
 
 

 

  
Abstract— In this paper, a new method is proposed to evaluate 

the reliability of stochastic mechanical systems. This technique is 
based on the combination of the probabilistic transformation 
methods for multiple random variables (MPTM) and the finite 
element method (FEM). The transformation technique evaluates 
the Probability Density Function (PDF) of the system response by 
the use of the Jacobian of the inverse mechanical function. This 
approach has the advantage of giving directly the whole density 
function of the response - in a closed form -, which is very helpful 
in reliability analysis. 
 

Index Terms— Probabilistic method, Finite Element Method, 
Reliability Analysis, FORM, Monte-Carlo simulation.  
 

I. INTRODUCTION 
  Many mechanical applications require the consideration of 
stochastic properties of materials, geometry and loads. The 
basic representation of uncertain parameters in the underlying 
models is obtained by introducing random variables or fields. 
Different kinds of analyses accounting for uncertainties can be 
carried out. The second moment analysis aims to characterize 
the means and variances of response quantities (displacements, 
strain and stress components, etc.) in terms of the input variable 
moments. The perturbation method [1] and the weighted 
integral method [2] belong to this category. On the other hand, 
the reliability methods focus on the calculation of the 
probability of failure associated with a given limit-state 
function. First and second order reliability methods (FORM / 
SORM) and various simulation methods are commonly used in 
reliability analysis [3]. To account for the spatial variability of 
uncertain quantities (e.g. material properties), a 
characterization in terms of a random field is usually employed. 
Through a process of discretization, it is possible to represent 
the random field by a vector of random variables. One of the 
methods mentioned above may then be used to carry out 
second-moment or reliability analyses. The spectral stochastic 
finite element method (SSFEM) proposed by Ghanem and 
Spanos [4] is an approach well suited to analyses involving 
random fields. It is based on two types of discretization of the 
system of stochastic partial differential equations governing the 
problem under consideration: one in the spatial domain and one 
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in the probabilistic domain. The response (e.g. the random 
vector of  
 
nodal displacements) is cast as a series expansion in terms of 
standard normal variables. This can be interpreted as an 
‘intrinsic’ representation of the random response, from which 
quantities such as statistical moments can be computed by 
post-processing, either analytically or by sampling.  
The aim of this paper is to generalize the probabilistic 
transformation methods (PTM), introduced recently by the 
authors [5] for one-dimensional. This new method is presented 
in order to evaluate the stochastic mechanical response. The 
method is based on the combination of the probabilistic 
transformation methods (PTM) for multiple random variables 
(e.g. Young’s modulus and load) and the deterministic finite 
element method (FEM). The transformation technique 
evaluates the Probability Density Function (PDF) of the system 
response by multiplying the input PDF with the Jacobean of the 
inverse mechanical function. 

II. RELIABILITY ANALYSIS 
The reliability methods aim at evaluates the probability of 
failure of structural systems subjected to randomness. The 
design of structures and the prediction of their good 
functioning lead to the verification of a certain number of 
rules resulting from the knowledge of physical and 
mechanical experience of designers and constructors. These 
rules traduce the necessity to limit the loading effects such as 
stresses and displacements. Each rule represents an 
elementary event and the occurrence of several events leads to 
a failure scenario. The objective is then to evaluate the failure 
probability corresponding to the occurrence of critical failure 
modes. In addition to the vector of deterministic variables x 
used in the system control and optimization, the uncertainties 
are modeled by a vector of stochastic physical variables Y 
affecting the failure scenario. The knowledge of these 
variables is not, at best, more than statistical information and 
we admit a representation in the form of random variables. For 
a given design rule, the basic random variables are defined by 
their probability distribution associated with some expected 
parameters; the vector of random variables is noted herein Y 
whose realizations are written y. The safety is the state where 
the structure is able to fulfill all the functioning requirements: 
mechanical and service ability, for which it is designed. To 
evaluate the failure probability with respect to a chosen failure 
scenario, a limit state function ),( yxG is defined by the 
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condition of good functioning of the structure. The limit 
between the state of failure 0),( ≤yxG and the state of 
safety 0),( >yxG is known as the limit state surface 

0),( =yxG (figure 1). The failure probability is then 
calculated by: 

 
[ ] ∫

≤

=≤=
0)(

1...)(0)(Pr
xG

nXf dxdxxfxGP                      (1) 

 
where Pf is the failure probability, fx(x) is the joint density 
function of the random variables X and Pr[.] is the probability 
operator. The evaluation of integral (1) is not easy, because it 
represents a very small quantity and all the necessary 
information for the joint density function are not available. 
For these reasons, the First and the Second Order Reliability 
Methods FORM/SORM has been developed. They are based 
on the reliability index concept, followed by an estimation of 
the failure probability. The invariant reliability index β was 
introduced by working in the space of standard independent 
Gaussian variables instead of the space of physical variables. 
The transformation from the physical variables y to the 
normalized variables u is given by:  
 

),( yxTu =  and ),(1 uxTy −=                                              (2) 
 
This transformation T(.) is called the probabilistic 
transformation. In this standard space, the limit state function 
takes the form: 

 
0)()( =≡ xGuH                                                                           (3) 

 
For practical engineering, equation (3) gives sufficiently 
accurate estimation of the failure probability. 
 

 
Fig. 1: Reliability analysis methodology 

 

A. Approximate reliability methods (Form & Sorm) 
The First Order Reliability Method (FORM) uses the closest 
point on the limit state function H(u)=0 to the origin in the 

standard normal space as a measure of the reliability. This 
point is called design point *u  and its beta value *u=β  
specifies the reliability level; the failure 
probabilities )( β−Φ≈fP , where (.)Φ  denotes the 
standard cumulative distribution function.  
Second Order Reliability Methods (SORM) approximate the 
limit state functions by an incomplete second order 
polynomial, which assumes in a rotated space the simple form 

∑
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i
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1)(~)( β                                 (4) 

The form is incomplete since the terms ( ){ }n
iiuu 21 =−β , 

leading to a complete second order approximation around the 
design point, are missing. An exact result in form of a one 
dimensional integral has been derived in [6] for the 
incomplete representation [6] and an asymptotic result, 
sufficiently accurate for large β  value, has been developed 
[7].  

B. Importance Sampling 

Importance Sampling has been one of the most prevalent 
approaches in the context of Simulation based methods for the 
estimation of structural reliability [8]. The underlying concept 
is to draw samples of the vector of random parameters X from 
a distribution )(xf X  which is concentrated in the ’important 
region’ of the random parameter space.  

C. Line Sampling  

An alternative, quite suitable for large dimension X and 
efficient in context of FEA, is the following approach denoted 
as “line sampling”. It requires an important direction as 
starting point, defining the direction along the limit state 
G(x,y) will be determined. Each point (x,y)  in the standard 
point is decomposed into the one dimensional space X [9]. 

D. Some factors of comparison 

The procedures for estimating the failure probability 
developed over the last twenty years like FORM/SORM, 
Importance Sampling, and all its variants, lack robustness or 
computational efficiency as the number of random variables 
tends to infinity. However, the robust and simple straight 
forward Line Sampling procedures, is able to overcome most 
difficulties encountered in traditional procedures. 
Summarizing the arguments, the following can be concluded: 

• FORM provides a point estimate, subject to 
linearization errors, without confidence. Moreover, it 
requires the evaluation of the design point, which 
becomes difficult in high dimensions for nonlinear 
limit state functions in the normalized space. The 
efforts to compute the design point grows 
proportional with the number of variables. 

• SORM requires in addition to the design point, the 
main curvatures which cannot be obtained in a 
feasible manner for high dimensions. The procedure 
implies that the domain close to the design point is 
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the important domain which is not the case for high 
dimensions. 

• Importance Sampling is more robust and accurate 
than FORM / SORM, but not competitive to Line 
Sampling, because it is generally impossible to 
sample according to the optimal sampling density. 
The approach has difficulties to deal with multiple 
failure domains if they are not well separated.  

• Line Sampling is capable to take advantage of simple 
flat limit states in standard normal space and samples 
in the most important domain, without assuming a 
linear or quadratic limit state surface, or requiring a 
design point computation. 

 

III. TRANSFORMATION METHOD  
The theory of the Probabilistic Transformation Method or 
PTM is based on the following theorem [10]: 
Theorem (Single input-single output system): Suppose that 
X is a random variable with PDF (probability density 
function) )(xf  and ℜ⊂A  is the one–dimensional space 

where ( ) 0>xf . Consider the random variable (function of x) 

( )XuY = , where ( )xuy =  defines a one-to-one 
transformation that maps the set A  onto a set ℜ⊂B  so that 
the equation ( )xuy =  can be uniquely solved for x in terms 

of y, say ( )yux 1−= . Then, the PDF of Y is:  
  

( ) ( )[ ] ByJyufyg ∈= − ,1 ,  

where, 
dy

ydu
dy
dxJ )(1−

==   is the Jacobean of the 

transformation. 

The mathematical condition for this theorem is that the 
transformation must be one-to-one. Problems frequently arise 
when we wish to find the probability distribution of the 
random function Y=U(X) when X is a continuous random 
variable and the transformation is not one-to-one. So the two 
major problems or limitations of PTM are: 

1. the transformation function (U) should be bijective 
2. the determinant of Jacobean should be not null  

To avoid these limitations of PTM, a nn ×  system can be 
defined such as ),...,,( 211 nxxxuy = :  
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The above function U is reversible if and only if the 
determinant of the Jacobean is not null. Indeed 
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IV. PROPOSED TECHNIQUE: MPTM-FEM 
The proposed technique is a combination of the deterministic 
finite element method and the random variable transformation 
technique for multiple variables (MPTM) using the previous 
theorem. In this technique, the differential equation is solved 
firstly by using the deterministic theory of finite element (a) 
which yields to accurate nodal solutions. These solutions are 
then used to obtain the "exact" PDF using the random 
variable transformation (b) between the input random 
variables and the output variable. The accuracy of the solution 
is increased when increasing the number of elements in the 
FEM as usual. The organization chart of this technique is 
shown in figure 2 and the algorithm is shown in figure 3. 

a) the FEM leads to:  
[ ] SFFKUeiFUK === −1.., (where S is the 
flexibility matrix). 

b) Using PTM technique FSU ff
U
Sf ..

∂
∂=  

 
 
 

Stochastic Equation of 
Movement

FEM

PTM

Probability Density Function of 
response

 
Fig. 2: Organizaton chart   
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START

Input: PDF(x), f(x) where y=f(x), y is 
calculated using FEM

Introducing some fictious variables and 
calculate Find f -1

Where x=f-1(y)

Find |J|, determinant of the 
Jacobean 

Find PDF(y), using :
PDF(y)=|J|.PDF(x)

END
 

Fig. 3: algorithm of MPTM-FEM 
 

V. APPLICATION 
In this example, a 6-bar truss structure with random Young's 
modulus E and random load F. It is required to find the p.d.f 
of the response of node 1 (Figure 4), which is a function of 
two input random variables (load and Young's modulus).  

 
Fig. 4: 6-bar truss structure 

 
To use the MPTM-FEM technique, we must have the 
number of output random variables equal to the number of 
input random variables. So, we should introduce a fictitious 
random output, which is an arbitrary function of the random 

inputs. The choice of this function doesn't affect the p.d.f of 
the solution process (response). 
 
The MPTM-FEM is applied according to the following 
steps: 
 Models the truss using FEM, to obtain the displacement of 
the first and the second nodes. For the truss bars, the 
stiffness matrices are given by:   
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The Assembly Theorem leads, to the global equilibrium 
system: 
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Where the solution gives: 
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the displacement of the node 1: 
EA
FLu

11
6

1 = , where L is the 

bar length L=10m, A is the cross-section A=0.0015m2, E is 
the Young's modulus and F is the load. F and E are 
physically two independent random variables that have 
some probability distributions. 
Using the MPTM-FEM, we can find the p.d.f of the response 

1u  if E and F are random variables. In this problem we have 

two inputs (E,F) and one output ( 1u ). So, we introduce a 
fictitious random variable, say  Z=E, as the 2nd output. The 
transformation equations between inputs and outputs 
becomes: 
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where the domain of E,F will be completely defined by the 
distributions of E and F. 
The Jacobean of the transformation is 
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Using the PTM technique, we can get: 
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In our problem, from the independency between the material 
property and the load we can simply say: 
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Finally, the p.d.f of the response is computed from the 
following integral: 
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which is the exact p.d.f of 1u . 
Now, we let us consider the example where F and E are 
uniformly distributed in the ranges [ ]30,10  and 

]10.3,10[ 88  respectively. 
In this case, the joint probability density function of F  
and E  is:  
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The joint distribution for ( 1u , Z) is: 

           

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤≤

≤≤

=

.,0.0

10.310

,
11
180

11
60,

10.240
11

),( 88

18

1,1

Otherwise

Z
ZA

Lu
ZA
Lif

L
ZA

Zuf Zu

  
The p.d.f of the first node 1u  is:  
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Figure 5  shows the p.d.f of input and figure 6 shows the output 
variables. The result is verified by 10000 Monte-Carlo 
simulation. 
 

 
Fig. 5: PDF of input E and F 
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Fig. 6: PDF of output 1u  

 
Reliability Analysis 
Let us suppose the limit displacement is 5
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             Table 1: comparison of Pf with Monte Carlo simulation 
 Proposed 

Method 
Monte Carlo 

simulation(10000) 
Pf 0.22 0.21758 

 

 
Fig. 7: probability of failure (red region) 

 

VI. CONCLUSION 
In this paper, the reliability analysis of mechanical systems 

with parameter uncertainties has been considered. The method 
is based on the combination of the probabilistic transformation 
method and the deterministic finite element method. The 
application is given for a simple 6-bar truss, where the 
PTM-FEM gives the closed form expression of the response 
density function. To proof the performance of the proposed 
method, the result is compared with 10000 Monte Carlo 
simulations. 
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