
 
 

 

  
Abstract— This paper presents a novel adaptive controller for 

multimodal systems based on Fuzzy Reference Model Generator 
(FRMG). The proposed scheme consists of a fuzzy logic switching 
method working along with a Model Reference Adaptive Control 
(MRAC) framework. The fuzzy switching scheme produce a ‘soft’ 
way of generating the reference model, combining a group of 
weighted reference models at each plant operating point. Unlike 
static multiple model algorithms, this scheme provides an 
interactive multiple model environment with soft switching. 
Simulation results conducted on two practical examples of 
multimodal systems show that the scheme is computationally 
feasible, efficient and fault tolerant in nature. 
 

Index Terms—Fuzzy Reference Model Generator, Model 
Reference Adaptive Controller, Multimodal Systems, Soft 
Switching.  

I. INTRODUCTION 
 Control of multimodal systems requires an intelligent 

controller which efficiently determines the system changes, 
keeps track of system uncertainties and takes appropriate 
control action in real time. Multimodal systems are divided as 
temporal or spatial ones. In the temporal multimodal systems, 
the mode transition is an arbitrary event, while in the spatial 
ones it depends on the systems auxiliary states or other derived 
variables [1]. Multiple model adaptive control is one of the 
effective solutions for controlling such systems. This approach 
was first initiated in [2]. The three main constituents of a 
Multiple Model Adaptive Control (MMAC) are multiple 
reference models, a switching scheme and a controller.  

The research in this area branches out into two main 
directions. The first direction deals with mathematical MMAC 
based on deterministic and stochastic approaches and the 
second direction deals with newly emerging heuristic based 
MMAC mainly with fuzzy systems. Some of the relevant 
research efforts are as follows. In a stochastic mathematical 
MMAC representation, [3], [4] proposed a standard multiple 
model estimation algorithms; using standard probabilistic 
methods and Kalman filter residuals to assign conditional 
probabilities for each modeled hypotheses. However, these 
algorithms are often prone to numerical underflows. In a 
deterministic fashion, [5] proposed different switching and 
tuning schemes combining fixed and adaptive models. While 
[6] dealt with adaptive control of LTI discrete-time system 
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using multiple models, [7], [8] proposed a stable multiple 
model approach to overcome the poor transient response of an 
adaptive controller. On the application side, reconfigurable 
flight control system using multiple model adaptive control 
methods is proposed in [9], and in [10] application of MMAC 
algorithm to control F-8c aircraft is discussed. This feasibility 
studies indicates that the approach is a reasonable candidate for 
aircraft adaptive control. In [11] a method which recovers the 
eigenvalues, and eigenvectors of the original closed loop 
system and controls the changing dynamic system under varied 
operating conditions is illustrated.  

Reference [12] proposed a stable adaptive control using a 
Takagi-Sugeno fuzzy system, in which the adaptive schemes 
can ‘learn’ how to control the plant and achieve asymptotically 
stable tracking of reference input. In an attempt, [13] proposed 
a fuzzy model based adaptive control algorithms for a class of 
continuous-time nonlinear dynamic system and recently, an 
important consideration of using multiple fuzzy model 
generation including fault tolerant control has been proposed in 
[14]. It has been observed in [15] that the fuzzy model can be 
derived by tuning the fuzzy parameters. However, these tuned 
parameters cannot effectively develop the unknown changes 
online. Adaptive controller by fuzzy structure has been 
developed in [16, 17] which needs an online learning algorithm 
and effective tuning in order to provide a stable controller.  

An important concept of changing the reference model 
structure instead of explicitly identifying the plant models is 
originated in [18-20]. In this technique, the reference models 
are changed along with the plant movement based on several 
offline studies. Further these reference models are utilized at 
different plant operation depending on certain heuristic 
switching scheme.  

This paper present a heuristic based fuzzy reference model 
generation, which changes the reference model without implicit 
identification, and therefore the direct model reference adaptive 
control framework can be used even when the system shows 
multi-modality. In the proposed scheme, an Intelligent 
Supervisory Loop (ISL) is incorporated into the traditional 
MRAC framework in order to generate the plant reference 
model at every control interval. The paper is organized as 
follows: In section 2, the problem statement is presented, 
followed by the concept of multiple fuzzy reference model 
generation in section 3. Section 4 shows the concept behind the 
design of fuzzy logic scheme. Section 5 discusses the direct 
adaptive control laws and section 6 briefly explains the fault 
tolerant capability of the overall scheme. In section 7, an 
investigation of the proposed technique on a practical 
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application example is discussed, followed by conclusions in 
section 8. 

II. PROBLEM STATEMENT 
The theme behind the approach can be described using fig. 1. 

If the system under consideration can be modeled using one 
reference model, then the adaptive controller can be utilized to 
track the desired reference model output. It is well known that 
MRAC can effectively control the system with a mechanism 
adapting the control law based on the output error. However, if 
the reference model is rigid and the system output is away from 
the reference model output then the controller will be stressed 
and finally fail to control the plant. The main purpose of the 
intelligent module is to alleviate this rigidness in the reference 
model. 

 

 

 

 

 

 

 

 

 

 

 

The intelligent module uses the plant output and auxiliary 
measurements/states, generates an appropriate reference model 
at each control interval, thereby providing a moving reference 
structure with respect to the plant without losing its desired 
characteristics. Thus it acts as an ISL supervising the plant 
controller closed loop. The system representation and problem 
details are as follows. 

The system to be controlled has input U and output yi. The 
objective is to make the control error ec = (ymi-yi)  0  
Where 

   ymi is the output of the reference model at a specific        
    mode and yi is the corresponding system output.  

It can be represented in state space form by 
)()()( )()( tUbtXAty tmtmi +=                                       (1) 

Where  
yi(t) is the plant output at a specific mode  

            U(t) is the control input   
            X(t) is the state vector [X1(t),…,Xn(t)]T Є Rn 
            Ai(t)=[a1i,a2i,…,ani]T Є Rnxn  and  

bi takes values from the set of H constant elements   
which represents the known modes as indexed by 
subscripts i Є {1,2,…,H}.   

Thus the parameter vector can be represented by the triple 
{(Ai,bi,ci),…,(AH,bH,cH)} which changes its values depending 
on the modes of operation. Let the above vector denote 

scheduled jump parameter sets for each mode specified by the 
parameter index i. The mode variable m(t) takes the form 
mapped into any of the values in the domain i  and 
correspondingly Am(t) and bm(t) are time varying. Let the 
mapping of m(t) be denoted by m(t) = γ[X(t-d)] where d 
represents the time delay. Please note that the above-mentioned 
system is of a spatial multimodal type because the dynamics are 
scheduled through the states with a nonlinear mapping γ.  

III. MULTIPLE FUZZY REFERENCE MODEL GENERATION 
Consider a fuzzy system output denoted by a function )(Ωf . 

This can then be represented as 
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Where   

mℜ∈Ω  is a vector containing the relevant auxiliary 
states. 

The fuzzy system has r rules and iμ  is the membership 
function of the antecedent of ith rule given by the input Ω. 
Assume that this fuzzy system is constructed in such a way that 
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is the consequent of ith rule. Then (2) can be written in the 
parameterized form as  
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and PM T=Φ  
Thus the function approximation by fuzzy scheme is equal to 

the product of a parameter vector Φ and weight matrix ϑ . Now 
let the reference model in state space form be 

)()()( )()( tSbmtXAmtX tmmtmm +=
•

                                          (4) 
            and ym(t)=CTXm(t) 

Where  
      ym(t) is the reference model output  

S(t) is the command signal  
Amm(t), bmm(t) are model parameters at mode m(t) and 
Xm(t) is the state space vector.  

The reference model in transfer function form will then be    

Fig. 1. Intelligent Supervisory Loop Approach 



 
 

 

mimimiimim RZKtStysW /*)(/)()( ==                                       (5) 
Where 

       Kmi is gain matrix 
Zmi is the zeros matrix with suitable locations in the    
system domain 
Rmi is the polynomial matrix whose entries are monic 
and Hurwitz in nature. 

From (5), it can be seen that the numerator and the 
denominator are functions of state variables X and the location 
of the poles and zeros are further influenced by the modes of 
operation of the plant. In order to include these modal 
transitions (5) has to be combined with (3). This can be 
observed value can be written as 

)/*(*)()( mimimiim RZKfsW Ω=
∧

                                  (6) 
Thus the changes in the system dynamics can be mapped 

through auxiliary states to the changes in system polynomial 
roots or the poles/zero combination. Considering the above 
facts, reference model transfer function can be written as a 
function of the fuzzy logic output, which yields 

)(**)*()(*)( tSWtSWty miiimiim ϑΦΔ=
∧∧

                              (7) 
Thus for a constant command signal, the observed reference 
model output will be 

),,()( imiiim Wty ϑν Φ=
∧∧

                                               (8) 
Where  

      )(tmiW
∧

 is the estimate of )(tmiW  

      )(tmiy
∧

is the observed reference model output for the ith      

       mode 
     iΦ is the parameter vector developed by the fuzzy system    
      depending on the system operating points  

         iϑ is the membership function weights and Wmi is the       
          corresponding reference model transfer function.  

It can be seen that the membership function weights act as a 
performance index function in modifying the reference model 
output. Based on each system modal transition the parameter 
vector Φ and ϑ also changes. Subsequently the reference 
model output moves such that the closed loop system provides 
a stable output with the roots on the left half s plane. This 
movement in the reference model secures the system from 
becoming unstable. Moreover, the modal transitions are 
smooth in nature, which reduce the transients during the 
changes in system mode. More importantly this avoids any 
pre-defined calculation. It acts like a performance index as in 
the case of the identified plant model as the appropriate fuzzy 
rules firing selects an appropriate reference model. Thus the 
time required for the calculation and settlement of the 
parameter values is zero. It also helps the controller to optimize 
its performance over any operating conditions. 

IV. DESIGN METHODS OF FUZZY REFERENCE MODEL 
GENERATOR 

Two ways of designing the fuzzy logic scheme based on the 
two different methodologies to develop stable desired closed 
loop system trajectories is proposed. The fact that the closed 
loop system trajectories pattern changes with change in the 
plant operating modes gives us a relation between desired 
trajectory and plant operating mode. 

A. Method 1 
In this method, the fuzzy logic rules are developed by 

changing the natural frequency of the reference model in such a 
way that the system closed loop performance at each mode is 
stable. This will develop the dominant poles and zeros of the 
system transfer function at each operating point. Consider the 
reference model transfer function as in (9), which shows the 
required system response.  
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       p(s),q(s),n(s) and d(s) are polynomials in s domain.  

Then the closed loop transfer function will be 
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Where 
    Z’s are zeros, p’s are poles and K is the gain. 

 
Since there are real and complex conjugate poles, the closed 

loop response of the system to a unit step input can be 
represented as 
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A pair of complex conjugate poles, which yields a second 
order term in s for each set of complex pole pairs is represented 
in (11).  Further the location of the poles and/or zeros of the 
closed loop system is changed depending on the system 
operating modes. All the closed loop poles mentioned in (11) 
play an important role in the system transient response. The 
one, which has the dominant effect, is termed as the dominant 
closed-loop poles. Let these dominant complex poles for k=1 

be 2
111

2 2 ωως ++ ss  
Where 

     1ω is the natural frequency and  

      1ς  is the damping ratio 
From (9), the roots of the characteristic equation for the 

dominant poles are 
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At each mode of the system operation, the desired closed 
loop response with the plant and the controller in the form of  
ζ  and nω is obtained first. Further reference model roots are 
developed to match with the corresponding roots of the 
characteristic equation.  Thus (9) can be rewritten as  

),()( ςω nim sW Ψ=                                               (13) 
Combining (8) and (13)  

),,,()( ςωϑλ niiim ty Φ=
∧

                                     (14) 
Where  

 ],,,[ ςωϑλ niiΦ= is the input parameter vector 
However, from (2) & (3) it can be seen that ii ϑ,Φ  are 

dependent on the system auxiliary states Ω . Thus the 
developed reference output depends on the systems auxiliary 
states, ς  and nω . The fuzzy decision rules consist of inputs 
and outputs [21]. The inputs are the command signal and 
significant auxiliary outputs from the system. The outputs are 
the parameters in vector λ .  The decision is performed by 
fuzzy rule, which has the following form: 

Ri: IF Ω  is Aj AND y is Bj THEN z is Cj 

Where  
       z is the output and the subscript j indicate the jth rule.  
Fuzzy rules thus has two parts; the IF part which is called the 

premise and the THEN part, which is termed as the consequent. 
The former is used to describe the system within certain mode, 
which then triggers certain fuzzy rules. Corresponding to each 
of these modes the fuzzy parameter vector iΦ and membership 

function weights iϑ will be changed. Subsequently, the crisp 

set of output vector λ  is established. This process is continued 
for each time instant during system operation.  

B. Method 2 
The second method is a development inspired by the work in 

[11, 22] where the desired feedback gain matrix is formulated 
for each mode of operation so that eigenvalues and 
eigenvectors of the original closed loop system are recovered. 
In our architecture the gain matrix serves as static control gains 
for individual system operating points. Corresponding to this 
gain matrix, the desired closed loop system is derived first 
which acts as desired reference model structure for each mode 
of operation. Further, adjusted poles and zeros based on 
eigenvalues determine the fuzzy outputs where the significant 
system auxiliary states comprise the input vector.  Let us 
assume that there are H modes of operation. Thus for each 
mode of operation, the closed loop system gain matrix will 
change and desired system response is identified with 
corresponding active poles and zeros. Based on that, fuzzy 
rules have been developed to meet the following form: 

Ri: IF Ω  is Ai AND y is Bi THEN z is Ci1…Cin  & Di1…Dim 

Where 
1—n corresponds to the number of poles based on 
the roots of the characteristic equation and  
1—m corresponds to the number of active zeros. 

It has been shown in [11] that for a given system, which has 
undergone large variations due to some failures, or operating 
mode changes, a new system model can be represented as in 
(15). Using a reconfigurable control matrix an output gain 
matrix K can be established such that the maximum number of 
closed-loop eigenvalues of the reconfigured system is same as 
that of the original system. Mathematically it is rewritten as 

immmm
m

i CKBA λλλ =+= )(                                 (15) 
Where 

iλ , is the eigenvalues and A, B and C are the system 
parameters 

The gain matrix will satisfy the following equation 
m

immm
m

i
m

i vKCBAv )( +=λ                                     (16) 
The steps for the development of fuzzy inference engine are 
 

Step 1: Prepare closed loop response of the system either by 
calculating natural frequency and damping constant (method 
one) or by finding the eigenvalues and vectors (method two) for 
each mode of operation.  
Step 2: Find the natural frequency and damping ratio (method 
one) or the corresponding poles and zeros from the eigenvalues 
(method two) of modes. 
Step 3: Develop the fuzzy inference engine using the command 
signal and auxiliary states as premise and the outputs 
corresponding to reference structure as in step two by 
projecting the input corresponding to each mode. Set the fuzzy 
inference engine for each plant mode of operation based on the 
projection domain and input-output mapping. 
Step 4: Establish the membership function weight matrix for 
each mode. 
Step 5: Based on step 4, establish the membership functions for 
each rule and create the knowledge base. 
Step 6: Test the condition offline, for operating modes in order 
to retain the desired closed loop poles of the system. 

 
Using this method the eigenvalues and corresponding 

eigenvectors of original closed loop system can be recovered 
regardless of the changes in the system operating modes. 
Instead of synthesizing the gain matrix K, here the reference 
model is moved such that vi

m is close to the original eigenvector 
vi (the corresponding closed-loop eigenvector of the original 
system) as possible. Based on this, a new reference model 
structure is developed at each instant of time by changing the 
roots of the characteristic equation. Once the offline studies are 
conducted reference model changes at each mode are 
established and the fuzzy system is developed based on 
recovering these poles and zeros. Please note that extracting the 
dominant closed loop poles as in method one and regeneration 



 
 

 

of the eigenvalues and corresponding eigenvectors as in 
method two are parts of the offline analysis.   

V. PLANT PARAMETERIZATION AND CONTROL 
 

From the previous section output of the plant and reference 
model for a multimodal system can be represented as  

)()()( )()( tUbtXAty tmtmi +=                 (17) 

)(**)*()(*)( tSWtSWty miiimiim ϑΦΔ=
∧∧

                            (18) 
The change in stable desired reference model looking at 

plant auxiliary states for each modes of operation can be 
obtained based on previous fuzzy reference model generator 
design.  As the plant modal changes, the structure and dynamics 
of reference model also change. Thus any adaptive certainty 
equivalence control law can be used to control these systems. 
The control structure utilized here is the basic certainty 
equivalent control law [23] explained as follows.  

Suppose a plant controller can be represented in terms of the 
parameter identification of the system. Then this approach 
proves that as the system identification routine reaches the 
actual values, then the controller will force the plant to the 
reference pattern such that the error asymptotically reduces to 
zero. For the proposed system control law can be expressed as  

ωTu Θ=                                                                              (19) 
Where   

[ ]TTTk 210 θθθ=Θ is the control parameter vector 

and ][ TTT
i tytS 21)()( ωωω =  is the regression vector. 

The regression vectors are updated online using 
Lu+Λ= 11 ωω                                                                (20) 

)(22 tLyi+Λ= ωω                                                            (21) 
Where  

 Λ  is a stable matrix of order )1()1( −×− nn  such 

that the determinant )(sZsI m=− λ  and the vector 

L  = [0…0, 1].   
Further, the control signal u which is structured earlier can 

be optimized as 
erKk p )sgn(−=                                                             (22) 

pp eyK )sgn(−=θ                                                            (23) 
T

p
T eK 11 )sgn( ωθ −=                                                         (24) 

T
p

T eK 22 )sgn( ωθ −=                                                       (25) 
However any type of stable model reference based adaptive 

control can be utilized as the proposed controller. It can be seen 
from these equations that the control law is adjusted using the 
adaptive mechanism, which always look for any plant 
parametric changes. When there is a drastic change in the plant 
characteristics, this framework of the MRAC fails to control the 
plant efficiently. This is mainly because the plant exhibits 

different modes of operation, which are often referred as multi 
modality [1]. If appropriate reference models for the plant at 
these modes are provided, then exact reference model tracking 
may be achieved. For this purpose, previously discussed fuzzy 
multiple reference model is utilized. The overall scheme is as in 
fig. 2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VI. AN IMPORTANT FAULT TOLERANT CONTROL FEATURE 
Consider the case that known faults are used to develop 

certain modes of operation of the plant. Further assume that 
nominal conditions are the rest of the modes. If a certain mode 
occurs at an instant, which is a combination of faulty modes and 
nominal condition, then the reference model developed by the 
fuzzy system is a fuzzified combination of models belongs to 
the model set Mo. 

Let each mode be represented by a set of fuzzy rules. Then 
the model set will be the combination of the models shown in 
(26) 
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The membership function weights iϑ in (3) represent the 
combination of fuzzy outputs of the mode transition which in 
turn affect the development of model combination at each time 
instant. In this sense, essence of (14) is exactly represented by 
the output of the fuzzy logic system. It has been discussed that 
[14, 24], if the controllers at vertexes are stable, and the control 
is applied on the basis of these states, then the controller will 
also be stable. In this context, the membership-function weights 
act as the probabilistic function of each model and the 
controller is a direct MRAC. The reference model structure 
under faulted regime will be a combination of faulty modes and 
the nominal ones. Considering the proof of stability and 
developing fuzzy reference models that provide model output 
in even when faults occur, the overall controller is tolerant to 
faults. 

VII. SIMULATION EXAMPLE 
The system to be controlled is a single flexible link 

Fig. 2. Overall scheme. 



 
 

 

manipulator with model details as discussed in appendix. The 
proposed approach is applied to this manipulator for tracking 
the angular position. The command signal is applied for eight 
seconds and the tip load is varied arbitrarily at different time 
instant. Out of several case studies performed two cases are 
described below.  These cases are simulated based on two 
different methods that are proposed in section four. The 
observation of tracking error and the output (angular position 
path of the single link manipulator) is shown in each case.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The value of nω  will be evaluated at every instant of time 

depending on two auxiliary inputs, the system parameter a1 and 
load torque. The system parameter a1 has been derived from 
one of the operating state that is induced from output 
measurements. The importance of this state is that it is closely 
related to the control value. Thus the only requirement is that 
the fuzzy structure should acquire the auxiliary states and 
system output.  In order to develop the fuzzy reference model 
generator the first step is to determine the range of the inputs 
and outputs. By simulating and studying the process it was 
found that for the range of load torque [0, 24], closed loop 
system response was best when nω is between [0, 24]. The 
ranges of fuzzy membership functions are as shown in fig. 3. 

A. Case 1 
In this case, the tip load of this manipulator is changed at 

different time instants as in Table I. The reference model 
representation as generalized in method one of section four has 
the following specific form 

TABLE  I  
TIP LOAD VARIATION (CASE A) 

Time Range (sec) 0-3 3-3.5 3.5-6 6-6.8 6.8-8.0 
Load Torque (Nm) 0 15 0 20 0 
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Where  

  the value of ς  is set to 0.7.  
After the division of membership functions, the rule base 

was created depending on system operation modes, which is 
divided into five operating regions; Very Small(VS), Small(S), 
Medium(M), Large (L) and Very Large(VL). The rule base 
created for this specific case is as shown in Table II. 

 
TABLE  II 

RULE BASE (CASE 1) 
 

 
 
 
 

 
 

 

Thus as an example, a load torque of 10 Nm has membership 
functions of 0.5 in S and 0.5 in M (μS=0.5 and μM=0.5). Further, 
an estimated value of a1 of 0.05 has membership functions of 0 
in L and 1 in VL, accordingly the following rules will be fired. 

Rule # 9 (S/L) with μ1=0 in S ( 1ω =5) 
Rule # 10 (S/VL) with μ2=0.5 in S ( 2ω =5) 

Rule # 14 (M/L) with μ3=0 in S ( 3ω =6) 
Rule # 15 (M/VL) with μ4=0.5 in M ( 4ω =6) 

Where  
S/L means when load torque is small and a1 is large then 
the membership function is 0 and the value of nω  is 5.  

Applying the defuzzification rule the extraction process of 

nω is as follows 
[μ1( 1ω ) + μ2( 2ω )+μ3( 3ω )+ μ4 ( 4ω )]/(μ1+ μ2+ μ3+ μ4) which 

makes  

5.5
1

0.5(6)0(6)0.5(5)0(5)
=

+++
=nω                          (28) 

The second order reference model will then be 

25.3011
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Considering the proposed approach using method one, for 
the following manipulator tip load, fuzzy mapping is used for 
the reference model generation. Fig. 4 shows the position 
trajectory plot comparing a single reference model in which 

nω  is kept as five and the above-mentioned approach during 
the load variation (mode change) which various modes of the 
system for duration of eight seconds. It can be seen that the 
single reference model approach shows instability while the 
proposed approach shows successful position trajectory 
tracking as illustrated in fig. 4. This figure also shows the 
trajectory error and the model error. The trajectory error is the 
error between the input command and the output of the system 
(which is the manipulator tip position) and the model error is 
the error between the outputs of the reference model and the 
system. 
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Fig. 3. Membership function details for inputs and outputs. 



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. Case 2 
In this case, the tip load of this manipulator is changed at 

different time instants as in Table III. The reference model 
structure based on method two, which is the identification of 
the eigenvalues can be represented as   
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Where  
          a is a factor that can be determined based on the 

system      
          dynamics requirement.  
 

TABLE  III 
TIP LOAD VARIATION (CASE 2) 

Time Range (sec) 0-3 3-3.5 3.5-6 6-6.8 6.8-8.0 
Load Torque (Nm) 10 10 0 7 0 

 
This value is determined from system auxiliary state.  The 

details regarding the extraction process of reference model 
using (30) is as follows. At first the system gain matrix has been 
generated based on static closed loop control. Then based on 
these, the desired eigen values and vectors are extracted for 
various system modes of operation.  The basis of fuzzy 
reference model generator is to move the reference model 
structure such that the desired eigen vector is close to the 
system eigen vectors as much as possible. To this end based on 
the eigenvalue generation, the dominant poles and zeros are 

changed in this case unlike as in Case 1 leading to a change in 
the zero location. As it can be assessed, the value of the 
constant (a) has been synthesized from the gain matrix required 
to move the reference model structure. The location of the poles 
is also changed by a change in the value of nω .  The effect of 
the change in the natural frequency and the constant ‘a’ derives 
new reference model structure at every time instant. The set of 
fuzzy knowledge base is shown in Table IV. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE IV 
RULE BASE (CASE 1) 

 
 
 
 
 

 
 

 
 
It is observed that the transient response of the system with 

one zero and two poles will be affected by locations of zeros.  
The nω  value of the fixed model is kept constant at two for 
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Fig. 4 . Position tracking with single reference model (dash) and multiple
reference models (bold) (Case a): a) output, b) trajectory error and c) model
error. 

 

Fig. 5. Position tracking with single reference model (dash) and multiple
reference models (bold) (Case b), a) output, b) trajectory error and c) model 
error. 
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this case. For fuzzy reference model, nω  is varied depending 
on the fuzzy rules. It is worth noting that even though fuzzy 
model generation requires various known nω  values, the 
model representation of each of them separately gives the same 
results as when nω  is equal to two. This is due to the reason 

that each of these models with various individual nω  values 
fails to perform at one point or the other in the trajectory. Thus 
the simulation results for each models with various nω  values 
are not shown in both these cases. Fig. 5 shows the responses of 
the system position output with fuzzy reference model 
generation and a fixed model. It can be seen that the fixed 
model shows the instability with the error increasing rapidly as 
in Case 1, while the response of the proposed method achieved 
its objective. For both these cases fig. 6 shows the desired 
trajectory.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

VIII. CONCLUSION 
An adaptive controller based on a new Fuzzy Reference 

Model Generator is proposed for multimodal systems. The 
controller concept, adaptive law and the design methods of the 
fuzzy switching scheme were established. The scheme provides 
soft switched fuzzy reference model and was found stable, 
especially at the modal boundaries when the ‘hard switching’ 
mathematical approach fails. Further the scheme is 
computationally feasible, and fault tolerant. The approach is 
advantageous in the fact that the development of the fuzzified 
knowledge base and further changing the reference model 
alleviates the prevailing computational complexity to develop 
best suitable model at each mode. The feasibility and 
effectiveness of the proposed scheme have been investigated by 
applying to an important and challenging practical system; a 
position control of a single link flexible robotic manipulator. 
Investigation results showed that the proposed scheme 
outperformed both traditional and single reference model 
adaptive controllers.  It is worth noting that the development of 
the knowledge base is the only design process for which system 
modes and operating range should be known a priori. 

APPENDIX 
 

Given the system dynamics [18], the robotic link’s dynamics 
can be represented as below 

)()4(),()3(),()2(),()1( tytytyty
••

==== φφββ          (31-34) 
The variables y(1)- y(4)  are robotic link’s angular position, 
link’s angular velocity, link’s vibration mode, link’s vibration 
mode first derivative respectively. Differentiating we get 

)()4(),()3(),()2(),()1( tytytyty
••••••

==== φφββ               (35-38) 
Emerging from above the complete model of a single link 

manipulator is as follows. 
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Where 
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Corresponding nomenclature is as follows. 

aR and aL : D.C motor resistance and inductance respectively. 

mK : D.C motor torque constant. 

bK : Back e.m.f. constant. 

fT and dK : Torque friction and Damping coefficient respectively. 

n  andη : Gear ratio and gear efficiency respectively. 

E : Young’s modulus of elasticity. 

I : Link’s area moment of inertia with respect to its neutral axis. 

L : Length of the link. 
g : Earth’s gravity. 

ρ : Mass per unit length of the link. 

321 ,, ζζζ and 4ζ : Link’s area moment of inertia w. r. to all other axes.  

The values of the parameters are given in Table V. 
TABLE V 

PARAMETRIC VALUES OF A SINGLE LINK MANIPULATOR 
Ra=8.33 n=65.5 ρ=0.1658 
La=0.00617 η=0.66 ζ1=0.4661541842 
Kb=0.039534088 E=68.9e9 ζ2=0.3835861510 
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Fig. 1. Intelligent Supervisory Loop Approach 
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Fig. 2. Overall scheme. 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Membership function details for inputs and outputs. 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 . Position tracking with single reference model (dash) and multiple reference models (bold) (Case a): a) 
output, b) trajectory error and c) model error. 
 
 
 



  

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Position tracking with single reference model (dash) and multiple reference models (bold) 
(Case b), a) output, b) trajectory error and c) model error.  
 
 
 
 
 



  

 

Fig. 6. Reference Position Trajectory. 
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