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A Novel Method for the Design of Takagi-Sugeno Fuzzy Controllers
with Stability Analysis using Genetic Algorithm

R. Rajesh * and M.R. Kaimal T

Abstract

This paper presents a reliable method for the evolu-
tion of Takagi-Sugeno fuzzy controller rules with sta-
bility analysis using genetic algorithm. This method
does not have the burden of involving n? terms of
common positive definite matrix in the chromosomes.
This is achieved by using a fitness function involv-
ing absolute mean square error (AMSE) of state vari-
ables, the status of feasibility of LMI (FLMI) and
the number of stable subsystems. Nonlinear bench-
marking problems like inverted pendulum and cart
pole balancing problems are used for simulation study.
The performance and efficiency of the proposed design
method is good as can be observed from the simula-
tion examples.

Keywords:  fuzzy-model, fuzzy-controller, genetic-
algorithm, stability-analysis, linear-matriz-inequality

1 Introduction

Design and stability analysis of Takagi-Sugeno fuzzy
controller has been a hot research topic since the
first paper based on Takagi-Sugeno-Kang (TSK) fuzzy
plant model [1]. Several approaches have been pro-
posed for the design of consequent part (feedback
gains) of Takagi-Sugeno fuzzy controllers and its sta-
bility analysis.

The most important works among which are the de-
sign of output feedback controllers [2], output sta-
bilization of Takagi-Sugeno fuzzy systems [3], paral-
lel distributed compensation [4, 5], an LMI approach
with pole-placement constraint [6], quadratic stability
conditions & H, control design [7], stability issues [8],
generalization of stability criterion [9], relaxed LMI
based design [10], stability analysis & systematic de-
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sign [11], and, a method of modeling which incorpo-
rates input variable selecting and estimating conse-
quent part in different stages suggested by Hadjili &
et.al.[12]. Genetic algorithm has also been used in the
design of T-S fuzzy controllers [13, 14].

Most of the design procedures of Takagi-Sugeno fuzzy
controllers described above fall into one of the follow-
ing categories: (i) identification of consequent part,
(ii) identifying antecedent part and consequent part
in stages, and (iii) stability analysis. Hence there is a
need of simultaneous design and stability analysis of
Takagi-Sugeno fuzzy controllers.

Recently, genetic algorithm design of feedback gain
involving stability analysis was proposed by Lam et.
al. [15] in which each chromosome includes a matrix
of size n X n in order to search for a common posi-
tive stability matrix in addition to the feedback gains.
This paper addresses the evolution of Takagi-Sugeno
fuzzy controller with stability analysis using genetic
algorithm which does not have burden of including
n? terms of common positive definite matrix and is
different from the design methods specified by Lam
et. al. [15].

This paper is organized as follows. Section 2 presents
a general review of T-S fuzzy models and model based
controller. Section 3 presents the proposed method
for the design of Takagi-Sugeno fuzzy controllers with
stability analysis using GA. Simulations and results
based on standard benchmarking problem of inverted
pendulum system and cart pole balancing problem are
presented in section 4. Section 5 deals with conclu-
sion.

2 Takagi-Sugeno Fuzzy Models and
Model Based Fuzzy Controllers - A
Review

Consider the nonlinear dynamical system

& = A(z) + B(z)u (1)



Takagi-Sugeno (TS) fuzzy system of system (1) is
formed by approximating (1) in each of its local re-
gions and the ith rule is of the form.

R,’ : IF Tl is Mli -+-and Tn is Mnl
THEN z = Alllt + Biu (2)

where (A;, B;) is the i* local linear model.

The possibility of firing the i** rule is given by the
product of all membership functions associated with
the i*" rule and is ;(x) = [T}, Mji(x;) where Mj;
is the membership function of z; in the i** rule. The
membership functions can be either triangular, bell-
shaped or any other membership function described
in the literature.

By using center of gravity method for defuzzification,
TSFS can be represented as:

i= Z hi(z)(A; = + B u) (3)

where h;(z) = <2

o M (@)

The open loop system corresponding to (3) is

i= Z hi(x) Az (4)

Theorem 1 [16] The equilibrium of a fuzzy system
(4) is asymptotically stable in the large if there exists
a common positive definite matriz P such that

ATP+PA; <0 i=1,2,---,7 ()

It is obvious that a necessary condition for the ex-
istence of a common symmetric positive definite P
satisfying (5) is that each A; be asymptotically sta-
ble; that is, the eigenvalues of each A; be in the open
left-hand complex plane.

The concept of parallel distributed compensation is
utilized to design fuzzy controllers to stabilize fuzzy
system (3). The idea is to design a compensator for
each rule of the fuzzy model using linear controller
design techniques. The i** rule of the Takagi-Sugeno
Fuzzy Controller (TSFC) is given by:

Ri . IF Tl is Mli; .-+ and Tn is Mnl
THEN u; = —K; « (6)

where, u; is the control force required for the it local
linear model.

Hence the overall TSFC is
u=- Z hi(z)K; (7

i=1
Substituting (7) into the fuzzy system (3), we obtain

B=) Y hi@hi(@) {4 - BiKj}e  (8)

i=1 j=1

Therefore the following sufficient condition is ob-
tained.

Theorem 2 [5] The equilibrium of a fuzzy control
system (8) [i.e., Fuzzy controller (7)+ Fuzzy Model
(3)] is asymptotically stable in the large if there exists
a common positive definite matriz P such that the fol-
lowing conditions are satisfied:

{Az—BzKJ}TP+P{Az—BzKJ}<O (9)
ivjzlvza"'vr

It is obvious that a necessary condition for the exis-
tence of a common symmetric positive definite P sat-
isfying (9) is that each A; — B;K; be asymptotically
stable; that is, the eigenvalues of each A; — B;K; be
in the open left-hand complex plane.

3 Genetic Algorithmic Model for the
Design of T-S Fuzzy Controllers
with Stability

GAs are derivative-free search algorithms, based on
natural genetics, that provide robust search capabili-
ties in complex spaces, and thereby offer a valid ap-
proach to problems requiring efficient and effective
search process [17, 18]. Genetic learning processes
cover different levels of complexity according to struc-
tural changes produced by the algorithm [19], from
the simplest case of parameter optimization to the
highest level of complexity of learning the rule set of
a rule based system.

A genetic algorithm with binary chromosome, shuf-
fle crossover, binary mutation, and selection with
stochastic universal sampling is used for finding the
consequent values of rules.

3.1 Structure of a chromosome

Let there be r number of rules. Each gene contains
the gain values (consequent parameters), i.e., the it"
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Figure 1: Hierarchical Structure of a Chromosome

gene contains the consequent gains of i** rule namely
K; = ki kio -+ kin]- The hierarchical structure of a
chromosome is shown in figure 1, where Ky, Ks, ---,
K, represents the consequent gain vectors appearing
in the consequent part of the r** rules.

3.2 Fitness function

A fitness function involving absolute mean square er-
ror (AMSE) of state variables, status of feasibility of
LMI (FLMI) and the number of stable subsystems
(nos) is used.

func(FLMI, nos)
AMSE

fit = (10)

The func must be chosen in such a way that, its value

increases with the increase in the value of no; and
FLMI.

4 Simulation Results
4.1 Example 1 - Inverted Pendulum

A bench marking problem of inverted pendulum [4]
is used for the study. The dynamic equation of the
inverted pendulum is given by

i = filz)z + fol(x)u (11)
where
_ g—amlx3cos(z;) (sin(zy)
fil@) = 41/3 — aml cos®(x1) ( x >
fol) = a cos(x)

~ 41/3 — aml cos?(x)

where z = [2; 23]7 = [0 0]7, 0 is the angular dis-
placement of the pendulum, 6 is the angular veloc-
ity of the pendulum, g = 9.8m/s? is the acceleration
due to gravity, m = 2Kg is the mass of the pendu-
lum, M = 8Kg is the mass of the cart, 21 = 1m is
the length of the pendulum, u is the force applied

to the cart and a = 1/(m + M). The range of ¢
and 6 is given by € € [Omin Omaz] = [*f;” 2;—;] and

6 € [Bmin Omaz] = [-5 5]

The objective of this application example is to design
a fuzzy controller to close the feedback loop of (11)
such that 8 = 0 at steady state.

The nonlinear plant is represented by a fuzzy model
with four fuzzy rules where the i** rule is given by

Rule i : If fi(z) is M{ AND fy(z) is M.
THEN & = A;z + B;u (12)

for i = 1,2,3,4 so that the system dynamics is de-

scribed by
4

&= Z w;(Aiz + Bju) (13)

i=1

where

0 1
As = Ay =
3 = A4 = |: flmaz 0 :|
B
=m0
B, —
T [ J2man }
imin =95 flme. =18

fomin = —0.1765,  fo,,. = —0.0052

The membership functions M}, M2, M}, M}, M3,
M3, M3, and My are shown in figure 2.

Hence the controller rules are

Rule i : If fi(x) is M} AND fy(x) is M.
THEN u = -K; = (14)

Genetic algorithm with population size = 20, binary
chromosome with length = 80 bits (10 bits x 8 genes),
crossover rate = 0.7 and mutation rate = 1/80 is used
to find out the values of K;s. The fitness function
used is

9—sign(tmin)+nos
f= AMSE

where sign(tmin) is the sign of minimized t obtained
by solving the LMI conditions

(15)

(A; — BiK;)' P+ P(A4; - B;K;) <t xI  (16)
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Figure 2: Plot of membership function. M} = M? = MF(Is = -inf, c = 9, rs = 9), M7 = M} = MF(Is =9, c =
18, 1s = inf), Mj = M3 = MF(ls = -inf, ¢ = -0.1765, rs = 0.1713), MJ = M} = MF(Is = 0.1713, ¢ = -0.0052,
rs = inf), where Is, c, rs represents left spread, center right spread respectively.

using the feasp function of MATLAB (remember t
must be negative for feasibility), nos is the number of
stable subsystems (A4; — B;K;) and

10022 + =% + 200(300 — 100t)
300

AMSE= )
t=0.01:0.01:3

(17)

The model is simulated using genetic algorithm for
100 generations. The simulations are carried out on
Celeron 2GHz machine using MATLAB 6. To simu-
late the inverted pendulum dynamics, a fourth-order
Runge-Kutta method (ode45 [20]) is used with an in-
tegration time step size of 0.01 sec. Observation of the
system states were made every iteration (integration
step). The controllers are assumed to be continuous,
therefore, the sampling time of the controller was set
equal to the integration time step size. Figure 3 shows
the plot of maximum and average fitness value ob-
tained in each generation. Figure 4 shows the plot of
the number of chromosomes satisfying stability con-
ditions in each generation. The increasing maximum
fitness, the increasing average fitness and their con-
vergence observed from the figure clearly indicate the
convergence of the proposed method. The increase in
the number of stable chromosomes within 12 genera-
tions shows the efficiency of the proposed method in
achieving stable chromosomes.

The values of K; obtained after 100 generations are
K, = [-4231.7 — 558.7], K» = [-4500 — 281.5],
K35 =[-4165.7 —417.9], Ky = [-4486.8 — 167.2].

The control system is simulated with the four rules
for several initial conditions. The results are plotted
for the initial conditions of 8 = 85°, 8§ = 60°, and

60 = 25°. Figure 5 & 6 show the plot of # and f
respectively. It is clear from the figures that the angle
of the pendulum (6) balances within 1 seconds.

Sudden external disturbances are applied, (i) to the
force with magnitude 500 Newton at 2 sec., (ii) to the
angle (¢) with magnitude 25 deg at 5 sec., and (iii) to
the angular velocity (¢) with magnitude -200 deg/sec
at 8 sec. In all the three cases it can be seen from the
figures of the response of 6 (Figure 9) and f (Figure
10) that the angle of the pendulum balances. White
Gaussian noise with signal to noise ratio of 25dB is
added to the pendulum angle 6 before giving to the
fuzzy controller and the response of pendulum angle
and force are plotted respectively in Figures 7 and 8.
It can be seen from the figures that the pendulum
balances with small oscillations even in the presence
of noise.

The simulation tests reveal that the fuzzy controller
not only successfully balances the pendulum but also
does well under small perturbations on the controlled
system. The fuzzy controller balances the pendulum
with small oscillations even in the presence of noise in
the measured state variables.

4.2 Example 2 - Cart pole balancing
problem

A bench marking control problem namely the cart
pole balancing (inverted pendulum with 4 variables)
[21] is used for the study. The dynamic equation of
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Figure 9: Response of @ for initial angle 85 deg. Sudden external disturbances are applied, to the force with
magnitude 500 Newton at 2 sec., to the angle () with magnitude 25 deg at 5 sec., and to the angular velocity
(@) with magnitude -200 deg/sec at 8 sec.
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Figure 10: Control force for initial angle 85 deg. Sudden external disturbances are applied, to the force with
magnitude 500 Newton at 2 sec., to the angle () with magnitude 25 deg at 5 sec., and to the angular velocity
(#) with magnitude -200 deg/sec at 8 sec.
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Figure 7: Response of 8 for initial angle 85 deg. White
Gaussian noise with signal to noise ratio of 25dB is
added to the pendulum angle 6 before giving to the

fuzzy controller.
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Figure 8: Control force for initial angle 85 deg. White
Gaussian noise with signal to noise ratio of 25dB is
added to the pendulum angle 6 before giving to the

fuzzy controller.



the cart pole is given by

9 0100 6 0
61 | AL 000 6 f2
s 1=l 0 o001z 0 [®08
T fs 0 0 O T fa
where
PR amlf? cos(9) [ sin(6)
b 1(4/3 — am cos?(0)) 0
— [
f o= a cos(f)

1(4/3 — am cos?(9))
~ am(416? — 3gcos(f)) (sin(f)
s = 4 — 3ma cos?(6) ( 6 )
4a
4 — 3macos?(6)

fa =

and ¢ is the angular displacement of the pendulum,
0 is the angular velocity of the pendulum, z is the
position of the cart, & is the velocity of the cart, g =
9.8m/s? is the acceleration due to gravity, m = 2Kg
is the mass of the pendulum, M = 8K g is the mass of
the cart, 2l = 1m is the length of the pendulum, v is
the force applied to the cart and a = 1/(m+ M). The
range of § and 4 is given by 8 € [Omin Omaz] = [FF 5]
and 6 € [Omin Omaz] =[5 5]. Let © = [0 6 = i].

The objective of this application example is to design

a fuzzy controller to close the feedback loop of the
cart pole system such that 6 = 0 at steady state.

The nonlinear plant is represented by a fuzzy model
with 16 fuzzy rules where the it* rule is given by
Rule i : If fi(z) is M} and fo(z) is M4
and f3(z) is M& and fq(z) is M}

fori = 1,2,--+,
described by

16 so that the system dynamics is

& =Y wi(Aiz + Biu) (19)

i=1

where

Aj=Ay=Ay=A5 = | S
L f3min

A=Ay =Ar=Ay = | Towe
| f3ae

OO OO OO OO
O OO0 O OO

(@)
OO O R OOO -

0 1 0 0
Ag =Apo=A13 =414 = flg” 8 8 2
f3min 0 0 0]
0 1 0 0]
An =Ap =A4A;5=416 = flg” 8 8 2
| f3pee 00 0 ]
Bi=B;=By=By = [0fo,.. 0fi.]"
By=B;=Big=Biz = [0 fo.0 0 far..]”
Bs=B;=Bi3=Biz5 = [0fs,..0f1.]"
Be=Bs=Biu=Big = [0 fa.. 0 fini]”

fi,... =125660  f; . =17.2941

fa,. = —0.1765  fo = —0.0779

f3,... =—17294  f3 = —0.5456
fa,.. =0.1039  fy .. =0.1176

The membership functions are shown in figure 11
where

M} =M fori=1,---,8
Mi=M} fori=9,---,16
Mi=M$  fori=1,---,4,9,---,12
Mi=M) fori=5,---,813,---,16

Mi = Mg fori=1,2,5,6,9,10,13,14

Mi=M)  fori=34,7,811,12,15,16
M} = M§ fori=1,3,5,7,9,11,13,15
Mi=M)  fori=24,68,10,12, 14,16

Hence the controller rules are

Rule i : If fi(x) is M{ and f(z) is M
and f3(z) is M$ and fq(z) is M}
THEN u = —K; z

Genetic algorithm with population size = 25, real
value chromosome with length = 64 (16 rules x 4
coefficients), crossover rate = 0.7 and mutation rate
= 1/64 is used to find out the values of K;s. The
fitness function used is

100 x (—sign(tmin) + nos)
AMSE

where sign(tmin) is the sign of minimized t obtained
by solving the LMI conditions

f= (20)

(Az — BzKJ)TP + P(AZ — BZKJ) <txlI (21)
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Figure 11: Plot of membership function. M@ = MF(ls = -inf, ¢ = 12.5660, rs = 4.7281), M{ = MF(ls = 4.7281,
¢ = 17.2941, 1s = inf), M¢ = MF(Is = -inf, ¢ = -0.1765, rs = 0.0986), M? = MF(ls = 0.0986, ¢ = -0.0779, s =
inf), M% = MF(Is = -inf, ¢ = -1.7204, rs = 1.1838), M? = MF(Is = 1.1838, ¢ = -0.5456, rs = inf), M§ = MF(Is =
-inf, ¢ = 0.1039, rs = 0.0137), M} = MF(Is = 0.0137, ¢ = 0.1176, rs = inf), where Is, c, rs represents left spread,

center and right spread respectively.

using the feasp function of MATLAB (remember t
must be negative for feasibility), nos is the number of
stable subsystems (4; — B;K;) and

10022 + 22 + 100000(25 — t)

AMSE = 2500

t=0.01:0.01:25

(22)

The model is simulated using genetic algorithm for
100 generations. The simulations are carried out
on Celeron 2GHz machine using MATLAB 6. To
simulate the dynamics of the system, a fourth-order
Runge-Kutta method (ode45 [20]) is used with an in-
tegration time step size of 0.01 sec. Observation of
the system states were made every iteration (integra-
tion step). The controllers are assumed to be contin-
uous, therefore, the sampling time of the controller
was set equal to the integration time step size. Fig-
ure 12 shows the plot of maximum and average fitness
value obtained in each generation. Upto 700 gener-
ations, the fitness values increments very slowly (not
clearly visible in the picture) due to the unstable chro-
mosomes. The fitness value shows a sudden increase
when some of the chromosomes satisfy stability condi-
tions. Figure 13 shows the plot of the number of chro-
mosomes satisfying stability conditions in each gener-
ation. The increasing maximum fitness, the increasing
average fitness and their convergence observed from
the figure clearly indicates the convergence achieved
in the proposed method. The increase in the num-
ber of stable chromosomes with generation shows the
efficiency of the proposed method in achieving stable
chromosomes.

K, = [[973.5600, -546.8342, -52.5238, -112.4410]
K> = [-987.6997, -843.1480, -10.0466, -42.8366]
K3 = [-968.5482, -363.9544, -27.3352, -182.7170]
K, = [-969.1127, -677.6675, -59.6569, -323.5316]
[-094.2449, -407.0647, -2.2464, -118.9776]

K5 =

K¢ = [-925.0248, -828.7409, -33.9427, -86.3122]
K7 = [-997.4092, -532.1673, -101.5708, -253.3797]
Kg = [-989.1540, -843.4428, -23.8058, -425.6207]
Ko = [-971.0495, -544.2801, -1.6111, -30.4194]

Ko = [-953.6995, -207.0134, -0.7932, -9.1531]
K11 = [-950.6810, -168.0409, -27.0666, -66.1644]

K1 = [-968.8456, -865.8883, -0.5597, -412.7820]
K13 = [-968.3291, -767.5462, -14.0625, -104.7118]
K14 = [-968.0909, -471.0025, -8.9932, -19.4069]
K15 = [-995.9967, -793.1754, -79.5778, -338.6939)
Ky = [-898.0100, -762.1072, -13.9839, -375.7827]

Table 1: The values of K; obtained after 1000 gener-
ations

The values of K; obtained after 1000 generations are
given in Table 1.

The control system is simulated with the sixteen rules
for several initial conditions. The results are plotted
for the initial conditions of § = 60°, and 8 = 25°.
Figure 14, 15, & 16 show the plot of 8, z, and f
respectively. It is clear from the figures that the angle
of the pendulum () balances within 4 seconds. The
cart position (x) also attains zero after 150 seconds.

Sudden external disturbances are applied, (i) to the
force with magnitude 500 Newton at 4 sec., (ii) to



x 10
45

35

—- max fit
3L — avg fit

fitness
~
T

~05 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

generations

Figure 12: Plot of maximum fitness and average fit-
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the angle (f) with magnitude 30 deg at 7 sec., and
(iii) to the angular velocity (f) with magnitude -100
deg/sec at 10 sec. In all the three cases it can be seen
from the figures of the response of 6 (Figure 20), x
(Figure 21), and f (Figure 22) that the angle of the
pendulum balances and attains steady state. White
Gaussian noise with signal to noise ratio of 35dB is
added to the pendulum angle 6 before giving to the
fuzzy controller and the response of pendulum angle,
cart position, and force are plotted respectively in fig-
ures 17, 18, and 19. It can be seen from the figures
that the pole balances with small oscillations in the
presence of noise.

The simulation tests reveal that the fuzzy controller
not only successfully balances the pendulum but also
does well under some perturbations on the controlled
system. The fuzzy controller balances the pole with
small oscillations even in the presence of noise in the
measured state variables.

5 Conclusion

A new algorithm has been proposed for the design of
consequent parts of Takagi-Sugeno fuzzy controllers
with guaranteed stability. The simulation results of
inverted pendulum and cart-pole balancing examples
show that the proposed method is effective and effi-
cient.

The advantages of the proposed methods are summa-
rized below.
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Figure 13: Plot of no. of stable chromosomes in each
generation

1. It finds optimal consequent parts of Takagi-
Sugeno fuzzy controllers.

2. No need to include a matrix of size n x n in the
chromosome for searching a common positive def-
inite matrix as in Lam et. al. [15].

3. Ensures stability of Takagi-Sugeno fuzzy con-
troller by including a status term for stability in
the fitness function.
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to the fuzzy controller.
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Figure 18: Response of x for initial angle 60 deg.
White Gaussian noise with signal to noise ratio of
35dB is added to the pendulum angle (¢) before giving
to the fuzzy controller.
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Figure 19: Control force for initial angle 60 deg.
White Gaussian noise with signal to noise ratio of
35dB is added to the pendulum angle () before giving
to the fuzzy controller.
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Figure 20: Response of 4 for initial angle 60 deg. Sud-
den external disturbances are applied, to the force
with magnitude 500 Newton at 4 sec., to the angle
(#) with magnitude 30 deg at 7 sec., and to the an-
gular velocity (f) with magnitude -100 deg/sec at 10
sec.
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Figure 21: Response of x for initial angle 60 deg. Sud-
den external disturbances are applied, to the force
with magnitude 500 Newton at 4 sec., to the angle
(#) with magnitude 30 deg at 7 sec., and to the an-
gular velocity (f) with magnitude -100 deg/sec at 10
sec.
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Figure 22: Control force for initial angle 60 deg. Sud-
den external disturbances are applied, to the force
with magnitude 500 Newton at 4 sec., to the angle
(#) with magnitude 30 deg at 7 sec., and to the an-
gular velocity (f) with magnitude -100 deg/sec at 10

sec.
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