = l:i' :I ,u= { (ﬂ , the

(Advance online publication: 22 May 2009)
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c=[o 1, E=[0 0.
To find the control-to-output transfer fuioct, we
null the input\79. The new system quadrupleA(, [B],

[C], [E]}, will be [1]:

{o —1/L}
A= (21)
1/C -1/RC

_ Vg/L
B _{ 0 } (22)
c=[o 1 (23)
E =[0] (24)

To find the control-to-output transfer fuioct from

0 -1/L
A= 6§2
1/C -1/RC
D/L
B = 27
o @)
c=[o 1 (28)
E =1[0] (29)
By applying  Equations (26) through (29) in

Equation (25), for the circuit values ofy; = 15V, R =
18.6Q ,D =0.4 f,= 40.3kHz, D = 0.6, L =58 pH, C =

5.5 yF and to investigate the accuracy of the new PWM
switch model, we compare the input-to-output freopye
response plots of the PWM Buck, obtained through th
application of the new PWM switch small-signal mipde

the system quadruple represented by Equations (24ith the exact input-to-output frequency responte

through (24), we apply the Laplace transformatmbdth
sides of the state and the output equations repesdy
system state space equationgt) = Ax(t) + Bu(t) and

y(t) = Cx(t) + Eu(t) . After re-arranging the result terms,

we get the following general input-to-output traesf
function:

=C(sI-A)'B+E

C <

By applying Equations (21) through (24) igution
(25), for the circuit values o¥/; = 15V, R =18.6Q , D
= 0.4, f,= 40.3kHz, D = 0.6, L=58uH, C =5.5uF and
to investigate the accuracy of the new PWM switcltet,

we compare the control-to-output frequency response

plots of the PWM Buck, obtained through the appima
of the new PWM switch small-signal model, with th
exact control-to-output frequency response, theaaes
control-to-output frequency response, and bothetkect
and the averaged control-to-output frequency respen

as shown in Figure 13.
_ Y ]

|
) v |
1

-120) : it

- . ' e W w ;
10 10" 10 10° X 10°
Frequency (Hz) Frequency (Hz)

Figure 13. The control-to-output frequency response of the

PWM Buck converter, operating in CCM; exact (sdlide);
averaged (dotted line); and the new model (dashedl |

To get the input-to-output transfer functiove null

the input&. The system quadrupleA], [B], [C], [E]}
will be [1]:

(25)

€

averaged input-to-output frequency response, atiuthe
exact and the averaged input-to-output frequency
responses, as shown in Figure 14.

\
o il
| L

-0
-30)
0

[

) 1o

: ]

8 5 8 5 & & 4 &

|
|

i
;
E

i @ o o
Frequency (Hz)

Figure 14. The input-to-output frequency response of the PWM

Buck converter, operating in CCM; exact (solid Jineveraged
(dotted line); and the new model (dashed line).

From the previous frequency response platdbth
the control-to-output and the input-to-output tfans
functions of the PWM Buck converter, operating fire t
CCM, we see that an excellent match occurs between
exact and the new model results, as well as betwesn
averaged and the new model results. These results
indicate, for the time being, that the new smajhsi
model of the PWM switch is, in fact, an accuratedaio
[1]. Yet, the effect of the new source coefficieh{sand

h, that exist in the new model of the PWM switch, sloe
not appear in the case of the control-to-output iapdt-
to-output transfer functions. So, we need the input
impedance and the control-to-input current transfer
functions to see the effect of the new source @meffts

h; andh,, respectively.

By referring to Figure 12, and considerihg input

currentiAa to be the output, we get the following output

equation: y:fa. For the converter stateg, and the

- _| _| Vg
inputs, u, where x=|_' |, u= g

Vo

quadruple {B], [B], [C], [E]}, will be [1]:

} , the system

(Advance online publication: 22 May 2009)
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{0 —1/|_} {D/L Vg/L} By applying Equations (34) through (37) iquiation
“l1c =1rec |’ 0 ol’ (25), for the circuit values oy = 15V, R =18.6Q , D
= 0.4, f;=40.3kHz,D =0.6, L =58puH, C =5.5uF and

c=[p o, E=[h h. to investigate the accuracy of the new PWM switcied,
To find the control-to-input current transfanction, we compare the input impedance frequency response
we null the input\7g . The new system quadrupleA], plots of the PWM Buck, obtained through the appioa
; . of the new PWM switch small-signal model, with the
[B], [C, [El}, will be [1]: exact input impedance frequency response, the gegra
input impedance frequency response, and both thet ex

(0 -1L . .
A= (30) and the averaged input impedance frequency respoase
|1/C -1/IRC shown in Figure 16.
[Vg/L » —
B=| ° } (31) j
L O o
c=p 0 B2 )
i

£ = [n] (33) j

To find the control-to-input current transfanction HE : EaMi
from the system quadruple represented by Equaf@iis § 1
through (33), we use the general input-to-outpamgfer — + L ]

function represented by Equation (25). £ 16 The inout imped . ‘i
Bv applving Equations (30) throuah (33) iouition Figure 16. The input impedance frequency response of the
y applying =4 (30) gh (33) iq PWM Buck converter, operating in CCM; exact (sdlide);

(25), for the circuit values o¥; = 15V, R =18.6Q , D . ;

= 0.4 f. = 40.3kHz, D =06 L@J: 58H, C = 5.5 F and averaged (dotted line); and the new model (dashejl |

to investigate the accuracy of the new PWM switcdet, From the previous frequency response plétthe

we compare the control-to-input current frequencyansfer functions of the PWM Buck converter, ofie
response plots of the PWM Buck, obtained through thy, the cCM, we see that a good match occurs betiveen
application of the new PWM switch small-signal miode gxact and the new model results, as well as betwreen
with the exact control-to-input current frequenegponse, averaged and the new model results, for the freguen
the averaged control-to-input current frequency)mese_, range up to half the switching frequency [1], aitgb a

and both the exact and the averaged control-totinpghismatch occurs between the exact and the new model
current frequency responses, as shown in Figure 15. results, as well as between the averaged and the ne

model results, for the frequency range higher thalf of
‘_’J | 2.2 Recurrent Supervised Neural Network

! .. the switching frequency [1]. Yet, in overall perfmnce
_//H : evaluation, the new small signal model behavesriueh
L accurate response than the older averaged modeling
' approach.
: " : 1 An artificial neural network is is an emulation of
o ' R »  biological neural system. The basic model of theroe is
?ounded upon the functionality of a biological nemyr

Figure 15. The control-to-input current frequency response of Lo it is the basic signaling unit of the nerveystem.

the PWM Buck converter, operating in CCM; exacti(stine); Th f b th ticall ddel
averaged (dotted line); and the new model (dashejl | € process of a neuron may be mathematically nzade
as shown in Figure 17 [15].

To get the input impedance transfer functisa null

the inputa. The system quadrupleA], [B], [C], [E]}
will be [1]: X| o—

Activation
Function

Yk
0 -1 X2 H@/' -
A= (34)
—1/C _l/RC . Junction I
o .
B= 0 } (35) Xp o Threshold
C= _D 0] (36) Input Synaptic
Signals Weights
E =[] (37)

Figure 17. Mathematical model of an artificial neuron.
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As seen in Figure 17, the internal activity of the variabley(k + 1) denotes the correspondimgX 1) vector
neuron can be shown to be: of individual neuron outputs produced one steprlate
p time k + 1). The input vectog(k) and one-step delayed
vy = ZWKJ'XJ' (38) output vectory(k) are concatenated to form th#(¢ N) x
= 1) vectoru(k), whosei" element is denoted hy(K). If 4

denotes the set of indicédor which gi(k) is an external

instant of time when the input is applied, the dmbi the output of a neuron (which igKk)), the following is
response of the system is available. The differendeue:
between the actual and the desired response refsese
error measure and is used to correct the network { g;(k), if i0O4
parameters externally. Since the adjustable weights ui (k) = -
initially assumed, the error measure may be usediapt yi(k), if i0p
the network's weight matrixW]. A set of input and
output patterns called a training set is requiredthis The (N x (M + N)) recurrent weight matrix of the network
learning mode. The training algorithm estimatess represented by the variabl®V]. The net internal
directions of the negative error gradient and reduthe activity of neurorj at timek is given by:
error accordingly [29].

For artificial neural network, there are el
learning rules used to train the neural networkr Fo vj (k)= Z wji (K)u; (K)
example, in Perceptron learning rule, the learsiggal is 0408
the difference between the desired and the actiabn's
response (supervised learning). Another learnifg im1  where4 O Ris the union of sets and R. At the next

the Widrow-Hoff learning rule which minimizes the.; .

- time step K + 1), the output of the neurgris computed
squared error between the desired output and tin@me o . : PR
activation value. Backpropagation is also one of thby passing;(K) through the nonlinearity(.) obtaining:

important learning algorithms in neural network8][2

The supervised recurrent neural network deethe Yi (k+1):¢(vj (k)
estimation in this paper is based on an approxonatif o )
the method of steepest descent [15,28,29]. Theanetw  The derivation of the recurrent algorithmnche

tries to match the output of certain neurons todésired Started by usingdi(k) to denote the desired (target)
values of the system output at specific instartié [28]. "esponse of neurgn at timek, and ¢(k) to denote the set
Consider a network consisting of a totalNofheurons with  of neurons that are chosen to provide externalghable
M external input connections, as shown in Figuréot& outputs. A time-varying N x 1) error vectore(k) is
2" order system with two neurons and one externaitinp defined whosej" element is given by the following

Outputs relationship:
y(k) s .
N ystem state: _ . P
n \ [— internalinput e (k)= d;(k)-y;(k), if jO¢(k)
32(") %,(K) 0, otherwise
‘;\ Neuron The objective is to minimize the cost functiBg, which

is obtained by:

Aoy
/\delay/\

1
% (k+1) %, (k +1) B = Y E(K), where E() = > e ()
1 1 Ou: k i
‘ System dynamic: z System =
L4 f external input To accomplish this objective, the method of steepes
descent which requires knowledge of the gradierttima
is used:

Figure 18. A second order recurrent neural network architectu
where  the  estimated matrices are  given by:

~ - OE 0E(k)
Zo_| A1 A2l 5 _|Bu - 0 E. .., = total — =N 0 E(K
Ad{AZl Azz]Bd{sz and thatw [[Ad] [Bd]]' w Etotal =5 Zk: W Zk: w E(K)

The variablegy(k) denotes theM x 1) external input wherel,, E(k) is the gradient oE(k) with respect to the
vector applied to the network at discrete tikeThe \yejght matrix W]. In order to train the recurrent network

(Advance online publication: 22 May 2009)
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in real time, the instantaneous estimate of theligra is
used (O, E(K)).

W, (k), the incremental changlw,,,, (k) made at timek
is defined as:

0E(Kk)
OWpy (K)

wherey is the learning-rate parameter. Hence:

=285 s =2 )
i0¢ i0¢

To determine the partial derivatiay; (k)/owy, (k) , the

network dynamics are derived. The derivation isaotd
by using the chain rule which provides the follogvin
equation:

AWy (K)=-177

de; (k)
Wiy (K)

_OE(k)
OWipy (K)

ay; (k)
OWpy (K)

6yj(k+1):6yj(k+1) av; (k) =4 ()) v; (K)
W (K)  0vj (k)  Owy (K) an/(k) '
04(v; (k)
whereg(v, (k))=—————.
! av; (k)

Differentiating the net internal activity of neurgrwith
respect tw,,, (k) yields:

ovi(k) _ a(w; (K)u; (k)
aWn’W, (k) iDAD,G an/ (k)
_ au; (k) . ow; (k)
- ji K i
2 M9 0 a0

where (aw (k)laww(k)) equals "1" only wheip = m and
i = ¢; otherwise, it is "0". Thus:

= Z wj; (k)

0408

av; (k)
Wy, (K)

du; (k)
W (K)

+Omju,(K)

where gm; is a Kronecker delta equal to "1" whgr m
and "0" otherwise, and:

ol 0, if i 0.4
ow,, (k) ;va"—f'(‘li) ifing

Having those equations provides that:

For the case of a particular weight

ay (k+1)
W (K)

ay; (k)

RAAQUDRTIC ooy =0

i0g

+ omeU,(K)

The initial state of the network at tinke= O is assumed to
be zero:

dy;(0)

w0 =0, for {00 B, md R, ¢ 040 B}

The dynamical system is described by the follovtiigy
indexed set of variables!, ):

y; (k)
awmf (k)

mf( )_

For every time stefk and all appropriat¢, m and ¢,
system dynamics are controlled by:

Ty (K+1) = (v (KD D W (K) 72y (K) + S, (K) |,
i0B
with nﬂm (0)=0.
The values ofnrjm(k) and the error signai(k) are used
to compute the corresponding weight changes:

Dy ()= 77" & (K) 72y (K)
B¢
Using the weight changes, the updated welghy (k + 1)
is calculated as follows:

(39)

Wiy (K +1) = Wiy (K) + AW,y (K) (40)
Repeating this computation procedure provides the
minimization of the cost function and the objectiige
achieved.

Example 1. The recurrent neural network was
implemented to estimate the states aAq] [and [Bg]
matrices of the propulsion part of an advancedazig '
order model [2]. Only the"s 7", 8", and ¢ states of the
complete model were considered in this example.[Ajk
and By] matrices were given by:

[-4.191 6.022 -343.4 11.60
_ | 04263 -5.707 27.16 10.40
ol = 0.2295 0.1155 -90.24 0.8476
0.03740 -0.1036 -7.954 -1.068
[00 00 00 00
00 00 00 00
Bd =
00 -43.02 -25.83 0.0
100 0.0 0.0 0.0

(Advance online publication: 22 May 2009)



Engineering Letter, 17:2, EL_17 2 07

This part is a fourth-order subsystem withrfstates y(K) = x(K) (44)
to be estimated. The system was simulated for eifspe
command input and its corresponding output dateewewe needx(k) as a neural network target to train the
recorded. The generated pair of input-output da@ Wpeqyork to obtain the needed parameters An, [ such
used by the recurrent neural network to estimatestates
and the A4] and [Byq] matrices of the propulsion airplanethat the system output will be the same f][and [Agl.
model to provide the estimated matrices withintththed Hence, simulating this system provides the statpaese

weight matrix W = [[,&d] [Ed]J Results of testing the corresponding to their initial values with only etfiA]

estimated propulsion model showed very close sta'f%atr'x is being used.

responses to the true system states. This is shown D

Figure 19. ' L l v
+ X

1 oS PR O

©, 2000

4000 3
meoop LT o
1000 / L 3 Figure 20. State space block diagram.
f

oo 2D @0 A0 oot 2B 0 A Once the input-output data is obtained, transfognifre
o X0 [A4] matrix is done using the NN training, as expldiie
. B Section 3. The gstimated trgnsforméd][mat'rix i§ then
o0 | b m.m T converted back into the continuous form which yseld
;’E;mou frl 1“' T § 1 ~ A, A\:
.l/ 0.5 ) A= |: 0 Ab:| (45)
UD- 100 200 el 400 [u] 100 200 i) 400
fteration lteration

Having the A] and [A ] matrices, the permutatiorP]
Figure 19. System state response of the original, trained, ammatrix is determined using the LMI optimization
estimated system: thick blue line: true responisie, ted line: technique, as will be illustrated in later sectiofiie
response while training, light green line: estirdatesponse. complete ,System transformation can be achieved as

With the many advantages that the neuravaorét follows: assuming thak = P™x, the system of Equations
has, it is used for parameter estimation in modé€#l) and (42) can be re-written as:
transformation for the purpose of order model réidac ]
as will be shown in the following section. PX(t) = APX(t) + Bu(t)
2.3 Linear Matrix Inequality (LMI) and Modél y(t) = CPX(®) + Eu(t) , where: (7(t) = (1) ).

Transformation Pre-multiplying the first equation above b®7], we

In this section, the detailed illustration of syste °PtaiN:

transformation using LMI optimization will be preged. I B -1
Consider the system: PPX(t) = P "APX(t) + PBu(t) ,

y(t) = CPX(t) + Eu(t)

X(t) = Ax(t) + Bu(t) (41)

y(t) = Cx(t) + Eu(t) (42) which yields the following transformed model.
The state space system representation of Equatiins §<‘(t) = ,&i(t)+ I§u(t) (46)
and (42) may be described by the block diagram show ~ ~ ~
Figure 20 y(t) = Cx(t) + Eu(t) 47)

In order to determine the transforme¥] [matrix, . .
s . . . . \ﬁlhere the transformed system matrices are given by:
which is [A ], the discrete zero input response is obtained.

This is achieved by p_roviding the system with sonitéal A=plAp (48)

state values and setting the system input to z&kd € 0). ~

Hence, the discrete system of Equations (41) al, (4 |§: P'B (49)

with the initial conditionx(0) = x,, becomes: c=cCp (50)
E=E (51)

x(k+1) = Ayx(k) (43)

(Advance online publication: 22 May 2009)
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Transforming the system matrid][into the form y(t) =Cyx(t) + C,E&(t) (57)
shown in Equation (45) can be achieved based on the

following definition [18]. wherexJO™ and £00™ are the slow and fast state

Definition: Matrix ACJM is called reducible if either:  variables, respectivelyyOJO™ and yO O™ are the input
(@ n=1landA=0;or and output vectors, respectively|A;; ], [B;], [C; ]} are

(b) n=2, there is a permutation matrIM,,, and  constant matrices of appropriate dimensions Wwith1,2} ,
there is some integerwith and £ is a small positive constant. The singularly

1<r<n-1such that: perturbed system in Equations (55)-(57) is simgdifby
setting ¢ =0 [3,14]. In doing so, we are neglecting the
P—lAP:|:X Y} 5 fast dynamics of the system and assuming that tdte s
0 Zz variables¢ have reached the quasi-steady state. Hence,
setting € =0 in Equation (56), with the assumption that
where: XOM,, , ZOM, . , YOM,,, , and [A,,]isnonsingular, produces:
oOM is a zero matrix.

n-r,r
&(t) == Ao Porx. (1) ~ Ay Byu(t) (58)
The attractive features of the permutaticatrin [P]
such as being orthogonal and invertible have made t where the index denotes remained or reduced model.
transformation easy to carry out. However, th&ubstituting Equations (58) in Equations (55)-(§iglds
permutation matrix structure narrows the appliggbidf  the reduced order model:
this method to a very limited category of applioat.

Some form of a similarity transformation maybe used X (t) = A (t) + B,u(t) (59)

correct this problemf : R™ _ R™ , where f is a y(t) =C, x (t) + E;u(t) (60)

linear operator defined byf (A) =P 1AP [18]. Hence, where:

based on theA] and [A ], Linear Matrix Inequalities

(LMI) are used to obtain the transformation mafif#§. A = A1 ALASA, (61)

The optimization problem is casted as follows: B =B - AizAz_lez (62)
min [P~ Ry| Subjecto ||P‘1AP—K||<E (53) C, =C - CoA% A, (63)

i E, =-C,A,B, (64)

which maybe written in an LMI equivalent form as: . . .
Y d Example 2. Consider the following first order system:

min tracg(S) Subjecto {(P SP B P-l Po} >0 |:— 30 15 } 1 [ ]
S ) X(t) = x(t)+{ }u(t), y) =11 1x(t)
- 54 _
€21 PAP-A| o 4) 8 40 :
Plap- AT |

Since the system is d%brder, there are two eigenvalues

which are {-22.9584, -47.0416}. As seen from the

eigenvalues, since there are two distinct categq(fiest

24 Order Modd Reduction and slow) with big difference between them, thayslar

perturbation reduction may be applied. The redut®d

Linear time-invariant models of many physical syste order model is obtained as:

have fast and slow dynamics, which may be refetoess

singularly perturbed systems [19]. Neglecting thestf % (t)=-27x (t) +1.373(t) , y, (t) =1.2x (t) +0.02%(t)

dynamics of a singularly perturbed system provides

reduced slow model. This gives the advantage &fystem output response plots of simulating thisiced

designing simpler lower-dimensionality reduced ordeorder model along with simulating the original syst

controllers based on the reduced model information. ~ Model to a step input are shown in Figure 21. Amse
To show the formulation of a reduced ordgstam the figure, the singular perturbation has proviceu

model, consider the singularly perturbed system [2] acceptable response compared with the originabressp

whereSis a symmetric slack matrix [6].

X(t) = Apx(t) + ALE() + Bu(t), x(0)=x, (55) Example 3. Consider the following"3 order system:
£6(1) = AorX(D) + Appd (D) + Bou(t), £(0)=&p  (56)

(Advance online publication: 22 May 2009)
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L a Lo Ls
>

R b
CUO 000 oo
=5 LTyl X
X+ X3 T % o
Vin X2 =l Cl X4T Cz

Figure 23. A 5" order RLC-based network (circuit).

oul

dv, (t)
dt

i. (t)=C
G i
Figure 21. Output step response of the original and reduced

order models (__ original model, -.--. reducedigip and that the voltage across the inductor is proput to

the change of its current, that is:

-20 5 -18 1
xt)=| 8 -30 4 [x@®)+| 1 |u(t), di, (t)
2 5 -40 05 Vi, O =L—

yt)=[1 02 1xt)
In order to obtain a state space model for the abov
Since the system is &'®rder, there are three eigenvaluesystem, let the dynamics of the system be desigrase
which are {-25.2822, -22, -42.717}. Using the sitagu System states ). This means that there will be EA
perturbation technique, the system model is redtwéide order system since there are five dynamical elesnant
following 2" order model: the system. The model can be obtained by assighiag

following states: x,: Current of the inductorL,,

. -20.9 2.75 0.775 ) . )
X, (t) = X, (t) + u(t) X, : Voltage of the capacitoC,, X;: Current of the
82 -295 1.05 inductor L, x,: Voltage of the capacitorC, and

Yr (t):[1.05 0'32dxf(t) +[0.0125}u(t) X : Current of the inductols.

System output response plots of the original systerdel Applying KCL at nodes (a) and (b) and KVLr fibe
and the reduced model, for a step input, are shiown three Ioops sta_lrtmg fr_om left tp right of Figu2a yields
Figure 22. It is seen that the reduced order maglel the following differential equations:

erforming very well as compared with the original _~ U () _~ dx ()

gystem regpons)é. P ’ Xt) =C =g+ %), %) =C; th

+%(1)

b () +X,(t) =0,

V() + R () Ly o

dxg (t)
dt

—X(t) + L +X4(t) =0,

—X4(t) + L3 dxjt(t)

+Ryxs(t) =0
Letting (ij_):EX' and re-arranging the above equations,

the following may be obtained:

1
055 02 02 03 0% 04
Timefs]

1
005 o1

Example 4. Consider the 8 order RLC filter shown in
Figure 23 [16]. It is well known that the capacitord the

L . - 1
: (0 ==, 0~ () +
Figure 22. Output step response of the original and reduced
order models ( original model, -.-.-. reducediaip

1

1
1

1

1
1

1
rlvin (t) 1

% (t) = Ci 0 —Ci Xa(t)

) ; . : X3(t) =X, (t) +—X,(t),

inductor are dynamical passive elements, which sean L, L,

that they have the ability to store energy. Theadyical . 1 1

equations may be derived using the Kirchhoff's entrr X4 (1) :C—Xs(t)—c—xs(t),
2

law (KCL) and Kirchhoff's voltage law (KVL) [16]tlis
known that the current for the capacitor is
proportional to the change of its voltage, that is:

well

2
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Hence, the system may be given by: transformed discrete system matri)&([] is performed

(1) = — [15]. For the system of Equations (55)-(57), thectkte
X(1) = A+ Bu(t) , y(1) = Cx() + Eu(t) model of the Buck converter is obtained as:

where: x(k +1) = A, x(k) + Byu(k) (65)
(R 1 o o o] y(k) =Cyx(k) + Equ(k) (66)
L L
4, 1 0 1 The estimated discrete model of Equations (65)-(G6)
G G '61 be written in a detailed form (as shown in Figu8g 4s:
A=l 0 = 0 -1 0 |B=l], ) _
. 02 1 02 1 0 Fl(k"'l)}:{p‘n Aﬂ.2i| |:i(1(k):|+|:Bll} u(k) (67)
c, c, 0 Xp (K +1) Apr A ]| X2 (K) Ba
1 R =
o o o = -2 ~ % (K)
s L) y(k) = {f } (68)
X (K)

c=[6 000 Ry, E=[0].

Given the following valuesC, =C, = 257nF where_k is the time index. The _deta_iled matr_ix elerr_]ents of
172 '’ Equation (67)-(68) are shown in Figure 18 in thevjpus
Ll = L3 :982,UH , L2 :318,UH , Rl = R2 =100Q, the section.
corresponding B order model is obtained. The The recurrent neural network presented irtiGe 2.2
eigenvalues of the system are found to bean be summarized by defininas the set of indicds

10° x (-1.9445+ j5.9863 - 6.2839 - 5.0865+ j3.7029 . for which g;(k)is an external input, which in the Buck

Performing model reduction, the system is reducethf converter system is one external input and by defift

its 5" order to a # order by taking the first four rows of as the set of indicesfor which vy (k) is an internal input
[A] as the first category represented by Equatiof &l  or a neuron output, which in the Buck convertetesysis
taking the fifth row of A] as the second categorytwo internal inputs (two system states). Also, kfiming
represented by Equation (56). Simulations of belie, |, (k) as the combination of the internal and external
original and the reduced models, are shown in Bigu: inputs for whichi 0 RO A. Using this setting, training the

| network depends on the internal activity of eachroe
o which is given by:

| Vi) = > wy (k) (k) (69)
S i 0408

where w; is the weight representing an element in the
************* system matrix or input matrix fofd R andil R0 4

K I i i R e R such thatw = l[,&d] [ﬁd]J. At the next time stek(+1),

the output (internal input) of the neurpis computed by
e passing the activity through the nonlinearig§.) as
Figure 24. System output step response of the original anfbllows:
reduced order models ( original model, -.-.-cetbmodel).
Xj (k+1) = g(v; (k) (70)

°

As seen in Figure 24, the reduced order in@éng

the singular perturbation methoql) has prc_wided Aith these equations, based on an approximatiothef
acceptable response compared with the originalesyst method of steepest descent, the network estiméies t

response. system matrixAy] as illustrated in Equation (43) for zero
input response [15]. That is, an error can be abthiby
matching a true state output with a neuron outmut a
follows:

3. NEURAL NETWORK ESTIMATION WITH LMI
OPTIMIZATION FOR THE BuUCK MODEL
REDUCTION

In this work, it is our objective to search for imarity & (k) =x; (k) =x; (k)

transformation that can be used to decouple aglested

eigenvalue set from the system matrix].[ To achieve
this objective, training the neural network to stte the PY:

Now, the objective is to minimize the cost functiginen

(Advance online publication: 22 May 2009)
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jO¢

E_. =Y E(k), where E(k)=1Y e?(k determined. Hence, a complete system transformadi®on
total Zk: (k) (k) ZZ (9 shown in Equations (46) and (47), is achieved.
To perform order model reduction, the system
where ¢ denotes the set of indicgdor the output of the Eduations (46) and (47) are written as:
neuron structure. This cost function is minimized b N -
estimating the instantaneous gradienE(¥) with respect {(r(t) — A A fr(t) + B, u(t) (73)
to the weight matrix\|V] and then updatingW}] in the X, (1) 0 A || %) B,
negative direction of this gradient [15,28]. bepss, this ~ ~
may be proceeded as follows: Pr (t)} = [Cr CO]{fr (t)} {Er }u(t) (74)
. . , Yo(t) %] |E
- Initialize the weights, W], by a set of uniformly
distributed random numbers. Starting at the inst@nt The following system transformation enables us to
0, use Equations (69) and (70) to compute the 0utpdecouple the original system into retainedand omitted
values of theN neurons (whersl = B). (0) eigenvalues based on the subsystems as shown in
Figure 25. The retained eigenvalues are the dorhinan
- For every time stefk and all jORB, mORB, and eigenvalues that produce the slow dynamics and the
¢(OROA, compute the dynamics of the systenPmitted eigenvalues are the non-dominant eigensalue
which are governed by the triply indexed set that produce the fast dynamics.

variables: % (0
r
. _ | B > xO=ARO |,
Ty (k+2) = B(v; (K) D Wi (K) 72y (K) + St (K)
ioR u(t)
—> <
with initial conditions 7! (0) =0 andd,, is given by A

(ow;; (k) /oy (K)), which is equal to "1" only when

j=mandi=/; otherwise it is "0". Notice that for ~ N
the special case of a sigmoidal nonlinearity in the fo(t)onxo(t)
form of a logistic function, the derivativg(l) is — o > Yo =X (t)

given by: g(v; (K) =y; (K +D[1-y; (k+1)]

- Compute the weight changes corresponding to tﬁégure 25. System decoupling process of the fast and slow
error signal and system dynamics: eigenvalues.

Equation (73) maybe written as:

D, (K) =17 € ()72, (K) (71) ) _ 3
i0¢ X (1) = AR (1) + A (1) + Bou(t)
- Update the weights in accordance with: %o (1) = Ao (1) + Bou(t)
Wiy (K +1) = Wy, (K) + Awyy, (K) (72) The coupling termA.X,(t) maybe compensated for by

solving for X, (t) in the second equation above by setting

- Repeat the computation until the desired estimasion io(t) to zero using the singular perturbation method (by
achieved. settings = 0). Doing so, the following is obtained:

As illustrated in Equations (43) and (449r the Sy a -l
purpose of estimating only the transformed systeatrim Xo(1) = =A, "Bou(t) (75)
[ A], the training is based on the zero input respons
Once the training is complete, the obtained weightrix
[W] is the discrete estimated transformed systemixnatr ]
Transforming the estimated system back to the ooatis X (1) = A X (t) +[—AV.A)'lB0 + B, Ju(t) (76)
form yields the desired continuous transformed esgst S -

Yieles e © = e o Y(©) =C %, (1) +[-CoA,'B, + Eu(t) (77)
matrix [ A ]. Using the LMI optimization technique

represented by:

ﬁsingi0 (t), we get the reduced order model given by:
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(78)
(79)

X, (t) = A, X, (t) + Byu(t)
y(t) = Co X, (t) + Eg u(t)

where the detail of the i, ], [Bor ], [Co ] [Eo I}

overall reduced matrices are shown in Equation¥ §né
(77).

4., MODEL REDUCTION OF THE BuUCK
CONVERTER USING NEURAL ESTIMATION
AND LMI| OPTIMIZATION

dominant eigenvalues (fast dynamics) of the origina
system. It is important to notice that the system
considered is a second order system. Thus, wheringa
the system, the second statg(t) of the transformed

model in Equation (73) is unchanged due to theiotisin

of [0 A] seenin [A] This may lead to an undesired
starting of the system response, but fast systeemativ
convergence (as will be seen and explained in hird t

example). Using {&] along with [A], the LMI is then

implemented in order to obtain ﬁ], [6], [E]}, which
makes a complete model transformation. Finallyngisi

Investigating the proposed method of system modelinpe singular perturbation technique for order model

for the Buck converter using neural network with ILM
and order model
control-to-output systems were tested on a PC grlatf
with hardware specifications of Intel Pentium 4 CRY0
GHz and 504 MB of RAM, and software specificatiafis
MS Windows XP 2002 OS and Matlab 6.5 simulator.

4.1 Input-to-Output System

The state space model of the input-to-output system
given by the following system matrices:

{o —1/L}
A= 80}
1/C -1/RC

DL
o[ -
c=[o 1 (82)
E=[0] (83)

Knowing that this is a second order systéts,
eigenvalues should not be complex in order to perfo
order model reduction. As seen from the system irmat

[A], the eigenvalues are mainly depending on th®

capacitor and inductor values. Therefore, differaities
of the capacitor and inductor were considered adllibe
shown in the following examples.

As a first example, given th&t = 0.4, R =18.6Q, L

reduction, the input-to-output ang,

reduction, the reduced order model is obtained.ifpet-
-output system responses to a step input of tiggnal
full order and reduced order models are seen iargig6.

Figure 26. Input-to-output system step responses: full order
system model (solid blue line), transformed reduarelr model
(dashed black line).

A second example is considering the valles: 0.4,
R =18.6Q, L =580 mH C =55 uF. The eigenvalues
were found to be -33.1963 and -944.3208. Usingtme

fprocedure that was performed previously, the sitruria

f the full and reduced order models for a stepirms
generated the responses shown in Figure 27. Iticldd
that, the transformed reduced order model resporse
compared with the non-transformed reduced orderetnod
It is seen in Figure 27 that the response of téestormed

reduced order model is more accurate than the nespaf

= 5.8H, C = 0.55mF, the eigenvalues were found to be éhe non-transformed reduced order model.

3.3196 and -94.4321. Having the eigenvalue -94.43
being much larger than the -3.3196, which showso tw
categories of eigenvalues, order model reductiog bea
performed. Thus, the system was discretized using
sampling rate = 0.0005 second. and simulated for a
zero input, x(t) = Ax(t) . Hence, based on the obtained

simulated output data and using neural network to
estimate the subsystem matrik] of Equation (45), the

following transformed system matri[ ] was obtained:

N

where JA,] is set to provide the dominant eigenvalue
(slow dynamics) andA,] is set to provide the non-

(A A

0 A

Figure 27. Input-to-output system step responses: full order
ystem model (solid blue line), transformed redumrer model
dashed black line), and non-transformed reduce@romodel
(dashed red line).
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In a third example, different values of ttepacitor, had the neural network training (i.e., depends Ag)]
inductor, and resistor are selected such that #hees of such that C = [1 0], then the response would look as
the system eigenvalues are not very high (not ¥asy seen in Figure 29, which is much better and mocerate
dynamics), but still one is larger than the othdence, than the non-transformed reduced order model resgpon
the following values were considerdd:= 0.4, R = 10.1
Q, L=3.305H C =5.5 mF. The eigenvalues were found
to be -3.901 and -14.099. For a step input, sirmgahe
original and transformed reduced order models alwitiy
the non-transformed reduced order model produced th
results shown in Figure 28.

004

[ER—

— — 4
|
|

Figure 29. Input-to-output system step responses: full order
system model (solid blue line), transformed redumrer model
(dashed black line), and non-transformed reduceéromodel
(dashed red line).

System Output

! A fourth example that will produce compl
: P . eigenvalues and thus can not be reduced ubimg t
previously utilized singular perturbation method as

Figure 28. Input-to-output system step responses: full ordefollows: if the original system element values sset to
system model (solid blue line), transformed redumetér model p = 0.4 R =18.6Q, L = 58 MH, C = 5.5 pF, then the

(dashed black line), and non-transformed reduceé@romodel eigenvalues are found to be complex and given by:

(dashed red line). i 4 ) ] ]
(-0.4888t j5.5776x10" . Simulating this system to a

As seen in Figure 28, the transformed redumeler step input produces the response shown in Figure 30
model response is starting a little off from thégmial  Here, since the system is &' @rder and has complex
system response, however, it has a faster conveggemrigenvalues, order model reduction can not be pagd

than the non-transformed reduced order model regponysing the previously used singular perturbatiohmégue.
The cause of this is due to the construction ofaigput

e
|
|
|
. |
GE- ST
|
|
|
|

matrix C =[0 1]; given that: ; ; ; ; ;
f\

. - A
{xr(t)HAr A\Mxr(t)HBr}u(t) Ao

X 0 %) | |B AN 1 1 1
XO(t) '% XO( ) (0] %157“7‘\‘7%147\\7’7:\&]/3\?)‘1\/\%7\(,‘—\:4‘—

~ ir (t) g | H/ VoV | | |
yo=[0 12 B R SEEELEEE

Xo(t) | ‘v" | | | | |
B S A S —

where JA;] is preset to the dominant eigenvalues (slow | | | | 1 1
dynamics), Aj] is preset to the non-dominant eigenvalues R T S S R

(fast dynamics), andA[] is the neural-estimated sub- Tietsecs
matrix. It is seen tha(t) =X,(t) , wherex,(t) is the Figure30.2" order (full order) original system step response.

solution of >'"<‘O(t) = A %, (t) + B,u(t) after setting it in the 4.2 Control-to-Output System
form: sio(t) = £ AX, (t) + £Bu(t) and Ietting‘s;(‘0 t)=0
using the singular perturbation method. The sulrimat

[Ao] is set to have the fast dynamics (representethéy
14.099 eigenvalue) regardless of the system respams {0 —1/L}

The state space model of the control-to-outputesysis
given by the system matrices:

is independent of the neural network training. Henc A
having y(t) depending only onXx,(t) , which was
independent of the training (i.e., independent Af])] _|:Vg/|—:| (85)
makes the transformed system response less accurate ~ | g

However, if the output were to depend ®n(t), which

84
1/C -1/RC

(Advance online publication: 22 May 2009)
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c=jo 1 (86)
E=[o (®7) & |
/]

(v u(t v _ % (1)

As seen in the Equations (84)-(87), theesystatrix =~ — 0 Bor
[A] of the control-to-output state space model isshme ) :
as the input-to-output system. The only differerscéhat A, |«
the input matrix B] has changed to depend on the K (<
elementV, instead ofD. Hence, the eigenvalues will be
the same and the response will be of the sameayjtke Figure 32. Block diagram of a state feedback control with
input-to-output system. For example, considering@ th{ Ay ], [By 1, [Cor 1. [ Eor I} overall reduced order system
elements of the system model given by:= 15V, R = atrices.
18.6Q, L = 58 mH, C = 5.5 uF, the system output step
response is shown in Figure 31. As previously séen, . ; ; :
transformed reduced model response has a faster Replacing the control inpui(t) in Equations (78)

convergence than the response of the reduced mo&@fj (79) by the .above new control input ‘.” Eq_“am')
without system transformation. yields the following reduced system equations:

X (t) +¢ y(t)
> c PO

or | +

X, (1) = Ao X, (£) + By [-K X, (8) + 1 (D)] (89)
Y(t) = Cor X, (1) + Eqr[-K X, () +r (t)] (90)

which can be re-written as:

;(} (t) = Ay ir (t) - By K g(-r (t) + By r (t)

- Z(t):[Aur_BorK]ir(t)+Borr(t)
y(t) = Cor ir (t) - Eor K ir (t) + Eorr(t)
- Y(t)=[Cy —Eq K]’)zr ) +Eqr(t)

System Output

The overall closed-loop system model may then be
Figure 31. Control-to-output system step responses: full ordewritten as:

system model (solid blue line), transformed redumettr model
(dashed black line), and non-transformed reduceeromodel )?(t) = Ay X (t) + Byr(t) (91)

(dashed red line). y(t) = CyX, (t) + Eq4r(t) (92)

5. THE APPLICATION OF STATE FEEDBACK ) . )
CONTROLLER ON THE REDUCED ORDER Such that the closed loop system matAx][will provide

MODEL OF THE BUCK CONVERTER the new desired system eigenvalues.

: ample 5. Consider the input-to-output system
We can apply many control techniques such xamp'e - . .

- iy presented in Section 4, for the case where theneddees
H,, control, robust control, stochastic control, ingght | " 2901 and -14.099. Using the new transfoonati

control, etc. on the reduced order model to meeergi pased reduction technique, one obtains a reducger or
specifications. Yet, in this paper, since the Beghtem is  model given by:
a 29 order system reduced to &' Dbrder, we will

investigate system stability and enhancing perfogea % (6) =[-3.901%. (t) +[-5.805Tu(t
by considering the s-domain pole replacement. %O =[-3 ]]XL() [-5.8053u(®)
For the reduced order model in the system of ¥r (t) =[-0.3503x, (t) +[-0.121u(t)

Equations (78) and (79), a state feedback contrcéle be .

designed. For example, assuming that a controlier Vith the eigenvalue of -3.901. Now, suppose thaea
needed to provide the system with faster dynamicgfgenvaluel = -9 that will produce faster system
response, this can be achieved by replacing therays dynamics is desired for this reduced order mod&is T

eigenvalues with new faster eigenvalues. Hencethlet ©OPjective can be achieved by first setting the rdelsi
control input be given by: characteristic equation as follows:

u(t) = -K X (t) +r(t) (88) A+9=0

To determine the feedback control gaih the

whereK is to be designed based on the desired SySteJHaracteristic equation of the closed-loop system i

eigenvalues. State feedback control for the tranmsfd
reduced order model is illustrated in Figure 32.
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needed. This can be achieved using Equations (8%namics) and A4, contains the non-dominant

through (91) which yields: eigenvalues (fast dynamics). To obtain the tramséat
B B matrix [A ], the zero input response was used in order to
(Al -Ay)=0 - A-[A, —ByK]=0 obtain output data related to the state dynamiesed

) only on the system matrixA]. After the transformed
Knowing that A, = -3.901 andB,, = -5.805, the closed- system matrix was obtained, the robust control rittym
loop characteristic equation can be compared with t of linear matrix inequality (LMI) optimization teaique
desired characteristic equation. Doing so, the daekl was used to determine the permutation mafix Which
gain K is found to be -0.8784. Hence, the closed-loofs required to complete system transformation roesri
system now has the eigenvalue of -9. As statedqsly, 5] [C], [E]}. The reduction process was then

the objective of replacing eigenvalues is t0 enBanGerformed using the singular perturbation methokichy
system performance. Simulating the reduced ordeteino operates on neglecting the faster-dynamics eigaesal

with the new eigenvalue for the same original syste onq |eaving the dominant slow-dynamics eigenvatoes
input (the step input) has generated the respdi®ersin - oniro| the system. Simple state feedback contsimgu
Figure 33. pole placement was then applied on the reduced Buck
model to obtain the desired Buck system response.

It is also shown in this paper that the pigdues of
the resulting transformed reduced model are a sudise
the original non-transformed full-order system, #md is
important since the eigenvalues in the non-transéak
reduced order model will be different from the
eigenvalues of the original full-order system.

Future work will investigate the implemeiuat of
the introduced control methodology upon other comve
systems such as the boost converter. Future wdklalad
investigate the application of the introduced hiehical

et control methodology used in this paper for the clexyp
Figure 33. Enhanced system step responses based on péjgadruple transfer functions of control-to-inputrremt
placement; full order system model (solid blue )jne transfer function and input impedance transfer tionc

transformed reduced order model (dashed black,linep-  for the new small signal model of the Buck converte
transformed reduced order model (dashed red liae}, the

controlled transformed reduced order (dashed pired.| REFERENCES
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