
 

 

 

  

Abstract— Research efforts of the DECIDE Research Group 

have resulted in a decision tool capable of handling imprecise 

information in complex decision situations. Some of the research 

has been directed towards developing decision analytical 

representation models and algorithms. The decision tool takes 

intervals as well as comparative relations as input, and 

incorporates a level of sensitivity analyses embedded into the 

representation instead of applying separate analyses on top of 

the evaluation procedure. Further, besides the embedded 

sensitivity analysis, an explicit sensitivity analysis is useful in 

order to point out the most critical probabilities, values, or 

weights to the decision under consideration. This paper deals 

with the theory and implementation of sensitivity analyses in a 

decision tool supporting interval probabilities, values, criteria 

weights, as well as comparative relations. 

 
Index Terms— decision analysis, decision tree, imprecise 

information, tornado diagram. 

 

 

I. INTRODUCTION 
1
In the market of decision analytic tools today, see e.g. [1] for 

a survey, most of the software packages are not capable of 

handling imprecise information. Instead, the input needs to be 

specified in precise numbers, which is often considered less 

realistic for decision-makers. The models and software based on 

them mainly consist of some straightforward set of rules applied 

to precise numerical estimates of probabilities and values. Then, 

sensitivity analyses are often not easy to carry out in more than a 

few dimensions at a time. The decision analytic tool discussed 

in this paper, DecideIT, coincides functionally with regular 

decision tree software, such as Precision Tree [2] or TreeAge 

Pro [3], but also with multi-criteria software such as Expert 

Choice [4] since it handles probabilities, values, and weights all 

in the same framework. However, DecideIT also handles impre-

cise information, not requiring a pointwise precision in the input 

parameters, but instead being capable of handling intervals as 

well as comparative statements between parameters, such as 

“greater than”, “more important than”, “equal to” or  “between 

20 and 40 more valuable than” [5]. 
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There have been quite extensive research efforts in the area of 

imprecise probabilities, see, e.g., [6] for a collection, but few of 

the theories have been converted into practical applications. A 

number of models with representations allowing imprecise 

statements have been suggested. Some of them use standard 

probability theory while others contain some specialised 

formalism. Most of them focus more on representation and 

probabilistic inference, and less on evaluation, see [7], [8], [9], 

[10], and [11] for examples. DecideIT has its roots in research 

on imprecise probabilities but has extended the theory into 

interval values (utilities) and interval multi-criteria weights. The 

tool also contains an approach embedding the basic sensitivity 

analysis into the representation. However, beside the embedded 

sensitivity analysis a second form of sensitivity analysis, 

tornado diagrams, are important in order to point out the most 

critical probabilities, values, or weights. This is also valuable 

when there is a need to allocate further investigation resources 

in order to discriminate between the alternatives, yielding 

insights into which of the parameters to put more effort into 

investigating. 

II. THE DECIDEIT SOFTWARE 

In DecideIT, see Fig. 1, the decision-maker can take advan-

tage of both decision trees and multi-criteria models allowing 

the use of imprecise input in the form of interval and compara-

tive statements.  

 

Fig. 1. DecideIT screenshot 
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In a multi-criteria model, each end node represents one 

criterion, which can be modelled in two ways; either directly in 

the multi-criteria model for criteria not containing probabilistic 

uncertainty, or in its own decision tree, which then are joined 

together in a criteria hierarchy. The multi-criteria decision 

problem can then be analyzed from a one-criterion perspective, 

or from an all-criteria perspective. The software consists of a 

graphical user interface, taking advantage of a set of algorithms 

capable of handling imprecise probabilities, values, and criteria 

weights, providing a good display of the decision problem and 

the evaluation results. 

III. REPRESENTATION 

Models and tools for decision analysis are categorized depend-

ing on the nature of the information they handle. If the 

information, such as probabilities and values (utilities), is in the 

form of fixed numbers, the models are zero-order models. This 

includes statements such as “the probability of A occurring is 

23%” and “the value of consequence B is USD 2.61 million.” If 

the information is in the form of upper and lower bounds (or 

intervals), the models are first-order models. This includes 

statements such as “the probability of A occurring is between 

20% and 30%” and “the value of consequence B is between 

USD 2.5 and 3 million.”  Finally, if the information is in the 

form of distributions of belief over intervals, the models are 

second-order models. The DecideIT tool utilizes modelling 

techniques from first- and second-order theories. 

In first-order decision modelling, the intervals (lower and 

upper bounds) could be represented by weak inequalities which 

form constraints on the possible solutions to the set of 

inequalities (called bases below). A statement such as “the 

probability of A occurring is between 15% and 25%” is trans-

lated into a pair of inequalities p(A) ≥ 15% and p(A) ≤ 25%. 

Each consequence is represented by a variable. A qualitative 

(comparative) statement compares the probabilities (or values) 

of two consequences occurring with one another, such as “the 

event C is more likely to occur than D”. Those statements also 

translate into inequalities like p(C) ≥ p(D) [12]. The collection 

of all inequalities (of the same kind) is called a constraint set. 

There is one each for probabilities, values (utilities), and criteria 

weights. A constraint set is consistent iff the system of weak 

inequalities has a solution. Thus, a consistent constraint set is a 

set where the constraints are not contradictory. 

In the sequel, a generic consistent constraint set X is used. It 

consists of constraints (inequalities) on the variables xi, i∈I, 

where I is the index set. For the presentation, it is easiest to think 

of a one-level decision tree with n nodes and indices i = 1,…,n. 

This maps to consequences ci. But the implementation in 

DecideIT handles trees of several levels of depth. A consistent 

constraint set has definite outer boundaries, i.e. delimiters 

beyond which there are no consistent points. The orthogonal 

hull describes which parts of the space are incompatible with the 

constraint set. First, we introduce a shorthand notation for the 

max- and min-operators. 

Definition:  Given a consistent constraint set X in 

variables {xi}i∈I and a function f,  
Xmax(f(x)) =def  sup(a  {f(x) > a} ∪ X is consistent). 

Similarly,  
Xmin(f(x)) =def  inf(a  {f(x) < a} ∪ X is consistent). 

The orthogonal hull can now be defined in terms of minima and 

maxima. 

Definition:  Given a consistent constraint set X in 

{xi}i∈I, the set of pairs {〈Xmin(xi),
Xmax(xi)〉}i∈I is 

the orthogonal hull of the set and is denoted 

〈Xmin(xi),
Xmax(xi)〉. 

For convexity reasons, the entire interval between those extre-

mal points is feasible. If the base is consistent, the orthogonal 

hull can always be determined. 

Example 1: Consider the following constraint set P in 

variables {pi}i∈{1,2,3,4}: 

p1 ∈ [0.20, 0.40] p1 – p2 ∈ [0.10, 0.30] 

p2 ∈ [0.20, 0.45] p1 – p3 ∈ [0.10, 0.40] 

p3 ∈ [0.15, 0.30] p3 – p4 ∈ [–0.10, 0.10] 

p4 ∈ [0.25, 0.40] p1 + p2 + p3 + p4 = 1. 

A solution vector to the system of inequalities that P repre-

sents is (0.30, 0.20, 0.20, 0.30) and thus the constraint set P 

is consistent. 

Next, Pmax(p1) = 0.40 and Pmin(p1) = 0.30. Repeating for 

the other three pi’s yields the following orthogonal hull: 

{〈0.30,0.40〉, 〈0.20,0.25〉, 〈0.15,0.225〉, 〈0.25,0.30〉}. 

Compared to the range constraints in the base there are some 

differences. For example, the upper bound of p1 has been cut 

from 0.70 to 0.40, see Fig. 2. 

 

 
Fig. 2. Probability input and hull calculations 

 

All consistent points (i.e. feasible solution vectors) are found 

inside the orthogonal hull. 

Definition:  Given a constraint set X in {xi}i∈I and the 

orthogonal hull H = 〈ai,bi〉 of X, a consistent point is a 

solution vector (r1,…,rn) with ai ≤ ri ≤ bi, ∀i∈I. 

The focal point is a consistent point with a special property. It is 

the point considered the most likely point (favoured point) by 

the decision-maker. It is found in one of two ways, or a 

combination of the two ways. 
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a) In case the decision-maker has an expressed opinion, it 

is used as the focal point. 

b) Otherwise, the focal point is the mass point relative to 

an implied second-order distribution over the intervals. 

Second-order decision theory devises centre points in each 

dimension (each variable) which corresponds to components of 

the mass point of the resulting joint distribution [13]. This is in 

analogy with mass points of physical bodies, where the mass 

point is a good representative for the entire body for many 

modelling purposes. In Fig. 3, an interpretation of the orthogo-

nal hull and the focal point in terms of belief is shown. 

 

 
Fig. 3. The orthogonal hull and the focal point 

Further, from second-order theory we know that distributions 

tend towards the mass point, introducing skew into the 

distributions following multiplications and additions of 

distribution components. This effect is called the warp effect 

[14]. To compensate for the effect in DecideIT, skew is repre-

sented in the model. A metric should be used that complies with 

the decision-maker’s understanding of the decision problem. 

Definition :  Given two vectors a and b, a distance 

function d is a function that satisfies 

 (i a) d(a,b) > 0 if a ≠ b 

 (i b) d(a,a) = 0 

 (ii) d(a,b) = d(b,a) 

 (iii) d(a,b) ≤ d(a,c) + d(c,b) for all c > 0. 

For the definition to be meaningful in this context, the distance 

function must be reasonable, even though this does not follow 

directly from the definition.  

Definition:  Given two vectors a and b, a hull 

distance function d is a distance function where 

d(a,b) = (Σai – Σbi)
2
.  

In general, the focal point does not need to coincide with the 

orthogonal hull midpoint. In that case, a set of constraints is said 

to be skewed, and the concept of skew is introduced to describe 

this. 

Definition:  Given a constraint set X in {xi}i∈I,  

two real vectors a = (a1,…,an) and b = (b1,…,bn) of 

the orthogonal hull 〈ai, bi〉 of X, a hull distance 

function d and a focal point r. The skew s of the base 

X with respect to r is ( , ) ( , )

( , )

−
=

r r

a b

d a d b

d
s . 

Thus, a frame is asymmetric (or skewed) if the focal point does 

not coincide with the orthogonal hull midpoint. It can be seen 

from the definition that s = 0 if a set of constraints is symmetric, 

s > 0 if the set is skewed rightwards (toward higher values), and 

s < 0 if the set is skewed leftwards (toward lower values). 

When a set of constraints is skewed, there exists a way of 

aiding the decision-maker in avoiding this asymmetry by using 

the symmetric hull instead of the orthogonal. It is constructed by 

adjusting the interval of each hull dimension from one side so 

that the focal point and midpoint coincide. 

Definition:  Given a constraint set X in {xi}i∈I, the 

orthogonal hull 〈ai, bi〉 of X, and a focal point 

(r1,…,rn). Let di = min(ri–ai, bi–ri), ∀i∈I. The 

symmetric hull is 〈ri–di, ri+di〉. 

The generic term hull is used in the sequel, meaning the type of 

hull (orthogonal or symmetric) used in a particular decision 

situation.  

Note:  If the symmetric hull coincides with the 

orthogonal hull, then the skew is zero. This follows 

from d(r,a) – d(r,b) = 0 if the midpoint 
2

i i
a b+ for 

each index i∈I is equal to the component ri of the 

focal point r. 

Example 2:  Consider a decision situation involving two 

consequence sets C1 and C2. C1 has ten consequences 

while C2 has only one. There are no probability constraints 

and the probability focal point for C1 is 0.1 for each 

consequence. While the orthogonal hull covers all consis-

tent probability assignments, i.e. [0, 1] for each probability 

variable, the symmetric hull is symmetric around the focal 

point, i.e. [0, 0.2]. Let the value base contain: 

 v11 ∈ [1.00, 1.00] 

 v1i  ∈ [0.00, 0.00] for i = 2,...,10 

 v21 ∈ [0.10, 0.20] 

Using the orthogonal hull, the consequence set C1 is the 

preferred one. This is counter to many decision-makers’ 

appreciation of the example. Using the symmetric hull, on 

the other hand, the consequence set C2 is the preferred one 

and the result is stable. This result is perceived to be more 

indicative by many decision-makers. 

There are two levels of possible richness in the representation. 

Either the constraint sets constitute all information given by the 

decision-maker, or it is supplemented by cores. Thus, a base 

(the entity collecting all information) consists of a constraint set 

possibly together with a core. Constraints and core intervals 

have different roles in specifying a decision situation. The con-

straints represent “negative” information, which vectors are not 

part of the solution sets. The contents of constraints specify 

which ranges are infeasible by excluding them from the solu-

tions. This is in contrast to core intervals, which represent “posi-

tive” information in the sense that the decision-maker enters 

information about sub-intervals that are felt to be the most 
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central ones and that no further discrimination is desirable or 

even possible within those ranges. This has the effect of point-

ing out a sub-interval instead of only a focal point as being the 

most central (i.e. most believed in).  

Definition:  Given a constraint set X in {xi}i∈I and the 

orthogonal hull 〈ai,bi〉 of X, a core interval of xi is an 

interval [ci, di] such that ai ≤ ci ≤ di ≤ bi. A core |ci, di| 

of {xi}i∈I is a set of core intervals {[ci, di]}i∈I, one for 

each xi. 

As for constraint sets, the core might not be meaningful in the 

sense that it may contain no possible variable assignments able 

to satisfy all the inequalities. This is quite similar to the concept 

of consistency for constraint sets, but for core intervals, the 

requirement is slightly different. It is required that the focal 

point is contained within the core. 

Definition:  Given a consistent constraint set X in 

{xi}i∈I and a focal point r = (r1,…,rn), the core |ci,di| 

of {xi}i∈I is permitted with respect to r iff 

ci ≤ ri ≤ di, ∀i∈I. 

Example 3: Reconsider the constraint set P from Example 

1. Recall that the constraint set is 

p1 ∈ [0.20, 0.40] p3 ∈ [0.15, 0.30] 

p2 ∈ [0.20, 0.45] p4 ∈ [0.25, 0.40] 

and that r = (r1,…,r4) = (0.32, 0.25, 0.17, 0.26) is the focal 

point. Let the core suggested by the decision-maker be 

p1 ∈ [0.30, 0.35] p3 ∈ [0.15, 0.20] 

p2 ∈ [0.22, 0.25] p4 ∈ [0.25, 0.28]. 

Now r1 is contained in the core interval of p1, and the same 

is true for the other three pi’s. Thus the core is permitted. 

The interpretation of, for example, the information about p1 

is that, according to the decision-maker, the value of p1 is 

not below 0.20 and not above 0.40. In addition, the most 

plausible values for p1 are between 0.30 and 0.35. 

Formally, there is always a core, even if it is left unspecified in 

case of core statements not being employed by the decision- 

maker. Then, the core is simply the single focal point. Thus, a 

base is a collection of constraints and the core that belongs to 

the variables in the set. The idea with a base is to represent a 

class of functions over a finite, discrete set of consequences. 

Definition:  Given a set {xi}i∈I of variables and a 

focal point r, a base X in {xi}i∈I consists of a 

constraint set XC in {xi}i∈I and a core XK of {xi}i∈I. 

The base X is consistent if XC is consistent and XK is 

permitted with respect to r. 

A probability base contains a collection of probability state-

ments in the form of constraints and a core. 

Definition:  Given a set {Cik}k∈K of disjoint and 

exhaustive consequences, a base P in {pik}k∈K,  

K = {1,…,mi}, and a discrete, finite probability mass 

function ∏:C→[0,1] over {Cik}. Let pik denote the 

function value ∏(Cik). ∏ obeys the standard 

probability axioms, and thus pik ∈ [0,1] and ∑k pik = 1 

are default constraints in the constraint set PC.  

P is called a probability base. 

Thus, a probability base represents a set of discrete probability 

distributions. The core PK can be thought of as an attempt to 

estimate a class of mass functions by estimating the individual 

discrete function values. 

Requirements similar to those for probability variables can be 

found for value variables. There are apparent similarities 

between probability and value statements but there are differ-

ences as well. The normalization (∑k pik = 1) requires the 

probability variables of a set of exhaustive and mutually exclu-

sive consequences to sum to one. No such dimension reducing 

constraint exists for the value variables.  

Definition:  Given a set {Cik}k∈K of disjoint and 

exhaustive consequences, a base V in {vik}k∈K,  

K = {1,…,mi}, and a discrete, finite value function 

Ω:C → [0, 1]. Let vik denote the function value Ω(Cik). 

Because of the range of Ω, vik ∈ [0, 1] are default 

constraints in the constraint set VC.  

V is called a value base. 

Using the concepts of consequence, constraint, core, and base, 

DecideIT models the decision-maker’s situation in a decision 

frame.  

Definition:  Given a decision situation with m 

alternatives (A1,…,Am), each with mi conse-

quences, and statements about the probabilities and 

values of those consequences. A decision frame is a 

structure 〈C, P, V〉 = 〈{{Cik}mi
}m, P, V〉 containing 

the following representation of the situation: 

• For each alternative Ai the corresponding 

consequence set {Cik}k∈Ki
 for Ki = {1,…,mi}. 

• A probability base P containing all probability 

statements in the form of constraints and a core. 

• A value base V containing all value statements in 

the form of constraints and a core. 

Thus, each alternative is represented by its consequence set. 

Since multi-criteria weights are mathematically similar to 

probabilities, they are not included in the discussion on 

representation. In DecideIT, they are stored in a third base in the 

decision frame. The frame is stored in data structures in the tool. 

IV. EMBEDDED SENSITIVITY ANALYSES 

Since the application takes imprecise input, the evaluation of 

decision alternatives will also reflect that uncertainty, thus 

providing the decision-maker with expected value intervals that 
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might overlap each other, i.e. no single alternative might domi-

nate all the others. Then, DecideIT examines in which parts of 

the intervals we can obtain a dominating alternative, using an 

embedded sensitivity analysis. The probabilities, values, and 

weights are therefore subject to an embedded sensitivity analy-

sis as well as an explicit analysis, shown as a tornado diagram of 

the influences of the probabilities, values, and weights on the 

evaluation result. The embedded sensitivity analysis examines 

in which parts of the intervals we can obtain a dominating 

alternative. This is done by introducing contraction levels, 

contracting the intervals, thus moving the interval boundaries 

closer towards the focal point. The use of contraction levels is 

an embedded sensitivity analysis where the decision-maker 

gains a better understanding of the stability of the result and how 

important the interval boundary points are. 

Definition:  Given a decision frame 〈{Ci}m, P, V〉, the 

expected value E(Ci) of a consequence set Ci = {Cik}mi
 is 

the sum ∑k pik·vik over all consequences Cik in the set. 

Further, δij denotes the expression E(Ci) – E(Cj) = 

∑k pik·vik – ∑k pjk·vjk over all consequences in the 

consequence sets Ci and Cj. 

In order to assess the overlap between expected value intervals 

of the alternatives after the evaluation, sensitivity analyses are 

performed. They are of two kinds, embedded and explicit. An 

embedded analysis uses built-in properties of the representation 

to study the stabilities of the results obtained. The hull cut is a 

generalized sensitivity analysis for this purpose. It is reasonable 

to consider values near the boundaries of the intervals in a 

constraint set to be less believable than more central values, due 

to interval constraints being deliberately imprecise (see Fig. 3). 

If no core is present, the bases are contracted from the hull 

boundaries toward the focal point. 

Definition:  Given a decision frame with a base X 

with the variables x1,…,xn, π ∈ [0, 1] is a real 

number, and {πi ∈ [0, 1] : i = 1,…,n} is a set of real 

numbers. [ai, bi] is the interval corresponding to the 

variable xi in the solution set of the system of 

constraints, and (k1,…,kn) is a focal point in X. A 

π-contraction of X is to add the interval statements 

{xi ∈ [ai+π·πi·(ki–ai), bi–π·πi·(bi–ki)] : i = 1,…,n} to 

the base X. 

If a core is present, on the other hand, it represents the most 

believable estimates. It is then desirable to be able to study the 

bases with differing cut directions, i.e. studying increments or 

decrements of the core. Thus, if the core itself is not enough to 

yield desired evaluation results, it can be further cut towards the 

focal point with varying degrees of contraction. 

Definition:  Given a base X in {xi}i∈Ι, a set of real 

numbers {ai,bi}i∈I, a core |ci, di| of {xi}i∈I, and a real 

number π ∈ [0, 1], a τ-cut of X is to replace the core by 

[ci+ τ·(ai–ci), di+ τ·(bi–di)]. If the set {ai, bi}i∈I is the hull 

〈ai, bi〉 then it is called a τ-expansion of X. If (r1,…,rn) is 

a focal point and ai = bi = ri, then it is called a 

τ-contraction of X. 

As the bases in the frame are contracted, the initially partially 

ordered alternatives (consequence sets) gradually shift into a 

total order (except when the focal points coincide). The contrac-

tion is carried out in a large number of dimensions at the same 

time, most often all, making it an embedded general analysis 

yielding a good overview of the stability of obtained evaluation 

results. 

V. EXPLICIT SENSITIVITY ANALYSES 

If the evaluation and subsequent contractions do not point out 

a single preferred alternative, the next step, to further discrimi-

nate the alternatives, could be to gather more information 

regarding the decision situation. In order to guide the allocation 

of analysis resources for further information gathering in an 

efficient way, the variables having the greatest impact on the 

expected value should be identified. Even if the evaluation 

points out a preferred alternative, it is important to gain an 

understanding of the stability of the result, i.e. its sensitivity to 

changes in the information supplied.  

An established way of displaying a one-way sensitivity analy-

sis of several variables in the same output window is by a 

tornado diagram. By showing the sensitivity ranges as bars and 

sorting the widest range on top, the resulting picture resembles a 

tornado; see Fig. 4 for an example of a value tornado. The 

output can be interpreted such that value intervals having 

greater impact on the expected value are more critical, and 

information related to these consequences is important to 

investigate further. 
 

 
Fig. 4. Tornado diagram (TreeAge Pro software) 

 
An advantage of an interval approach is that the basis for 

calculating the critical values is already present, i.e. the interval 

width is given by the decision-maker already from the begin-
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ning. The problem, however, is that the parameters may include 

dependencies in the form of comparative value statements. 

Since we are aiming to provide the user with critical probabili-

ties and critical weights as well, the normalization constraint 

provides a further obstacle. Varying each variable in isolation 

would yield incorrect results due to comparative statements and 

normalization constraints. 

Another problem is that a change in the probability of one 

node affects all the children of this node, which in turn affects 

the evaluation result. Similar problems are inherent when 

dealing with weights or comparative relations. Varying the 

value of one consequence might affect some other value due to 

value relations between them. 

VI. INTERVAL TORNADO DIAGRAMS 

In a zero-order decision problem (i.e. no intervals), a tornado 

consists simply of varying each of the variables, one at a time, 

either to their specified “best” and “worst” values or by a 

percentage, for example ±10%. In a first-order (interval) deci-

sion tool, there is no obvious counterpart to the zero-order 

tornado diagram. In an interval evaluation, there is no single 

output expected value but rather an expected value interval 

within which the expected value falls when the input variables 

are kept within their interval input ranges and being consistent 

with the constraints. The meaning of an input interval constraint 

(or, to be more precise, the hull) is the upper and lower bounds 

of the numbers that the variable could assume in the decision 

problem. But changing each variable within the interval, even 

letting it assume its lower and upper bounds, will not yield any 

new information since all possible consistent assignments of 

variables have already been considered in the expected value 

range by definition.  

To gain an overview of the sensitivity of the results of an 

interval decision evaluation, another approach is required in 

order to reflect the sensitivity of the output expected value to 

changes in the input variables. This is achieved by studying the 

sensitivity of the best representative of the expected value (the 

focal point).  

Let the reference expected value (EU0) of an alternative be 

the expected value of the focal point. EU0 is considered the best 

single representative for the expected value interval of the 

alternative. Since it is calculated using the same expected value 

formula as all points in the expected value interval, it is a 

reasonable candidate for an anchor point in a sensitivity analy-

sis. The analysis then studies the effects on the focal point of 

varying each variable, instantiating it with its lower and upper 

bounds, respectively. This way, the positive and negative 

impacts are obtained for each variable.  

Each variable influences the focal point when assigned its 

lower and upper bounds, not least because of dependencies 

between variables in an interval specified decision problem, 

such as comparisons (e.g. vi > vk) and normalisations (Σj pj = 1). 

The focal point is recomputed and the impact of the disturbance 

is then measured as the change in expected value for the 

recomputed focal point compared to the reference.  

Procedure:  Let Ф be the focal point of an 

alternative. The value vi = V(ci) of each 

consequence ci is varied in turn, one at a time.   

i)  When vi is assigned its maximum (upper hull 

bound), the new focal point calculated is Фi
+
. Let 

EUi
+
 be the expected value obtained from Фi

+
.  

ii)  When vi is assigned its minimum (lower hull 

bound), the new focal point calculated is Фi
–
. Let 

EUi
–
 be the expected value obtained from Фi

–
. 

iii)  The positive impact on EU0 by varying vi is now 

EUi
+
 – EU0 and the negative impact on EU0 is 

similarly EUi
–
 – EU0. Thus, the resulting impact 

range of each variable has the form of an interval 

[EUi
–
 – EU0, EUi

+
 – EU0].  

Hence, collecting the intervals for each decision variable for 

each alternative is the operationalisation of degree of impact in 

an interval tornado analysis and the resulting impact intervals 

are displayed in a tornado diagram, sorted in decreasing interval 

width analogous to the zero-order display. Using the core in lieu 

of the hull in the same procedure, another diagram (the core 

tornado) is obtained.  

Traditionally, in zero-order models, only value tornados are 

presented. In DecideIT, tornado diagrams are also created for 

the critical probabilities or the critical criteria weights, where 

the positive and negative impacts, by varying probability and 

weight variables, are calculated in a similar manner. These 

first-order tornado diagrams, yielding critical values and critical 

probabilities for decision trees, and critical weights and 

weighted critical values for multi-criteria models, have been 

implemented in the software DecideIT, see Fig. 5. 
 

  
Fig. 5. Tornado diagram (DecideIT software) 

 

A red coloured (dark) bar indicates that the expected value is 

influenced in a negative way, and a green coloured (light) bar 

indicates a positive influence on the expected value. 
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VII. SUMMARY AND CONCLUDING REMARKS 

This paper discusses sensitivity analyses in interval decision 

models. Two different kinds are treated, embedded analyses and 

tornado diagrams. The embedded analysis is a generalized 

sensitivity analysis carried out in many dimensions at the same 

time. An interval tornado diagram can be used for displaying the 

individual sensitivities of probabilities and values in decision 

trees, and of weights and weighted values in multi-criteria 

models. The difference compared to traditional tornado dia-

grams is that interval ranges have already been specified by the 

decision-maker and taken account of in the resulting expected 

value interval. Furthermore, varying one variable at a time may 

not be possible due to dependencies between variables derived 

from, e.g., comparative relations and probability or weight 

normalisation constraints. We present a solution circumventing 

this problem, which has also been implemented in the software 

DecideIT. Using both kinds of sensitivity analyses in conjunc-

tion, they provide a thorough picture of the stability of evalua-

tion results obtained. 
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