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Abstract—This paper deals with stabilization of LTI 

switched systems with input time delay. A description of 
systems’ stabilization is presented. Common Lyapunov 
function is introduced to construct switching law in order to 
stabilize this kind of system. Necessary and sufficient 
conditions are presented for both asynchronous switching and 
synchronous one. Precisely, after a proper change in state 
space the conditions can be expressed in terms of matrix 
inequalities. At the same time, definitions, theorems and 
corollaries as well as simulation result of one example are 
presented. 

Index Terms— Hybrid Systems, Switched Systems, 
Quadrat- 
Ic Stabilization, Common Lyapunov function. 
 

I. INTRODUCTION 

IN real systems, input delays are often encountered 

because of transmission of the measurement information. 
The existence of these delays may be the source of 
instability or serious deterioration in the performance of the 
closed-loop system. 

Recently, the control design problem of input delayed 
systems has attracted considerable attention. In [1,2] the 
memory less controllers were proposed and the stability 
criteria were independent of the size of the time delay. 
Moreover, these stability criteria are expressed in the form 
of Riccati matrix equations. Although the memory less 
controllers in [1] and [2] are easy to implement, it was 
pointed out in [3] that they tend to be more conservative 
when the time delay is small. Based on the reduction method 
[4], [3] proposed a robust controller for the uncertain 
input-delayed systems, which has a feedback of the current 
state and the past input history. It was shown by examples 
that the controller with delay compensation can have more 
robustness that the memory less controllers. However, the 
shortcoming of the method is that the exact value of the time 

delay must be known. 
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In recent years, study of hybrid systems has achieved rich 
results [5,6,7,8]. Among various modelling frameworks of 
hybrid systems, switched systems, as the special class of 
hybrid modelling, are the most studied. However, switched 
systems with input-delay have got only less attention. In this 
paper we are concerned with the stabilization problem of 
this kind of switched systems. The switched systems are 
consisted of several linear time invariant systems with 
control input delays.  

The existence of a common Lyapunov function for all 
subsystems has been found to be a necessary and sufficient 
condition for the stabilization of switched hybrid systems 
under arbitrary switching law [5]. Hence, a number of 
methods to construct such a Lyapunov function are 
presented [5,9,10]. A lot of systems, however, do not 
possess a common Lyapunov function, yet they still may be 
stable under some properly chosen switching law. Therefore, 
multiple Lyapunov function methods are effective tools for 
finding such a switching law [12,13,14] 

In this paper, the common Lyapunov function method is 
still used to find a suitable switching law to stabilize the 
switched systems with time delay. We will first introduce a 
definition of stabilization of the switched systems with 
time-delay inputs. Then, we will derive a necessary and 
sufficient condition of the stabilization via constructing a 
quadratic Lyapunov function of the form  

'( )V x x Px=                                                                        (1) 
 

The conditions consist of a collection of matrix inequalities. 
Through the paper, a positive definite and semi-definite 
matrix here is denoted by and . 0>P 0≥P

The structure of the paper is organized as follows. Section 
2 introduces the definition of quadratic stabilization via 
asynchronous switching and presents a necessary and 
sufficient condition for this kind of stabilization. Then a 
sufficient condition to stabilize the switched systems with 
input-delay is obtained as a corollary. Section 3 addresses 
the problem of quadratic stabilization via synchronous 
switching. In section 4, we give a switched system with 
input delay and stabilize it based on the designed conditions 
in application.  
 

Engineering Letters, 14:2, EL_14_2_14 (Advance online publication: 16 May 2007)
______________________________________________________________________________________



 
 

 

II.  QUADRATIC STABILIZATION OF SWITCHED SYSTEMS 
WITH TIME DELAY VIA ASYNCHRONOUS SWITCHING 
 

Consider a switched system with time delay: 

( ) ( )( ) ( ) ( ), ( )i t i tx t A x t B u t h i t S= + − ∈                         (2) 

 
where is the state, is the control input. 

 is a finite symbols set. Let

nRtx ∈)( mRtu ∈)(
},2,1{ MS= Sti →∞),0[:)( be 

a symbolic piecewise function that maps the time to the set 
of symbols. The matrices are 

the given constant matrices. h is a positive constant, the 
delay. 

( ) ( ), ( 1, 2, ,i t i tA B i M= )

Now our aim is to convert the switched systems with input 
delay into systems without delay. 
 
Theorem 2.1 Consider a switched system with time delay as 
the form (2), now define 

( )( ) ( ) ( )i

t
t s h A

i
t h

y t x t e B u s d− −

−

= + ∫ s

i

                              (3) 

 
Then we can change the form (2) into 
                 ( ) ( ) ( )ihA

iy t A y t e B u t−= +                                (4) 
 
The result is not difficult to obtain. 
 

Furthermore, we consider a class of state feedback control 
laws generated by switching between the given state 
feedback controller for each subsystem: 
                                                               (5) ( ) ( )iu t L y t= ⋅
 
where are given linear matrix functions.  iL
So  

( ) [ ] ( )ihA
i i iy t A e B L y t−= + ⋅ ⋅                                     (6) 

 
Now, Lyapunov functions are introduced to construct 

switching function  in order to stabilize (2) )(ti
Here, we give a description of stabilizibility of switched 
systems with input delay. 
 
Definition 2.2. System (2) is said to be stabilizable, if for 
any initial state , there exits feedback 

controllers for each subsystems, after a properly 

switching , the trajectory of  enters into a sphere 

with the origin centre and a finite radius

nRx ∈0

iL
)(ti )(tx

R at a finite time  
then remains in it henceforth. Namely,  

0t

                         0,)( ttRtx ≥≤                                      (7) 

 

Hence an asynchronous switching strategy is a rule for 
switching from one subsystem to another based on the 
measured value of the switched systems’ state. 

 
Definition2.3. Suppose that there exists a matrix P  

' 0P= > and a class of state feedback controllers which 
satisfy (5) such that for the derivative of the 
quadratic Lyapunov function (1) along trajectories of the 
switched system (2), the condition 

)]([ txV

                                                                 (8) 0)]([ ≤txV
 
holds for all . Then, the switched system (2) is said 
to be quadratic stabilizable via asynchronous switching. 

nRx ∈

 
Remark: As in the case of asynchronous switching, it can be 
easily shown that quadratic stabilization implies the 
stabilizability defined in Definition 2.2. [15]. 
 

We are now in a position to present a necessary and 
sufficient condition for quadratic stabilization via 
asynchronous switching. 

 
Theorem 2.4.  Consider the switched system (2). Then it is 
quadratic stabilizable via asynchronous switching if and 
only if there exits a square matrix P = >0 and a class of 
state feedback controllers such that the set of matrices 

'P
iL

'' ' '( )

( )

i

i

hA
i i i i

hA
i i i

Q A L B e P

P A e B L

−

− 0

= + ⋅ ⋅ ⋅ +

⋅ + ⋅ ⋅ ≤
                               (9) 

 
Then, after a state-space transformation 

( )
( ) ( )

( )
p

m

z t
z t H y t

z t
⎡ ⎤

= ⋅ = ⎢
⎣ ⎦

⎥                                      (10) 

 
with a non-singular matrixT , for the switched signal at any 
time, there exists an index such that: Si ∈

, 0i m mQ × <                                          (11) 

 
where 

rank im Q= mnp −= , =1
iH Q H− ( ) ( )

( ) ( ) ,

0 0
0

p p n m n p

n p n m i m mQ
× − ×

− × − ×

⎡ ⎤
⎢ ⎥
⎣ ⎦

−
 

 
Furthermore, Suppose that inequalities (9) hold and 

introduce a symbolic function , where it is an index for 
which the minimum in 

)(ti

)]([min
,2,1

txV
Mi=

                                  (12) 

is achieved. Then, asynchronous switching can be 
constructed to stabilize switched systems (2). 

)(ti



 
 

 

 
Proof: 
 

If the switched system (2) is quadratically stabilizable via 
asynchronous switching according to definition 2.3, we get 

' '( ) ( ) ( ) ( )dV y t Py t y t Py t
dt

= +  

' '( ) ( ) ( ) ( )y t Py t y t Py t= +   
'' ' ' '( ) [( )

( )]

i

i

hA
i i i

hA
i i i

y t A L B e P

P A e B L y t

−

−

= ⋅ + ⋅ ⋅ ⋅

+ ⋅ + ⋅ ⋅ ⋅ ≤( ) 0

]i

  

 
here assume that 

'' ' '[ ] [i ihA hA
i i i i i iQ A L B e P P A e B L− −= + ⋅ ⋅ ⋅ + ⋅ + ⋅ ⋅ , 

 
 according to a state-space transformation 

( )
( ) ( )

( )
p

m

z t
z t H y t

z t
⎡ ⎤

= ⋅ = ⎢ ⎥
⎣ ⎦

 

 
with a non-singular matrixT transfers the above ones into 

( ) ( )' '

( ) ( )

0 0 ( )
( ) ( )

0 ( )
p p n m n p p

p m
n p n m m m m

z t
z t z t

Q z t
× − × −

− × − ×

⎡ ⎡ ⎤
⎡ ⎤⋅⎢ ⎢ ⎥⎣ ⎦

⎣ ⎦⎣ ⎦

⎤
⋅⎥  

 

So                          ' ( ) ( )m m m m
dV y t Q y t
dt ×=  

 
It is obvious that inequality (8) holds under(9),(11). In 

other words, we have proved that for any , there 
exists an index satisfies inequality (8). 

nRx ∈
Si ∈

Now we introduce the function 
 

)]([min)]([
,2,1

txVtx
Mi=

=α  

 
Inequality (8) implies that 0)]([ ≤txα . Furthermore, let 

)(max0 xαα =                            
 

Because the function )(xα is continuous and 0)( ≤xα , 

the maximum is achieved and 00 ≤α . Finally, the 
inequalities (9), (11) hold with the asynchronous switching 
defined in the statement of the theorem. This completes the 
proof of the theorem 2.4. 

 
The following corollary provides a simplified sufficient 

condition to check whether a switched system of the form (2) 
can be quadratically stabilized. 
 

Corollary 2.5. Consider the switched system (2). Then for 
the switched signal at any time it is quadratic stabilizable via 
asynchronous switching if there exits a square 
matrix ' 0P P= > and a class of state feedback controllers , 

we can find an index
iL

Si ∈ such that:  
'' ' '[ ] [i ihA hA

i i i i i i iQ A L B e P P A e B L− − ] 0= + ⋅ ⋅ ⋅ + ⋅ + ⋅ ⋅ <  (13) 
 

Furthermore, suppose that (13) hold and introduce a 
symbolic function , where it is an index for which the 
minimum in (12) is achieved. Then, the asynchronous 
switching quadratically stabilizes the switched systems 
(2). 

)(ti

)(ti

 
The condition in the above corollary provides a simplified 

sufficient condition to stabilize the switched system via 
asynchronous switching, and it is not difficult to check. 
 

III. QUADRATIC STABILIZATION OF SWITCHED SYSTEMS 
WITH TIME DELAY VIA SYNCHRONOUS SWITCHING 
 

In this section, we address the case where switching can 
only occur at pre-specified times. 

 
Suppose that now they can only be switched at the 

discrete times },1,0{, =llT and is the switching 
interval. More precisely, let be a given time, and 
let

0>T
0>T

)(⋅li be a function that maps from the set of plant state 

measurements })({
0

lTx ⋅ to the set of symbols . Then a 

synchronous switching strategy is a rule for switching from 
one subsystem to another at the discrete times lT . 

S

 
Now we consider the problem of quadratic stabilization of 

the system (2) via synchronous switching. 
 

Define 
          exp([ ] )ihA

i i i iG A e B L− T= + ⋅ ⋅ ⋅                          (14) 
 
be the state transition matrix for the system (2) under the 
influence of the subsystem between the time 
instants and

i
lT Tl )1( + . So we change the system (6) in to: 

(( 1) ) ( )iy l T G y lT+ = ⋅                                 (15) 
 

Hence an synchronous switching strategy is a rule for 
switching from one subsystem to another based on the 
measured value of the switched systems’ state, and it can 
only be occurred at pre-specified switching times. 

 



 
 

 

Definition3.1. Suppose that there exists a matrix P  
such that the following condition holds for the 

quadratic Lyapunov function (1) along all the solutions of 
the systems (15) 

' 0P= >

                                      (16) 0)]([)])1(([ ≤−+ lTxVTlxV
for all then, the system (15) is said to be 
quadratic stabilizable via synchronous switching. 

,2,1,0=l

Remark: As in the case of synchronous switching, it can be 
easily shown that quadratic stabilization implies the 
stabilizability defined in Definition 2.1.[15]. 
 

Following the similarity of theorem 2.4, we are now in a 
position to present a necessary and sufficient condition for 
quadratic stabilization via synchronous switching. 

 
Theorem 3.2. Consider the system (15). Then it is quadratic 
stabilizable via synchronous switching if and only if there 
exits a square matrix  and a class of state 
feedback controllers such that the set of matrices 

' 0P P= >
iL

' 0i i iQ G PG P= − ≤

⎥

                           (17) 
 

then, after a state-space transformation  
( )

( ) ( )
( )

p

m

z lT
z lT H y lT

z lT
⎡ ⎤

= ⋅ = ⎢
⎣ ⎦

                   (18) 

 
with a non-singular matrixT , for the switched signal at any 
time, there exists an index such that: Si ∈

, 0i m mQ × <                                     (19) 

where 

rank im Q= , mnp −= ,
( ) ( )1

( ) ( ) ,

0 0
0

p p n m n p
i

n p n m im m

H QH
Q

× − × −−

− × − ×

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

 
Furthermore, Suppose that inequalities (17), (19) hold and 

introduce a symbolic function , where it is an index for 
which the minimum in 

)(ti

][])1[(min
,2,1

lTVTlV
Mi

−+
=

                            (20) 

is achieved. Then, synchronous switching can be 
constructed to stabilize systems (15). 

)(lTi

 
The following corollary provides a simplified sufficient 

condition to check whether a system of the form (15) can be 
quadratically stabilized. 

 
Corollary 3.3. Consider the system of the form (15). Then 
for the switched signal at any time it is quadratic stabilizable 
via synchronous switching if there exits a square 

matrix ' 0P P= >  and a class of state feedback controllers 
, we can find an index such that:  iL Si ∈

' 0i i iQ G PG P= − <                                     (21) 
 

Furthermore, suppose that (21) hold and introduce a 
symbolic function , where it is an index for which the 
minimum in (20) is achieved. Then, synchronous switching 
quadratically stabilizes the systems (15) 

)(ti

 
The condition in the above corollary provides a simplified 

sufficient condition to stabilize the system via synchronous 
switching, and it is not difficult to check. 
 

IV. EXAMPLE 
 

In this section, we present a simple example to illustrate 
the theoretical results. Note that various switching laws will 
make the behaviour of a switched system quite different 
from the behaviours of its components. A switched system 
can be unstable even if all of its subsystems are stable [12], 
so we focus on how to construct the switching law to 
stabilize the switched system even if its subsystems are 
stable. 

 
We consider the problem of quadratic stabilization of the 

LTI switched system with input delay via asynchronous 
controller switching with, a positive constant 0.04h = , the 
delay, and the initial state . 0 [1,1]x =

 
1:
2.2698 6.5396 0

( ) ( ) ( )
10.9636 0.9272 1

subsystem

x t x t
−⎡ ⎤ ⎡ ⎤ u t h= ⋅ + ⋅ −⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

 
2:

10.5806 9.1612 1
( ) ( ) ( )

2.2592 3.3058 0

subsystem

x t x t
−⎡ ⎤ ⎡ ⎤ u t h= ⋅ + ⋅ −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

 

 
We apply theorem 2.1 and change subsystem 1, 

subsystem 2 into  
 

1.5 5
( ) ( )

10 1
y t y

−⎡ ⎤
=⎢ ⎥− −⎣ ⎦

t ;                
1 10

( ) ( )
5 1.5

y t y
− −⎡ ⎤

=⎢ ⎥−⎣ ⎦
t . 

 
Furthermore, we will consider the case of two linear basic 

state feedback controllers (5) as 
[ ]1 1 2L = −           [ ]2 3 6L = −  



 
 

 

It can be easily seen that both matrices 
are stable (i.e., they have 

eigenvalues in the left half complex plane). The state 
trajectory has been shown in figure 1. 

, 1, 2ihA
i iA e B L i−+ ⋅ ⋅ =

 
We apply theorem 2.4 and get 

' 0.1524 0.0393
0

0.0393 0.2499
P P ⎡ ⎤

= = >⎢ ⎥
⎣ ⎦

 

 
And then we can stabilize this kind of switched system 

with input time delay. 
 
Figure 2 (a) shows the controller index that describes 

which of the two basic controllers we must use at each point 
of the state space. In other words, if at switching 
time

( )i t

jT our trajectory is in the region , then we use the 

controller over the time interval
iU

i ( , ( 1) ]jT j T+ . The 
quadratic Lyapunov function via time and switching law are 
shown in figure2 (c) and the stabilized state trajectory of 
switched systems is shown in figure 2 (b).. figure 2 (d) 
shows the switching sequence of switched systems. 
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Fig. 1.  (a) The state trajectory of subsystem 1 vs time. (b) The state 
trajectory of subsystem 1. (c) The state trajectory of subsystem 2 vs time. (d) 
The state trajectory of subsystem 2. 
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Fig. 2. (a) State trajectory of switched systems with time delay. (b)The state 
trajectory of switched system  vs time..(c) Lyapunov function vs time (d) the 
switching law in the stabilization of switched system. 
 

V. CONCLUSION 
In this paper, stabilization of LTI switched systems with 

input delay has been solved. With a quadratic Lyapunov 
function (1) we design a suitable rule for switching from one 
subsystem to another such that the system is stabilizable. 
Precisely, necessary and sufficient conditions for both 
asynchronous switching and synchronous one have been 
obtained. At last, a numerical example has been used to 
show the effectiveness of the main results 
 

REFERENCES 
[1] V.Kolmanovskii, and A.Myshkis, “Applied theory of functional 
differential equations,” Dordrecht: Kluwer Academic Publishers, 1992 

[2] H.H.Choi, and M.J.Chung, “Observer-based controller design for 

state delayed linear systems,” Automatica, vol.32, 1996, pp.1073-1339.  

H∞

[3] Y. S.Moon,  P.G.Park, and W. H.Kwon, “Robust stabilization of 
uncertain input-delayed systems using reduction method,” Automatica, 
vol.37, 2001,pp.307-312.  
[4] W.H.Kwon, and A. E. Pearsin,  “Feedback stabilization of linear systems 
with delayed control,” IEEE Tran. Automatic Contr, 25(2), 
1980,pp.266-269.  
[5] D. Liberzon, and A. S.Morse, “ Basic problems in stability and design of 
switched systems,”  IEEE Control Systems Magazine,  vol. 19, 1999, pp. 
117-122. 
[6] S.H.Lee, T.H.Kim, and J.T.Lim,  “A new stability analysis of switched 
systems,” Automatica, vol. 36, 2000, pp. 917-922. 
[7] X.Xu, and P. J.Antsaklis, “Stabilization of second-order LTI switched 
systems,” Int. J. Control, vol. 73, 2000, pp. 1161-1279. 
[8] Z.Sun, “Stabilizability and insensitivity of switched linear systems,” 
IEEE Trans. Automatic. Contr, vol. 49, 2004, pp. 1133-1137. 
[9] K.S.Nareudra, and J. Balakrishnan, “A common Lyapunov function for 
stable LTI systems with commuting A-matrices,” IEEE Trans Automatic 
Contr, vol. 39, 1994, pp.2469-2471. 
[10] Y.Mori, T.Mori, and Y.Kuroe, “A solution to the common Lyapunov 
function for a family of switched systems,” in Proc. 35th IEEE Conference 
on Decision Control, 1996,  pp. 3530-3531. 
[11] E.Skafidas,  R.J. Evans, A.V. Savkin, and I.R. Petersen, “Stability 
results for switched controller systems,” Automatica, 1999, vol. 35. 
pp.553-564. 
[12] M.S.Branicky, “Multiple Lyapunov function s and other tools for 
switched and hybrid systems,”  IEEE Trans. Automatic. Contr, vol. 43, 
1998, pp.475-482. 
[13] A.Hassibi, and S. Boyd,  “Quadratic stabilization and control of 
piecewise-linear systems,”  In Proc. of the American Control Conference, 
1998, pp.3659-3664. 
[14] J.P.Hespanha, and A.S.Morse, “Stability of switched systems with 
average dwell-time,”  in Proc. 38th IEEE Conference on Decision Control, 
1999, pp.2655-2660. 
[15] J. LaSalle, and S.Lefschetz, “Stability by Lyapunov’s Direct Method,” 
1961. Academic Press. 
 

Lin Lin  is born in  Beijing, P.R.China,  on 
7th July 1981, he obtained his master degree 
in 2006 from Department of Electronic Info- 
rmation and Control Engineering, Beijing 
University of Technology, P.R.China. His 
major is dynamic system analysis and desi- 
gn, dynamic system modeling and control. 
 
His graduated study included dynamic 
system control, system modeling, and 
dynamic system analysis and design. During 
his graduated study, he has papers published 
in the International paper of Hybrid 



 
 

 

Systems, and papers published in the International Conference of 
Automation. From 21 to 26 May, 2006, he was invited to give a 45 min 
lecture about his study interest at the Financial Engineering session of 
International Conference of Hybrid Dynamic System (ICHSA) in Lafayette, 
LA, USA. And during the conference, he delivered the lecture about his 
study interest included optimization, stabilization, and stability analysis of 
dynamic systems. Now, he is the auditor and accountant at KPMG LLP 
Beijing, P.R.China.  8/F Office Tower E2, Oriental Plaza, No.1 East Chang 
An Ave. Beijing, 100738, P.R.China. Tel: 86-010-85085000; Fax: 
86-010-85185111. email: linapple77@126.com 
 
Mr. Lin’s interest study is finance and financial engineering including his 
graduated study of system modeling and analysis. 
 
 
 


	I. INTRODUCTION 
	II.  Quadratic Stabilization Of Switched Systems With Time Delay Via Asynchronous Switching 
	III. Quadratic Stabilization Of Switched Systems With Time Delay Via Synchronous Switching 
	IV. Example 
	V. Conclusion 

