
Utilizing Computational Intelligence to Assist in
Software Release Decision

Tong-Seng Quah and Mie Mie Thet Thwin

Abstract—Defect tracking using computational intelligence

methods is used to predict software readiness in this study. By
comparing predicted number of faults and number of faults
discovered in testing, software managers can decide whether the
software are ready to be released or not.

Our predictive models can predict: (i) the number of faults
(defects), (ii) the amount of code changes required to correct a
fault and (iii) the amount of time (in minutes) to make the changes
in respective object classes using software metrics as independent
variables. The use of neural network model with a genetic training
strategy is introduced to improve prediction results for estimating
software readiness in this study.

Our prediction model is divided into three parts: (1) prediction
model for Presentation Logic Tier software components (2)
prediction model for Business Tier software components and (3)
prediction model for Data Access Tier software components.
Existing object-oriented metrics and complexity software metrics
are used in the Business Tier neural network based prediction
model. New sets of metrics have been defined for the Presentation
Logic Tier and Data Access Tier. These metrics are validated
using two sets of real world application data, one set was collected
from a warehouse management system and another set was
collected from a corporate information system.

Index Terms—Defect Tracking, Predictive Model, N-tier

Application, Software Readiness.

I. INTRODUCTION
 In the highly competitive commercial software market,

software companies feel compelled to release software the
moment it is ready. Their task is treacherous, treading the line
between releasing poor quality software early and high quality
software late [10]. If software is released too early, then
customers will be sent poor quality code; if it takes too long
before releasing software, it can avoid the problems of low
quality, but run the risk of exceeding deadlines and being
penalized for the late delivery. Therefore, the ability to predict
software readiness is essential to any software house for
optimizing development resources usage and project planning.

Reliability is a significant factor in quantitatively
characterizing quality and determining when to stop testing and
release software on the basis of predetermined reliability
objectives. Our works belong to a class of software reliability
models that estimate software readiness through gauging on the
amount of unresolved residual defects.

A variety of traditional statistical techniques are used in
software reliability modeling. Models are often based on

statistical relationships between measures of quality and
measures of software metrics. However, relationships between
static software metrics and quality factors are often complex
and nonlinear, limiting the accuracy of conventional
approaches [8]. Artificial neural networks and genetic training
strategy are adept at modeling nonlinear functional
relationships that are difficult to model with other techniques,
and thus are attractive for software quality modeling. The use
of neural network model with a genetic training strategy is
introduced to improve prediction results for estimating
software readiness in this study. With many variables, it is
quite difficult to find the exact combination of contributions of
each of the variables that creates the best predictions [11].
Genetic algorithm provides the solution to overcome this
difficulty [6]. It finds the best set of importance of input values
on an arbitrary scale of 0 to 1. The importance of input values
are a relative measure of how significant each of the inputs is in
the predictive model. We can then decide to remove the
variables with the lowest Relative Importance of Inputs values.

Most software today is developed so as to be integrated into
existing systems. New software components are replaced or
added into existing system. They use N-tier application
architecture which produces flexible and reusable application
for distribution to any number of client interfaces. Since all
tiers have clear separation, this allows the developers to plug
each layer in and out without too much hassles and without
limiting the technology used at each tier [3]. For example,
re-definition of the storage strategy or changing of DBMS
middleware will not cause disruption to the other tiers. Our
predictive model is targeting at software that is designed and
written using this type of architecture.

Our research team has analyzed the fault reports of a
Warehouse Application System (WAS) and an Information
Management System (HIS) and classified the faults. These
software fault reports are recorded by CAIB GmbH, Murrhardt
Company and Hwafuh, Myanmar software development team
respectively during system test and maintenance stages in
recent years for the Warehouse Application System and the
Hwafuh Information System. The classification scheme was
based on the nature of these faults and their relevance to the
application architecture. For example, the faults coming from
the Business Tier are strongly related to OO features and are
introduced by features such as inheritance and polymorphism.
In the Data Access Tier, the faults are strongly related to the
code are used to interface with the database. Therefore, our
prediction model is divided into three parts: (1) prediction
model for Presentation Logic Tier (2) prediction model for

Engineering Letters, 14:2, EL_14_2_11 (Advance online publication: 16 May 2007)
__

Business Tier and (3) prediction model for Data Access Tier.
Although N-tire application architectures are widely used,

currently none of the existing research studies on the prediction
of number of software development faults is based on
architecture layers. Our model was built on an application tier
basis using neural network model with a genetic training
strategy and the trained system is used to predict the number of
software development faults to help the software managers in
deciding whether their software is ready to be released or not.

The rest of this paper is organized as follows: Section 2 gives
an overview of the related works in predicting software
readiness. The metrics used in our predictive models as
independent variables are described in Sections III, IV and V.
Empirical studies for the Data Access Tier, the Business Tier
and the presentation Logic Tier as well as their results and
discussion are presented in Section VI. Finally, conclusions
and future research directions can be found in Section VII.

II. RELATED WORKS
One of the methods to predict software readiness is defect

tracking. McConnell describe four methods in [10]. Residual
defects are one of the most important factors that allow one to
decide if a piece of software is ready to be released. In theory,
one can find all the defects and count them; however it is
impossible to find all the defects within a reasonably short
amount of time. One possible technique that a software
manager can use is to apply the software reliability models and
thus estimate the total number of defects present at the
beginning of testing [9]. According to Alen Wood [16], there
are essentially two types of software reliability models – those
that attempt to predict: (i) from design parameters and (ii) from
test data. Both types of models aim to predict residual errors of
software under development. The first type of models are
usually called “defect density” models and use code
characteristics in traditional software codes such as lines of
code, nesting of loops, external references, input/outputs,
cyclomatic complexity and so forth to estimate the number of
defects in the software. Our model belongs to this category.
However, instead of using conventional software parameters,
our model focuses on objected-oriented code characteristics
and N-tier application architecture. Nowadays, software houses
widely adopted N-tier architecture approach in software
development and have successfully implemented software
systems using current technologies such as .NET and J2EE [3].
The second type of models is usually called software reliability
growth models. These models attempt to statistically correlate
defect detection data with known functions (such as an
exponential function) using parametric methods. If the
correlation is good, the known function can be used to predict
future behavior.

Both reliability models are used to estimate software
readiness by gauging on the residual defects. Software
development faults are predicted using various types of
software metrics in various studies [2, 5, 7, 11, 15]. In our

earlier studies, software development faults were predicted
using Object-Oriented Design Metrics and SQL Metrics [12,
13]. The results from these studies showed that neural network
models had better prediction accuracy than regression models.

Our research set out to answer three questions: (i) how many
faults are remaining in the programs, (ii) how many lines are
required to be changed in order to correct these errors and (iii)
how much time is required for the above activities. By
comparing predicted number of faults and number of faults
discovered in testing, software managers can decide whether
the software are ready to be released or not. Most of the
software quality models such as [2, 5, 7, 11, 15] for
object-oriented systems predict whether a software module
contains fault(s) by using traditional statistical models.
However, only identifying faulty modules is not enough to
estimate the software readiness.

III. SOFTWARE METRICS FOR THE DATA ACCESS TIER
We have analyzed the Data Access Tier source code of

N-tier applications. SQL commands are mainly composed in
the Data Access Tier classes to perform these database
operations. It allows the creation of a set of useful and specific
routines to be able to perform insert, select, delete and update
actions on database tables. It does not usually contain business
logic or presentation items. Therefore, the metrics for the Data
Access Tier are different from other tiers.

For source code of this tier, the number of database
operations statements which are invoked from Data Access
Tier classes and the error corresponding with these operations
are more involved than other operations. For example,
retrieving wrong database records, insertion fail error, cannot
update error etc. In such cases developers need to check and
modify the corresponding SQL statements to correct the error.
To measure the size of Data Access Tier source code, we
should measure the number of database operations statements
instead of other LOC metrics for the Data Access Tier. The
following Data Access Tier metrics are proposed and used in
this study. Metrics having weak relationship with fault
occurrence, such as the number of Data Definition Language
(DDL) commands and Data Control Language (DCL)
commands, are omitted in this study. We have therefore
measured three types of database operations statements (Table
I):
1) The number of Select statements (TNSC) for data retrieval.
2) The number of Insert/Update operations (TNIUO) for

updating database records.
3) The number of delete operations (TNDO) for deleting

database records.
We have measured the complexity of SQL statements

instead of other complexity metrics such as cyclomatic
complexity because the Data Access Tier does not control the
logic and flow of the application. These are controlled in
Business Tier. The Data Access Tier codes only contain the
specific routines to perform database operations. We have

measured the complexity of SQL commands by using
following construct that contain in SQL statements:
1) The number of search condition criteria.
2) The number of sub queries.
3) The number of group by clauses.

Complexity of SQL statement is likely to increase following
the increase in the number of these constructs because the latter
can specify rows of data from a table or group of tables by
joining such tables. As such, these are important in measuring
the complexity of SQL statements (Table I).

Table I. List of Data Access Tier metrics

Metrics Description
TNSC Total number of select-SQL commands
TNIUO Total number of insert/update operations
TNDO Total number of delete operations
ANSC Average number of search condition

criteria of where-clause in data
manipulation statements

TNSQ Total number of sub-queries in data
retrieval statements

TNGB Total number of group-by-clause in data
retrieval statements

IV. SOFTWARE METRICS FOR THE BUSINESS TIER
Business Tier is the brain of applications since it basically

contains elements such as business rules, data manipulation,
etc. It controls the logic and flow of the application. This layer
does not have codes to access the database or codes for the user
interface. As this layer mainly contains object-oriented codes,
object-oriented metrics are used for this tier. There is great
interest in the use of the object-oriented approach to software
engineering these days. Many measures have been proposed
and evaluated in the literature to capture the structural quality
of object-oriented (OO) code and design [2, 5, 7, 11, 15]. The
following existing traditional complexity metrics and
object-oriented metrics are used in the prediction model for the
Business Tier (Table II).

Table II. List of metrics for the Business Tier

Metrics Description
LCOM Lack of cohesion in methods
NOP Number of parents
NOC Number of Children
DIT Depth of inheritance tree
CBO Coupling between objects
RFC Response for a class
NMA Number of methods added
NA Number of Attributes
WMC Weighted Methods per Class
AMC Average Method Complexity

V. SOFTWARE METRICS FOR THE PRESENTATION LOGIC TIER
Presentation logic tier works with the results/output of the

Business Tier and handle the transformation into something
usable and readable by the end user. It consists of windows
forms, dialogs and ASP documents etc. We have found that
some errors in this tier are strongly related to the interface
objects. For example, improper display of edit box value,
showing some buttons which should be hidden until some
specific events have occurred, wrong adjustment of width of
objects for some output values etc.

In such cases developers need to check and modify the
corresponding controls of these interface objects to correct the
error. Therefore the number of user interface objects (NUIO)
should be measured for predicting these kinds of errors instead
of using other metrics such as LOC. Another metrics that has
used in this tier is the total number of messages (TNM). This
metric measures the total number of interface objects’
messages of presentation layer classes. For example,
BN_CLICKED message, LBN_DBCLICKED message of
ClistBox and CButton interface objects. When the user clicks a
button, BN_CLICKED method is invoked. If an error occurred,
the developers need to check the corresponding method to
correct the error. A larger number of these methods are likely to
correlate to a higher number of fault occurrences. We use the
following metrics for this tier of object-oriented applications
instead of using metrics such as count of bytes, lines, language
keywords, comment bytes, semicolons, block length, and
nesting depth etc. (Halstead’s metrics) – which are designed
mainly for conventional applications with procedural flows.

Number of user interface objects (NUIO)
The NUIO is the measure of user interface objects or

controls which handle input operations from user and output
operation to users. For example, textbox objects, button objects
and label objects etc. The NUIO is defined as:

NUIO(c) = |InterfaceObjects(c)|
where InterfaceObjects(c) is the set of interface objects

which are declared in the Presentation Logic Tier class c.

Total Number of Messages (TNM)
This metric measures the total number of interface objects’

messages of presentation layer classes. The TNM is defined as:
TNM(c) = |Messages(c)|

where Message(c) is the set of messages which are handled
by interface objects of the Presentation Logic Tier class c.

VI. EMPIRICAL STUDY
The genetic training strategy of NeuroShell Predictor is used

in this study. The genetic net combines a genetic algorithm with
a statistical estimator to produce a model which also shows the
usefulness of inputs. The genetic algorithm tests many
weighting schemes until it finds the one that gives the best
predictions for the training data. The genetic method produces
a set of relative importance factors that is more reliable than
those produces by the neural method. Genetic algorithms

(GAs) seek to solve optimization problems using the methods
of evolution, specifically survival of the fittest. The
functioning of the genetic estimator is built upon the General
Regression Neural Net (GRNN) [14]. Genetic learning stores
every set of inputs and related output in the training data. When
predicting a output (e.g. defects) of particular input pattern, it is
compared to every other pattern. Depending upon how close
the match is, the output for each training row is weighted.
Closer matches receive higher weights, and inputs that are
farther away from the training inputs receive lower weights.
The predicted output for the particular set of inputs is a
“weighted” average of all of the other outputs (e.g. defects)
with which the network was trained.

As the genetic method uses a "one hold out" strategy during
both training using current data set and afterwards when
evaluating new data set, all available data sets can be used [4].
As such, out of sample evaluation set is not necessary when
using genetic method. If the method is called upon to produce
an output from a particular pattern of inputs X, then it never
looks at X if X is in the training set, as long as “enhanced
generalization” feature is turned on. This is true at all times
during training. The genetic method is much like a "nearest
neighbor" predictor or classifier. Its output is a kind of
weighted average of the closest neighbors' outputs in the
training set. In other words, if evaluating X, X is never
considered to be in the neighborhood. Most other neural
networks do not work this way. They look at the entire training
set when being trained for each data set in the training set.
Therefore, they are essentially looking at the entire training set
when being applied to new data set later [4, 11].

A. Data collection
The experiment data is collected from two application

systems. The first application is the warehouse management
applications (WMA) that is developed using C, JAM (JYACC
Application Manager) and PL/SQL languages. This set of
applications has more than a thousand source files of C, JAM
(JYACC Application Manager) and PL/SQL codes and uses
the Oracle database. The warehouse system has been
customized and used by many companies. Data Access Tier
faults were collected from the journal files that contain the
documentation of all changes in source files such as status of
module, start date, end date, developer, nature of changes, etc.
Data on software metrics were extracted from 103 PL/SQL
files of the warehouse application.

The second application used in this prediction are
subsystems of an application system which is used in the
Hwafuh(Myanmar) company, which is a fully networked
information system. The Hwafuh Information System (HIS)
contains more than 300 classes and approximately 1,000,000
lines of codes. The experiment data was collected from the
payroll subsystem, time record subsystem, human resource
function subsystem and piece calculation subsystems.

B. Experiment for the Data Access Tier
Experiment 1

The warehouse application system data was used for the
experiment on prediction of data access faults of Data Access
Tier. Six software metrics were extracted from 103 PL/SQL
files. It contains TNSC, TNDO, TNIUO, TNGB, TNSQ and
ANSC metrics. The dependent variable was the number of Data
Access Tier faults and the independent variables were the six
software metrics identified above. First, each data pattern was
examined for erroneous entries, outliers, blank entries and
redundancy. A threshold value was set at 1000 for maximum
number of generations without improvement. After 1621
generations, the optimized coefficient of multiple
determination (R-square) value 0.737046 was arrived at.
Therefore, about 74% of the variation in the number of faults
can be accounted by the six predictors.

To measure the goodness of fit of the model, coefficient of
multiple determination (R-square), coefficient of correlation(r),
mean square error (MSE) and root mean square error (RMSE)
were used. The correlation of the predicted variable and the
observed variable is represented by the coefficient of
correlation (r). An r value of 0.860836 represents high
correlations for cross-validation. The number of observations is
103. The significance level of a cross-validation is indicated by
the p value. A commonly accepted p value is 0.05. In our
experiment, a two tailed probability p value is less than 0.0001.
This shows a high degree of confidence for the successful
validations. The results clearly indicate a close relationship
between Data Access Tier metrics (independent variables) and
the number of Data Access Tier faults (dependent variable).

Table III. Experimental result for the WMA system
R-square 0.737046
r (correlation coefficient) 0.860836
Avg error 0.266629
MSE 0.190009
RMSE 0.4359
t values 17.00059
p values <0.0001

Experiment 2
The Hwafuh Information System (HIS) was used for

prediction of data access faults, the number of line changed per
class and required time (in minutes) to correct these data access
tier faults. Six software metrics were extracted from 37 Data
Access Tier classes.
 Selection of Metrics

Four Data Access Tier metrics (TNSC, TNDO, TNIUO and
ANSC) from proposed six Data Access Tier metrics are
selected in this experiment. TNGB and TNSQ metrics could
not be collected because corresponding SQL constructs are
seldom used in the HIS system.
 Prediction of number of faults

Average number of search condition criteria of where-clause
(ANSC) and Number of insert /update operations (TNIUO) are
found to be more important for number of faults prediction for
the Data Access Tier. That shows the complexity of search
condition criteria is highly related to occurrence of faults in this
Tier.

 Prediction of number of lines changed per class
In this prediction, the TNSC metric is the most important

inputs in this model. The amount of Select operation containing
in Data Access Tier class is highly related to number of lines
changes in that class. The ANSC and the TNIUO metrics are
also important for prediction of number of lines changed.
 Prediction of required time (in minutes) to change

The ANSC and the TNIUO metrics are also most important
for prediction of required time (in minutes) to change.

Although only 37 rows of data have been tested in
Experiment 2 the two-tailed P values are less than 0.0001. By
conventional criteria, these p values are considered to be
statistically significant.

Experiment results show that r values are 0.788908 for
prediction of the number of faults, 0.792298 for prediction of
the number of lines changed per class and 0.818494 for
prediction of required time (in minutes) to change. These
results show a close relationship between Data Access Tier
metrics (independent variables) and dependent variables (the
number of faults per class and the maintenance cost). The
values of squared multiple correlation are 0.733111 for
prediction of the number of faults, 0.624663 for the prediction
of the number of lines changed per class and 0.664182 for
prediction required time (in minutes) to change. Therefore,
about 73%, 62% and 66% of the variance, respectively, in the
number of faults and the maintenance cost can be accounted for
by these predictors.

C. Experiment for Business Tier
The Hwafuh Information System (HIS) was used for

prediction of data access faults, the number of line changed per
class and required time (in minutes) to correct these Business
Tier faults. Software metrics were extracted from 178 Business
Tier classes.
 Selection of Metrics

As discussed in Section IV, we have selected the Chidamber
and Kemerer object oriented metrics [5] and complexity
metrics. After testing several combinations of models using
Business Tier software metrics using subsystems of the
Hwafuh Information system data, the following models
achieved the best prediction for number of faults, number of
line changes and required time (in minutes) respectively.
 Prediction of number of faults

The model used in this experiment contains NOP, RFC, DIT,
LCOM, NMA, NOC, NA and CBO metrics. From Business
Tier metrics, inheritance metrics (NOP, DIT), Response for a
class (RFC) and cohesion metrics (LCOM) are the important
ones for number of faults prediction in this tier.
 Prediction of number of lines changed per class

The model used in this experiment contains NOP, RFC, DIT,
LCOM, NMA, NOC, NA, WMC and CBO metrics. The
cohesion metric (LCOM) is most important metric and other
metrics are about equal importance.
 Prediction model for required time (in minutes)

This model contains DIT, LCOM, NOP, RFC, NA, WMC,
NOC, AMC and CBO metrics. As in fault prediction

experiment, NOP, DIT, RFC and LCOM are the most
important.

 For 178 observations, the two-tailed p values are less than
0.0001. By conventional criteria, these p values are considered
to be statistically significant. Experiment results show that r
values are 0.838874 for prediction of the number of faults,
0.866963 for prediction of the number of lines changed per
class and 0.748259 for prediction of required time (in minutes)
to change the code. These results show a close relationship
between Business Tier metrics (independent variables) and
dependent variables (the number of faults per class and the
maintenance cost / effort). The values of squared multiple
correlation are 0.701772 for prediction of the number of faults,
0.747447 for the prediction of the number of lines changed per
class and 0.549334 for prediction of required time (in minutes)
to change the errorous code. Therefore about 70 %, 74% and
55% of the variance, respectively, in the number of faults and
the maintenance cost can be accounted for by these predictors.

D. Experiment for Presentation Logic Tier
Presentation tier classes (58 classes) were collected from the

Hwafuh Information System.
 Selection of Metrics

As they mainly include dialog classes, form classes and view
classes etc, the number of user interface objects (NUIO)
metrics and the total number of messages (TNM) metrics were
proposed and used in this study. Their relative importance is
roughly equal for experiments of Presentation Logic Tier.
 Prediction of number of faults

After performing 380 generations, an R square value of
0.67406 was received using the genetic learning strategy of
NeuroShell predictor. Therefore about 67% in the number of
faults can be explained by the two selected predictors. An r
value of 0.828182 represents high correlations for
cross-validation for 58 observations.
 Prediction of number of lines changed per class

After performing 156 generations, an R square value of
0.53181 was received. Therefore about 53% in the number of
lines changed per class can be explained by the two selected
predictors. An r value of 0.740294 represents high correlations
for cross-validation for 58 observations.
 Prediction model for required time (in minutes)

After performing 116 generations, an R square value of
0.598468 was received. Therefore about 60% in required time
(in minutes) to change per class can be explained by the two
selected predictors. An r value of 0.799905 represents high
correlations for cross-validation for 58 observations.

From the experiment results, the Presentation Logic Tier
metrics in this study appear to be useful in predicting software
readiness. About 67%, 53% and 60% of the variance,
respectively, in the number of faults and the maintenance cost
can be accounted for by these predictors. The relative
importance both Presentation Logic Tier metrics are about the
same. Equal care should be taken when designing interface
objects and messages of Presentation Logic Tier classes.

E. Comparative study with Regression Model
We re-run the whole set of experiment using a regression

model. The superiority of the neural network model with
genetic training algorithm in predicting software readiness
using metrics is undisputable as it consistently outperformed
the regression model.

VII. CONCLUSION
Our research extended currently software quality prediction

models by including structural/architecture considerations into
software quality metrics. The genetic training strategy of
NeuroShell Predictor is used in our study. The Genetic
Training Strategy uses a “genetic algorithm” or survival of the
fittest technique to determine a weighting scheme for the
inputs. The genetic algorithm tests many weighting schemes
until it finds the one that gives the best predictions for the
training data. Data patterns from WMS (103 patterns) were
used for the prediction of the number of faults in the Data
Access Tier prediction model. This study used 37 Data Access
Tier classes, 178 Business Tier classes and 58 for Presentation
Logic Tier classes from HIS to predict the number of faults, the
number of lines changed and time required (in minutes). For
these numbers of patterns, the genetic training method is much
better because the evaluation set is not necessary in the genetic
training method. We have compared this approach to a multiple
regression analysis approach. The comparative performance
data for the models are shown in Table VII. By comparing
empirical results including R2 and RMSE, Genetic Nets give
better prediction results than Regression analysis. Regression
analysis was done by using SPSS software.

We intend to extend this investigation to a wide range of
applications and also to propose a new set of Presentation
Logic Tier metrics related to various types of user interface
objects. For example, by separating pure display interface
objects from interface objects that are able to perform both
input/output functions. Also, it may be useful to separate
control interface objects from interface objects which can be
control objects as well as holding values.

ACKNOWLEDGEMENT
We gratefully acknowledged CAIB GmbH, Murrhardt,

Germany and Hwafuh, Myanmar Company for providing us
with the software development data used in our research.

REFERENCES
[1] L Briand, W.L Melo, J. Wust, “Assessing the applicability of

fault-proneness models across object-oriented software projects”, IEEE
Transactions on Software Engineering, vol. 28 pp. 706 –720, 2002.

[2] M. Cartwright and M. Shepperd, "An Empirical Investigation of
Object-Oriented Software System", IEEE Transactions on Software
Engineering, vol. 26, pp. 786-796, 2000.

[3] Robert Chartier, “Application Architecture: An N-Tier Approach “,
http://www.15seconds.com.

[4] C.H. Chen, “Fuzzy Logic and Neural Network Handbook”, New York,
N.Y.: McGraw-Hill, Inc., 1996.

[5] S.R. Chidamber, and C.F, Kemerer, "A Metrics Suite for Object Oriented
Design", IEEE Transactions on Software Engineering, vol. 20, pp.
476-493, 1994.

[6] D. E Goldberg, “Genetic Algorithms in Search, Optimization, and
Machine Learning”, Reading, Mass: Addison-Wesley, 1989.

[7] El Emam, W. Melo, C.M. Javam, “The Prediction of Faulty Classes Using
Object-Oriented Design Metrics”, Journal of Systems and Software,
Elsevier Science, 2001, pp. 63-75.

[8] T. M. Khoshgoftaar, E. B. Allen, J. P. Hudepohl, S. J. Aud, “Application
of neural networks to software quality modeling of a very large
telecommunications system”, Neural Networks, IEEE Transactions
on ,Vol. 8, Issue 4, July 1997, pp. 902 – 909.

[9] Y.K. Malaiya and J. Denton, ‘Estimating the number of Residual
Defects’, HASE ’98, 3rd IEEE Int’l High-Assurance Systems
Engineering Symposium, Maryland, USA, November 13-14, 1998.

[10] S. McConnell, “Gauging software readiness with defect tracking”, IEEE
Software, Vol. 14, no. 3, pp. 136, 135,1997.

[11] NeuroShell Predictor Reference Manual, Ward Systms Group, Inc.
http://www.wardsystems.com.

[12] Tong-Seng Quah, Mie Mie Thet Thwin, "Prediction of Software
Development Faults in PL/SQL Files Using Neural Network Models",
Information and Software Technology, vol. 46, No.8, pp. 519-523, 2004.

[13] Tong-Seng Quah and Mie Mie Thet Thwin, “Application of neural
networks for software quality prediction using object-oriented metrics”,
Proceedings of International Conference on Software Maintenance,
ICSM 2003, 22-26 Sept., 2003, pp. 116 – 125.

[14] D.F, Specht, “A general regression neural network”, IEEE Transactions
on Neural Networks, vol. 2, Issue: 6, pp. 568-576, 1991.

[15] Mei-Huei Tang, Ming-Hung Kao, Mei-Hwa Chen,”An empirical study on
object-oriented metrics”, Proceedings of the Sixth IEEE International
Symposium on Software Metrics, pp. 242-249, 1999.

[16] Alen Wood, “Software Reliability Growth Models”, hp Technological
Report, TR-96.1, September 1996.

http://www.15seconds.com/
http://www.wardsystems.com/

	I. INTRODUCTION
	II. Related Works
	III. Software metrics for the Data Access Tier
	IV. Software metrics for the Business Tier
	V. Software metrics for the Presentation Logic Tier
	VI. Empirical study
	A. Data collection
	B. Experiment for the Data Access Tier
	C. Experiment for Business Tier
	D. Experiment for Presentation Logic Tier
	E. Comparative study with Regression Model
	VII. Conclusion

