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Abstract— The paper aims at designing a scheme for automatic 

identification of a species from its genome sequence. A set of 64 
three-tuple keywords is first generated using the four types of 
bases: A, T, C and G. These keywords are searched on N 
randomly sampled genome sequences, each of a given length 
(10,000 elements) and the frequency count for each of the 4  = 64 
keywords is performed to obtain a DNA-descriptor for each 
sample. Principal Component analysis is then employed on the 
DNA-descriptors for N sampled instances. The principal 
component analysis yields a unique feature descriptor for 
identifying the species from its genome sequence. The variance of 
the descriptors for a given genome sequence being negligible, the 
proposed scheme finds extensive applications in automatic species 
identification. An alternative approach to automatic species 
classification and identification of species using Self-Organizing 
Feature Map is also discussed in the paper. The computational 
map is trained by using the DNA-descriptors from different 
species as the training inputs.
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 The maps for different dimensions 
are constructed and analyzed for optimum performance. The 
scheme presents a novel method for identifying a species from its 
genome sequence with the help of a two dimensional map of 
neuronal clusters, where each cluster represents a particular 
species. The map is shown to provide an easier technique for 
recognition and classification of a species based on its genomic 
data. 
 

Index Terms—DNA-descriptors, Feature Descriptors, Principal 
Component Analysis (PCA), Self-Organizing Feature Map 
(SOFM).  
 

I. INTRODUCTION 
 Genomic data mining and knowledge extraction is an 
important problem in bioinformatics. Identification of a species 
from its genomic database is a challenging task. The paper 
explores a new approach to extract genomic features of a 
species from its genome sequence. Biological data mining is an 
emerging field of research and development for further 
progress in this direction [1]. Significant progress on 

DNA-string matching has been reported in the current literature 
on Bio-informatics. Among the well-known techniques of 
DNA-string matching are the Smith-Waterman algorithm [2], 
[3] for local alignment, the Needleman-Wunsch algorithm [4] 
for global alignment, Hidden Markov’s model, matrix model, 
evolutionary algorithms for multiple sequence alignment [5] 
etc. These works, though extremely valuable, have their 
limitations. The demerits include the use of complicated matrix 
algebra and dynamic programming, and the results of sequence 
matching are not free from pre-calculated threshold values. It is 
to be noted that none of the above-mentioned methods can be 
directly employed to identify the species from the structural 
signature of the genomes.  
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Rapid advances in automated DNA sequencing technology [6] 
have generated the need for statistical summarization of large 
volumes of sequence data so that efficient and effective 
statistical analysis can be carried out. The popular sequence 
alignment algorithms and techniques for estimating 
homologies [7] and mismatches among DNA sequences that 
are used for comparing sequences of relatively small sizes are 
not applicable to sequences with sizes varying between a few 
thousand base pairs to a few hundred thousand base pairs. Even 
for comparison of small sequences, the standard alignment and 
matching algorithms are known to be time consuming. There is 
a dearth of rapid and parsimonious procedures that may be 
somewhat approximate in nature yet useful in producing quick 
and significant results. 
The present paper is an attempt to fill this void. The idea is to 
make the analysis of large DNA sequences easier by 
statistically summarizing the data using dimensional reduction 
and clustering techniques, while capturing some of the 
fundamental structural information contained in the sequence 
data to help classify different species on the basis of their 
genomic data alone. 
Since the work entails processing huge amounts of incomplete 
or ambiguous data, the learning ability of artificial neural 
networks (ANNs) is utilized in this direction. The learning 
capabilities of ANNs, typically in data-rich environments, 
come in handy when discovering regularities from large 
datasets. This can be unsupervised as in clustering, or 
supervised as in classification. The connection weights and 
topology of a trained ANN are often analyzed to generate a 
mine of meaningful (comprehensible) information about the 
learned problem in the form of rules. There exist different 
ANN-based learning and rule mining strategies, with 
applications to the biological domain [8].  
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Feature extraction refers to a process whereby a data space is 
transformed into a feature space that has exactly the same 
dimension as the original data space. However the 
transformation is designed in such a way that the data set may 
be represented by a dimensionally reduced number of effective 
features and yet retains most of the intrinsic information 
content of the data; in other words the data set undergoes a 
dimensionality reduction [9]. The transformation must have a 
low variance for at least some of its components. The right 
choice is Principal Components Analysis (PCA) since it 
maximizes the rate of decrease of variance. Since the main 
issue is to achieve good data compression, while preserving as 
much information about the inputs as possible, the use of 
principal components analysis offers a useful self-learning 
procedure.  
A related issue is the representation of a data set made up of an 
aggregate of several clusters. Cluster validation is essential, 
from both the biological and statistical perspectives, in order to 
biologically validate and objectively compare the results 
generated by different clustering algorithms. In this context we 
take the assistance of a very well-known ANN model, the 
self-organizing feature map (SOFM) for clustering of the 
extracted features from genomic data. 
The self organizing feature maps are a special class of artificial 
neural networks, based on competitive learning. The neurons 
become selectively tuned to various input patterns or classes of 
input patterns in the course of a competitive learning process. A 
self-organizing map is characterized by the formation of a 
topographic map of the input patterns in which the spatial 
locations of the neurons in the lattice are indicative of intrinsic 
statistical features contained in the input patterns [10]. The 
SOFM is an established technique for classification of events. 
Kohonen’s SOFM has been used for the analysis of protein 
sequences [11], involving identification of protein families, 
aligned sequences and segments of similar secondary structure, 
in a highly visual manner. Other applications of SOFM include 
prediction of cleavage sites in proteins [12], prediction of 
beta-turns [13], classification of structural motifs [14] and 
feature extraction [15].      
To the best of the authors’ knowledge, identifying a species 
from its genomic data is an open problem. The novelty of the 
work reported in this paper is as follows.  
First, the paper takes into account frequency counts of 64 
three-lettered primitive DNA attributes in randomly selected 
samples of the genome sequences of different species (e.g., the 
bacterium Escherichia coli (E. coli) [16], Drosophila 
melanogaster [17], Saccharomyces cerevisiae (yeast) [18], Mus 
musculus (mouse), and Homo sapiens (human beings)). 
Second, to reduce the data dimension of extracted features 
(here, frequency count), principal component analysis (PCA) is 
employed on the randomly selected samples of genome 
sequence. The variance of the extracted feature vectors being 
extremely small for any randomly selected input sequence, the 
accuracy of the results in identifying the species is very high. 
Third, clustering techniques are adopted on the frequency count 
data of three species: E. coli, Yeast and Mouse. The SOFM 

algorithm is adopted for this purpose. Maps of different 
dimensions are constructed and analyzed on the basis of their 
efficiency in clustering the extracted features from genomic 
data of different species. 

II. DNA 

A. Structure 
The nucleus of a cell contains chromosomes that are made up 

of the double helical DNA molecules. The DNA consists of two 
strands, consisting of a string of four nitrogenous bases, viz., 
adenine (A), cytosine (C), guanine (G), and thymine (T). DNA 
in the human genome is arranged into 24 distinct chromosomes. 
Each chromosome contains many genes, the basic physical and 
functional units of heredity. However, genes comprise only 
about 2% of the human genome; the remainder consists of 
non-coding regions, whose functions may include providing 
chromosomal structural integrity and regulating where, when, 
and in what quantity proteins are made. The DNA is transcribed 
to produce messenger (m)-RNA, which is then translated to 
produce protein. The m-RNA is single-stranded and has a 
ribose sugar molecule.  Here exist ‘Promoter’ and 
‘Termination’ sites in a gene, responsible for the initiation and 
termination of transcription. Translation consists of mapping 
from triplets (codons) of four bases to the 20 amino acids, 
which are the building block of proteins.  

 
 

 
 

Fig. 1: Double-helical Structure of DNA showing the 
nucleotide bases. 

 

B. DNA Sequences 
Portions of the DNA sequences of the two species 

Drosophila and E. coli, as available on the web, are shown 
below. It is quite clear from them that the species, whose 
DNA-sequences they represent cannot be distinguished on the 
basis of these sequences alone. 

 



 
 

 

 
 

 
 

Fig. 2: DNA sequences of Drosophila and E. coli 

III. SELECTION OF DNA DESCRIPTORS 
There are only 4 letters in a DNA-string; naturally the 

substrings could be one lettered, two lettered, three lettered or 
four lettered. So the number of possible combinations in each 
case is 4, 42, 43, or 44. Consequently the total number of 
substrings would be 4+42+43+44, which indeed is very large. 
To keep the search time optimum and moderately large search 
keys, we considered 3-lettered search keys only. Thus, we have 
43 =64 search keys. Typical three-lettered search keys are 
AAA, AAC, AAG, AAT, ACA........ TTT. These 64 search 
keys thus generate a (1 × 64) frequency count vector, whose 
each component denotes population of one of the 64 
sub-strings or keys in a sample of the genomic data of a species. 

To illustrate what we mean by frequency count, let us take 
the help of some examples. Consider a small portion of the 
sequence like …AATCG…. It contributes a count of 1 each to 
the frequencies of occurrence of each of the 3 keywords AAT, 
ATC and TCG. Similarly for the substring …TTTTT…, we get 
a count of 3 for the frequency of the keyword TTT. Proceeding 
similarly for a large sample sequence of 10,000 bases we get 
frequencies of all the 64 keywords in the form of a frequency 
count vector of dimension (1 × 64). This (1 × 64) vector is 
called a DNA-descriptor of a given species. 

Experiments undertaken on DNA-string matching reveals 
that some typical sub-strings have a high population in the 
DNA-sequence of a given species. Naturally, this result can be 
used as a basic test criterion to determine a species from its 
DNA-sequence. Now, we have plotted the DNA-descriptor 
obtained from a sample of the species Mouse. The plot is in the 
bar-diagram format. Corresponding to each of the 64 
sub-strings, the value from the DNA-descriptor vector is 
plotted. It is to be noted that the values are normalized. 

 

 
Fig. 3: DNA-descriptor for a sample of the DNA sequence 

of Mouse in the bar-diagram form 
 

It is important to note that the frequency counts of 64 
three-element keywords in a 10,000 element string of genome 
sequence are more or less invariant with respect to the random 
sampling of the genome sequence. Naturally, our main 
emphasis of study was to determine whether the small 
difference in the counts of a given keyword in N samples is 
statistically significant. PCA provides a solution to this 
problem. First, the dimension of (N × 64) is reduced by PCA to 
(1 × 64). Second, the (minor) disparity in the feature gets 
eliminated by PCA. Since PCA is a well-known tool for data 
reduction without loss of accuracy, we claim that our results on 
feature extraction from the genome database are also free from 
loss of accuracy. 

IV. APPLICATION OF PCA IN THE PRESENT CONTEXT 
The methodology of employing PCA [19] to the given 

problem is outlined below: 
INPUT: A set of N DNA-descriptor vectors (1 × 64) 

representing the frequency counts of 64 three-tuple keywords. 
OUTPUT: A minimal feature descriptor vector sufficient to 

describe the problem without any significant loss in data. 
1. Normalization: Let the ith (1 × 64) input vector be denoted 

by  
1 2 ..... 64i i ia a a⎡ ⎤⎣ ⎦=ia                          (1) 

To get the vector normalized we use the following 
transformation: 

                                 (2) 
2. Mean adjusted data: To get the data adjusted around zero 

mean, we use the formula:  
ik ik ia a a← −

         ,i k∀                 (3) 
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obtained is called the Data Adjust: 
                                      

 
     Data Adjust             (4) 

                                                                                      
 
3. Evaluation of the covariance matrix: The covariance 

between any two vectors and  is obtained by the 
following formula: 
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Covariance matrix C for the N different (1 × 64) vectors is 
represented as follows: 
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where C is an N × N matrix. 

4. Eigenvalue Evaluation:   From the roots of the equation       
| C - λI | = 0, the eigenvalues of the covariance matrix C are 
obtained. There would be N eigenvalues of matrix C, and 
corresponding to each eigenvalue there would be eigenvectors 
each of dimension N × 1. 

5. Principal Component Evaluation: The eigenvalues are not 

the same. In fact, it turns out that the eigenvector largeλ  
corresponding to the highest eigenvalue is the Principal 
Component (N × 1) of the data set. Therefore 
 

Principal Component                                         (7) 
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6. Projection of Data Adjust along the Principal Component:  

Now, to get the feature descriptor, the following formula is 
applied: 
   Feature Descriptor = Principal ComponentT × Data Adjust 
where Principal ComponentT (1 × N) is the transpose of the 
Principal Component vector. Thus we get a Feature Descriptor 
vector of dimension 1 × 64 corresponding to N samples of the 
genome sequence database of the particular species. 

7. Computing the Mean Feature Descriptor: We calculate M 
such feature descriptors from different random samples and 
then calculate the mean of these vectors and also the variance 
vector (both 1 × 64). 

V. GEOMETRIC REPRESENTATION OF FEATURE DESCRIPTOR 
The Feature Descriptor Diagrams for different species are 

described here. We could represent the feature descriptors 

using bar diagrams, pie-charts or any other standard 
representation. However, using the polar plot we get figures 
that are compact yet distinct representations of the mean feature 
descriptor. 

As mentioned earlier, the mean feature descriptor is a 1 × 64 
vector. So to construct these diagrams 360° is divided into 64 
equal parts, corresponding to 64 keywords.  Plotting it in polar 
(r,ө) co-ordinates with r as the values of the mean feature 
descriptor vector and ө as these angles we get the feature 
descriptor diagrams. The feature descriptor diagrams are 
distinctly different from species to species. So we can readily 
detect new species and identify known species by comparing 
their feature descriptor diagrams. 

 
Fig. 4.1: Feature Descriptor Diagram for Drosophila 

 
Fig. 4.2: Feature Descriptor Diagram for E. coli 

 
Fig. 4.3: Feature Descriptor Diagram for Yeast 



 
 

 

 
Fig. 4.4: Feature Descriptor Diagram for Human 

chromosome rp11-433k2
 

If we closely observe Fig 4.1 which contains the 
diagrammatic representation of the mean feature descriptor 
vector for Drosophila we can see some distinct peaks with a 
prominent one at around 125˚. In contrast, Fig 4.2 drawn for E. 
coli has its highest peaks near 125˚ and 200˚ and smaller ones 
around 140˚, 180˚ and 300˚. Similar distinctions are clearly 
visible from the other diagrams as well. 

VI.  COMPARISON OF DNA-DESCRIPTORS AND FEATURE 
DESCRIPTORS 

The DNA-descriptors have been used to generate the feature 
descriptors for a species. Now, we present the advantages 
gained herewith. In figure 5, we have plotted the 
DNA-descriptors obtained from different samples of the same 
species Drosophila. The plots are in the bar-diagram format. 

In figure 6, we have drawn the feature descriptor vectors 
obtained by applying PCA (as described in section 4) for 
different sets of samples for the same species. These diagrams 
are in the polar plot format as described in the previous section. 

 
 

 
     
 
 
 
 
 

 
 

 
Fig. 5: Frequency count data plotted for two samples of the 

species Drosophila 
 

 
 

 
 

 
Fig. 6: Feature Descriptor vectors drawn in the form of Feature 
Descriptor diagrams for two different sets of DNA-descriptors 

from the DNA sequence of the species Drosophila 



 
 

 

 
Fig. 7: Polar plot of DNA-descriptor 

 
In figure 7, we have plotted a sample DNA-descriptor in the 

polar form. It is quite evident from the figures that the feature 
descriptors provide a more unique identifier for the species 
from its genomic data. Thus we have certainly gained an 
advantage by incorporating the data reduction tool PCA into 
our search for an effective identifier for a species. From the 
above figures it is clear that there is a significant increase in 
accuracy after applying PCA to the frequency count data. It has 
been found out that the DNA-descriptors obtained from 
different samples of the same species contain wide disparities. 
Hence their diagrammatic representations alone cannot 
represent the species. 

But the Feature Descriptors obtained after processing a 
different set of DNA-descriptors are unique and present 
absolutely no significant disparities. Hence the Feature 
Descriptor Diagrams can be used as the unique representation 
of the genomic characteristics of the different species. 

As a further justification of the uniqueness of the Feature 
Descriptor Diagrams, we have plotted in figure 8, the mean 
and the variance vectors (both 1 × 64) obtained from the 
different Feature Descriptor vectors. 

 
 

 

 
Fig. 8: Mean and Variance of Feature Descriptors 

The variance (almost zero) of the descriptors for a given 
genome sequence being negligible, the proposed scheme finds 
extensive applications in automatic species identification. 

VII. SOME MORE FEATURE DESCRIPTORS BASED ON 
MITOCHONDRIAL GENOMES  

Now, that we have proved that the Feature Descriptors are 

unique, irrespective of the samples taken from the entire 
genome sequence, we shall henceforth work with only the 
small portion of the whole genome sequence of different 
species which correspond to their mitochondria. The 
mitochondria are those tiny modules present in every living 
cell, which act as the energy centre of the cell. 

Due to their smaller size, the Feature Descriptors from the 
mitochondrial genomes are obtained by more rapid 
computational procedures. We have plotted below the feature 
Descriptors of different species obtained from their 
mitochondrial genomes. 

 
Fig. 9: Feature Descriptor Diagram for Human 

 
Fig. 10: Feature Descriptor Diagram for Orang-utan 

 
Fig. 11: Feature Descriptor Diagram for Gorilla 

 



 
 

 

 
Fig. 12: Feature Descriptor Diagram for Chimpanzee 

 

 
Fig. 13: Feature Descriptor Diagram for Pygmy Chimpanzee

 
Fig. 14: Feature Descriptor Diagram for Cat 

 
 
On seeing these diagrams, we can correctly conclude that the 

species Human, Orang-utan, Gorilla, Chimpanzee and Pygmy 
Chimpanzee have many similarities in their genome 
characteristics which can be translated to a similarity in their 
biological characteristics. However it is also quite clear from 
these diagrams that these species have some distinctions in their 
genomic characteristics. Also, a species like Cat which has 
different characteristics has a vividly distinct Feature 
Descriptor diagram. 

 
 

VIII. TOPOLOGICAL CLUSTERING OF DNA-DESCRIPTORS BY 
SOFM 

However there remains the cumbersome task of applying the 
abovementioned process to the genomic data of all the species 
to get figures corresponding to all the species. As an easier 
approach to automatic species identification, we present in this 
section a topological clustering method which will give us a 
single feature map whose different portions contain mappings 
from the extracted features of different species. 

In this section, we make an attempt to map the 
DNA-descriptors onto a 2D array of neurons by the 
well-known Self-organizing Feature Map algorithm. Our main 
interest is to note whether DNA-descriptors of the same species 
occupy neighborhood neuronal positions and species having 
close resemblances in their DNA structure form neighborhood 
clusters. 

To verify the above, we considered 36 vectors of each of the 
following 3 species: Mouse, Yeast and E. coli. Naturally, we 
have 36 × 3 = 108 vectors to be mapped onto the 2D array of 
size (k × k). To perform the experiment, we considered (6 × 6) 
dimensional space for the 2D array of neurons. Later the maps 
were created for different dimensions ranging from 4 to 11. 
Training principles and the algorithm are outlined below. 

A. Training the map 
INPUT: A set of 108 DNA-descriptor vectors each of size    

(1×64) obtained from 36 samples from each of the 
abovementioned 3 species. The vectors are in normalized form. 

OUTPUT: Clustering of the DNA-Descriptors over a 2D 
array of neurons. 

 
Normalization: Let the ith (1 × 64) input vector be denoted by  

1 2 64.....i i ia a a⎡ ⎤⎣ ⎦=ia
 

To get the vector normalized we use the following 
transformation: 

 
Creation of Neuron Field: The neuron field of dimension (k 

× k) is constructed. Each neuron has a weight vector of (1 × 64) 
dimension. Initially, k is chosen as 6 and later the process was 
repeated for different values ranging form 4 to 11. 

Initialization: All the k2 neurons are initialized with random 
values ranging between 0 and 1. While initializing special care 
should be exercised to ensure that two neurons should not have 
identical weight vectors. 

Choosing the value of learning rate constant η: In the 
beginning, we keep the value of η (eta), the learning constant, 
high (0.9) and gradually decrease it with each epoch until it 
reaches a very small value and thereafter η was kept constant at 
0.005. The equation which governs the decay of η is given as: 

0.9 (1 )epochη
τ

= × −
 for  epoch τ<  

where τ is a constant less than maximum value of epoch. 



 
 

 

Choosing the size of neighborhood: Initially the 
neighborhood includes the entire neuronal space and is 
gradually decreased until it finally contains only the nearest 
neighbors of the winning neuron. Here the SOFM algorithm 
uses a neighborhood function which is convex, so as to avoid 
the occurrence of metastable states [20] which represent 
topological defects in the configuration of the feature map. 

B. Phases of Training Process 
We may decompose the adaptation of the synaptic weights in 

the network into two phases [21], [22]: 
a) Self-organizing or Ordering Phase: It is during this first 

phase of the adaptive process that the topological ordering of 
the weight vectors takes place. In this phase, η is provided with 
a high value (0.9) and the neighborhood is defined large 
enough so that all the neurons are trained initially when any 
neuron wins for a particular data input. The neighborhood size 
also decreases in subsequent epochs. 

b) Convergence Phase:  The second phase of the adaptive 
process is needed to fine tune the feature map and therefore 
provide an accurate statistical quantification of the input space. 
This phase starts when ordering of similar types of neurons is 
complete. Then tuning is done to let the best neuron be trained 
most. In this phase, both eta and the neighborhood size are kept 
at a constant minimum value. 

C. Algorithm 
The algorithm for creation of the SOFM is as follows:  

Begin 

Initialize maxepoch 

For epoch = 1 to maxepoch 

  For each input data 

          Compare the input vector with each 
neuronal weight vector by 
determining the Euclidean distance 
between them. The Euclidean distance 

jid  between the ith input data vector 
ix  and the jth neuron’s weight vector 

 is computed using the following 
formula:  

jw

64
2

1
(ji ik jk

k
d x w=

=

−∑ )        (8) 

The neuron with the least distance is 
termed as the winner for that input. 
Then the winning neuron and the 
neighboring neurons (the size of the 
neighborhood depends on the epoch 
number according to the neighborhood 
function) are trained according to 

the following formula, where η is the 
learning constant: 

( )ikjk jk jkw w x wη= + × −          (9) 

 End For 

End For 

End. 

D.  Representation of the Map 
 After the whole training process is complete, the SOFM is 

prepared. It is represented diagrammatically by a 2 D array of 
circles, each circle representing a neuron. The circles are 
shaded differently according to whether they were the winner 
for E. coli, Yeast or Mouse. 

E. Cluster Centre 
After mapping all the 108 input data vectors onto the 2 D 

array of neurons, it is noted that the inputs from the same 
species are mapped onto neurons occupying neighboring 
positions, thus forming different clusters for different species. 
Now we define the cluster center as the neuron belonging to a 
particular cluster which has emerged as the winner the 
maximum number of times, for that particular species.  

IX. SIMULATION RESULTS  
We plot the trained SOFM for k = 6 below. The neurons 

which have won for Mouse, Yeast and E. coli are shaded 
differently. The blank circles have not won a single time for any 
species. We can clearly see that a distinct cluster is formed for 
each species. 

 

 
 



 
 

 

 
Fig. 15: Trained SOFM showing different clusters and the 

neuron winning for Mouse 
 

Now we take a random sequence from the genome sequence 
of the species Mouse and perform frequency count on it. Using 
this vector as an input, the distance between this input vector 
and the weights of the neurons are calculated. The winner for 
this input, indicated by the filled circle in the above diagram, is 
found to be a neuron from the map belonging to the cluster for 
the species Mouse. 

The above method offers a scheme for using the SOFM for 
automatic species identification. Whenever a new sequence is 
obtained, its DNA-descriptor is computed and the distance 
between the new input and existing neurons is calculated. The 
winning neuron will declare to which species it belongs or if it 
is of a new species, then to which phylum the species belongs. 

The following figures depict the maps obtained for different 
values of the map dimension from 5 to 10. If we chose the map 
dimension to be less than 4, the map becomes too small to 
distinguish between clusters of the 3 species. If it is greater than 
11, we have to increase the number of inputs proportionately, 
either by increasing the number of species for which the map is 
constructed or the number of samples per species. They are 
plotted and compared for optimization of the map dimension. 

 
Fig. 16: The SOFMs for map dimension varying from 5 to 
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X. INTERPRETATION OF THE RESULTS AND PERFORMANCE 
EVALUATION  

We can see that, as the size of the map increases, the cluster 
corresponding to each species becomes more localized and 
concentrated. The topological property of a self-organizing 
feature map may be assessed quantitatively in different ways. 
One such quantitative measure, called the topographic product 
[23], may be used to compare the faithful behavior of different 
feature maps pertaining to different dimensionalities. However, 
the measure is quantitative only when the dimension of the 
lattice matches that of the input space [9]. Hence, there arose 
the need to define a new performance index. 

To estimate how efficient the map is, we first find out the 
cluster center for each species in each map and then find the 
Euclidian distance of the other neurons belonging to that cluster 
from their cluster center. Now the mean and variance of the 
distance corresponding to each cluster are computed. The 
following figure contains a plot of the mean distance along with 
a tolerance margin (depicted by mean ± variance) for different 
values of the map dimension for the same species. This 
parameter i.e. the mean distance of the cluster members from 
the cluster center is defined as the error and is used as a figure 
of merit for the SOFM. 

As is clearly visible from the figure 17, the error decreases as 
map dimension increases. This signifies that the cluster 
becomes more concentrated in a smaller region and the neurons 
which are a part of the cluster emerge as the winner more 
number of times as the map dimension is increased. This is also 
validated by the visual representations of the maps shown in 
Figure 16. 

 
Fig. 17: Error vs. SOFM dimension 

 



 
 

 

XI. CONCLUSIONS  
Bioinformatics is a new area of science where a combination 

of statistics, molecular biology, and computational methods is 
used for analyzing and processing biological information like 
gene, DNA, RNA, and proteins. However no significant work 
has been done towards exploiting the fact that the genomic data 
of a species holds the structural signature of the species, hence 
can be used for identification and classification of the species. 
This paper aims to fill this gap. 

To our knowledge, this is the first work of its kind to extract 
information from complete genome sequences and to 
distinguish between species by feature descriptor diagrams. 
Since the work entails processing huge amounts of genomic 
data, the learning ability of neural networks is utilized in this 
direction. 

Since codons in a DNA consist of triplets of the 4 bases, 
hence the choice of 3-lettered sub-strings conveys some 
significance, as the codons are translated into amino acids, 
which are the building blocks of the proteins with which a 
species’ body is constructed. 

The micro array of DNA sequences for a species follows a 
repetitive pattern of nucleotide bases. This paper emphasizes 
the above statement by representing the micro array sequence 
by a specialized feature descriptor vector. The mapping of the 
DNA arrays to feature descriptors need not be unique. In fact; 
any type of nonlinear mapping that compresses the large DNA 
array to a vector of very small dimension could be employed to 
correlate the structural topology of Feature Descriptor with a 
given species. 

In this process we have used PCA to reduce the large 
dimensions of genome sequence data without loss of accuracy. 
If only the frequency count is plotted then we do get some 
difference from species to species but it is not enough to 
distinguish between them. This is where PCA comes in. When 
PCA is applied to the original data we get enough differences 
between the feature descriptor diagrams of different species 
that enable us to tell one species from another with the help of 
these diagrams. Moreover when feature descriptor vectors for 
similar species are calculated, they are effective in bringing out 
the similarities in the species though they still retain their 
individual distinguishing features. Thus we claim that by 
constructing feature descriptor diagrams for each species we 
get an effective identifier for the species. However, we still 
need a quicker approach for automatic species identification. 
Here, we utilize the leaning and clustering abilities of 
computational maps. 

After mapping all the 108 input data vectors onto the 2 D 
array of neurons, it is noted that data from the same species is 
mapped onto neurons occupying neighboring positions. Hence, 
it can be inferred that different vectors computed from different 
samples of the genomic data of a species are close in many 
respects and hence are mapped onto neighboring spaces on the 
map, thus forming separate clusters for different species. It can 
also be claimed that species which are close in characteristics 
will have similar DNA-descriptors and hence the clusters 

corresponding to similar species will lie in neighboring 
positions. Hence, if clustering techniques are applied to 
DNA-descriptors of a large number of species we will see that 
species which are similar in many respects e.g. Human and 
Gorilla will be forming sub-clusters within a super-cluster 
belonging to their families. 

Also the SOFM can help us demonstrate homology between 
new sequences and existing phyla. Whenever a new sequence 
is obtained, its DNA-descriptor is computed and the distance 
between the new input and existing neurons is calculated. The 
winning neuron will declare to which species it belongs or if it 
is of a new species, then to which phylum the species belongs. 

Currently, works in Bioinformatics and biological data 
mining are aimed at discovering the parts of the DNA sequence 
which translate into proteins which lead to the development of 
different parts of the body i.e. to identify the genes and their 
functionalities. Another trend is to predict the structures of the 
proteins and their various conformations. No work has been 
directed towards utilizing the uniqueness of and similarities 
between DNA sequences of different species to identify and 
distinguish species. Hence the work described in this paper is a 
pioneer in this regard and carries possibilities for further 
enhancement in the direction of automatic species 
identification from genomic data. 
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