
 
 

 

  
Abstract— In this paper a neural network based controller for 

robot positioning and tracking using direct monocular visual 
feedback is proposed. The visual information is provided using a 
camera mounted on the end-effector of the manipulator. A PI 
kinematic controller is proposed to achieve motion control 
objective in the image plane. A Feedforward Neural Network 
(FFNN) is used to compensate for the robot dynamics. The FFNN 
computes the required torques to drive the robot manipulator to 
achieve desired tracking. The stability of combined PI kinematic 
and FFNN computed torque is proved by Lyapunov theory. 
Simulation results are carried out for 3 DOF articulated robot 
manipulator to evaluate the controller performance. 
 

Index Terms— Visual Servoing, Non-linear control systems, 
Feedforward Neural Networks, Perspective Projection. 
 

I. INTRODUCTION 
This paper considers the problem of tracking moving 

objects with a robot end-effector, using visual information 
acquired with a camera mounted on the end-effector itself. 
Generally, these vision techniques that provide dynamically 
closed loop motion control for a robotic manipulator are 
termed as Visual Servoing [1]. The visual servoing techniques 
present an attractive solution to motion control of autonomous 
manipulators evolving in unstructured environments. The 
robot motion control uses direct visual sensory information to 
achieve a desired relative position between the robot and a 
possibly moving object in the robot environment. While 
accomplishing visual servoing, the camera may either be 
statically located in the environment (fixed camera 
configuration) or it may be mounted on the end-effector of the 
manipulator (known as eye-in-hand configuration). With the 
former, camera fixed in the environment captures the images 
of both the robot and target object and the robot is moved in 
such a way that its end-effector reaches the desired target 
[2,3]. With the eye-in-hand configuration, the manipulator 
move in such a way that the projection of a static or moving 
object will be at a desired location in the image as captured by 
the camera [4,5,6,7]. The visual servoing systems are also 
classified as Position Based Visual Servoing (PBVS) and 
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Image Based Visual Servoing (IBVS) [1]. In this paper we 
develop an IBVS system with eye-in-hand configuration. 
IBVS depends on the selection of features from the image of 
the object and uses features directly in the visual sensory 
output without computing the object position and orientation. 
Feature based approach was proposed by Weiss et al. in [8]. 
Feddema et al. [9] proposed a scheme to generate a trajectory 
in the image feature space. Papanikolopoulos et al. in [10] 
introduced sum of squared errors (SSD) optical flow and 
presented many control algorithms e.g. proportional-integral 
(PI), pole assignment and linear quadratic Gaussian (LQG). 
Papanikolopoulos and Khosla also considered an adaptive 
controller based on online estimation of the relative distance 
of the target and the camera obviating the need of off-line 
camera calibration [11]. Other adaptive controllers are 
addressed in [12,13,14]. In most of the above-cited works, the 
nonlinear robot dynamics is not taken in account in the 
controller design and very few authors have considered the 
issue of dynamic control. Nasisi and Carelli [15] considered 
the linearly parameterized model of robotic manipulator and 
presented an adaptive controller to compensate for full robot 
dynamics. Zergeroglu et al. [16] considered the nonlinear 
tracking controllers with uncertain robot-camera parameters 
for planar robot manipulators. Bascetta and Rocco considered 
the dynamic effects of both rigid and flexible motion of 
manipulators and presented a task space oriented control law 
with eye-in-hand configuration [17]. Recently, there has been 
increasing interest in the use of intelligent control techniques 
e.g. artificial neural networks. Due to their learning 
capabilities and inherent adaptiveness, ANN finds a good 
application in control design. Yet the use of neural network 
technologies with visual feedback in less addressed in 
literature e.g. [18]. The uses of application of neural networks 
learning robot dynamics are seen in [19,20,21]. Other works 
relating to visual servoing are reported in [22,23,24,25,26]. In 
this paper we use a feedforward neural network to compensate 
for the full robot dynamics that learns the robot dynamics 
online and requires no preliminary off line learning. The 
controller is designed as a combination of a PI kinematic 
controller and feedforward neural network (FFNN) controller 
that computes the required torque signals to achieve the 
tracking. The visual information is provided using the camera 
mounted on the end-effector and the defined error between the 
actual image and desired image positions is fed to the PI 
controller that computes the joint velocity inputs needed to 
drive errors in the image plane to zero. Then the FFNN 
controller is designed such that the robot’s joint velocities 
converges to the given velocity inputs. The FFNN controller 
assumes no knowledge linearly parameterized robot model 
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like other adaptive schemes. The stability analysis of 
combined PI kinematic and FFNN computed torque controller 
is carried out using Lyapunov theory.  

The whole paper is organized as follows. In Section II, the 
robot and camera models are considered. A review of 
feedforward neural networks is given in Section III. The NN 
controller design is presented in Section IV. Numerical 
simulation results are included in Section V. Section VI gives 
concluding remarks. 

 

II. MODELING OF A ROBOTIC HAND EYE MANIPULATOR 

A. Dynamic Model 
Based on the Euler-Lagrangian formulation, in the absence 

of friction, the motion equation of an n-link rigid, non-
redundant robotic manipulator can be expressed in joint space 
as 

τ=++ )(),()( qGqqqCqqM m              (1) 

where nRq ∈ is the joint displacement vector, nnRqM ×∈)( is 
the inertia matrix, n

m RqqC ∈),( is the vector characterizing 
Coriolis and Centrifugal forces, nRqG ∈)(  is the gravitational 

force, nR∈τ  is the joint space torque. The model (1) has 
some fundamental properties that can be exploited in the 
controller design. 

Property A.1: )(qM  is a symmetric positive definite matrix 
and bounded above and below i.e. there exits positive 
constants Mα and Mβ  such that 

nMnM IqMI βα ≤≤ )(  

Property A.2: The matrix ),(2)( qqCqM m−  is skew-
symmetric. 

B. Differential Kinematics 
The differential kinematics of a manipulator gives the 

relationship between joint velocities q  and the corresponding 

end-effector linear velocity vW  and angular velocity ωW . 
This mapping is described by a )6( n×  matrix, termed as 
geometric Jacobian )(qJ g , which depends on the manipulator 
configuration. 
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where PJ is the )3( n× matrix relative to the contribution of 

the joint velocities q  to the end-effector linear velocity vW  
and OJ is the )3( n× matrix relative to the contribution of the 

joint velocities q  to the end-effector angular velocity ωW . If 
the end-effector position and orientation is expressed by 
regarding a minimal representation in the operational space, it 
is possible to compute the geometric Jacobian matrix through 
differentiation of the direct kinematics with respect to joint 
variables. The resulting Jacobian, termed analytical Jacobian 

)(qJ A  is related to the geometric Jacobian through [28]: 
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where )(qT is a transformation matrix that depends on the 
minimal parameters of the end-effector orientation. 

C. Image plane Modeling 
Let a pinhole camera be mounted at the robot end-effector. 

The image of a 3D object, captured by the camera consists of a 
two-dimensional brightness pattern in the image plane that 
moves in the image plane as the object moves in the 3D space. 
Let the origin of the camera coordinate frame (end-effector 
frame) with respect to the robot coordinate frame be 

3)( Rqpp C
W

C
W ∈= . The orientation of the camera frame with 
respect to the robot frame is denoted as )3()( SOqRR C

W
C

W ∈= . 
The presented control strategy is based on the selection of the 
feature points of the object’s image. It is assumed here that the 
image features are the projection onto the 2D image plane of 
3D points in the scene space and the images are assumed to be 
noise-free. A perspective projection with a focal length λ is 
also assumed, as depicted in Fig. 1. An object feature point 

O
C p with coordinates [ ] 3Rppp

T
z

C
y

C
x

C ∈  in the camera 
frame projects onto a point in the image plane with image 
coordinates [ ] 2Rvu T ∈ . The position [ ] 2Rvu T ∈=ξ of an 
object feature point in the image will be referred to as an 
image feature point [27]. In this paper, it is assumed that the 
object can be characterized by a set of feature points. Some 
preliminaries concerning feature points with stationary and 
moving objects are recalled below [15]. 

 

Fig.1 Perspective Projection 

C.1.  Stationary Object 

Let 3RpO
W ∈ be the position of an object feature point 

expressed in robotic manipulator coordinate frame. Therefore, 
the relative position of this object feature located in the robot 
workspace, with respect to camera coordinate frame 
is [ ]Tz

C
y

C
x

C ppp . According to the perspective projection the 
image feature point depends uniquely on the object feature 
position O

W p  and camera position and orientation, and is 



 
 

 

expressed as 
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where α  is the scaling factor in pixels/m due to camera 
sampling and 0<z

C p .The time derivative yields 
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On the other hand, the position of the object feature point 
with respect to the camera frame is given by 
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Using general formula for velocity of a moving point in a 
moving frame with respect to a fixed frame [28] and 
considering a fixed object point, the time derivative of (6) can 
be expressed in terms of the camera linear and angular 
velocities as [29] 
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After performing these operations, we have 
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where C
W v  and C

Wω  denotes the camera’s linear and 
angular velocities with respect to robot frame respectively. 
The motion of the image feature point as a function of the 
camera velocity is obtained by substituting (8) into (5): 
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Instead of using coordinates x
C p  and y

C p  of the object 
feature described in camera coordinate frame, which are a 
priori unknown, it is usual to replace them by coordinates 
u and v  of the projection of such a feature point onto the 
image frame. Therefore, by using (5) 
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where ),( z
C

image pJ ξ is the so-called image Jacobian defined 
by [29]: 
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Finally, by using (2) and (3) we can express ξ  in terms of 
robot joint velocity q as 
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C.2.  Moving Object 
When the object moves in the robot manipulator 

framework, the derivative of (6) can be expressed as 
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where C
W v and C

Wω are the linear and angular velocity of the 
camera with respect to the robot frame. The movement of the 
feature point into the image plane as a function of the object 
velocity and camera velocity is expressed by substituting (13) 
into (5): 
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Finally, by using (2) and (3) we can express ξ  in terms of 

robot joint velocity q as 
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III. FEEDFORWARD NEURAL NETWORKS 
A two-layer feedforward neural network with n input units, 

m output units and N  units in the hidden layer, is shown in 
the Fig. 2. 
  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Feedforward Neural Network 

The output vector y is determined in terms of the input 
vector x by the formula 
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where (.)σ  are the activation functions of the neurons of the 
hidden-layer. The inputs-to-hidden-layer interconnection 
weights are denoted by jkv  and the hidden-layer-to-outputs 

interconnection weights by ijw . The bias weights are denoted 

by wivj θθ , . There are many classes of activation functions e.g. 
sigmoid, hyperbolic tangent and Gaussian. The sigmoid 
activation function used in our work, is given by 

 xe
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By collecting all the NN weights ijjk wv ,  into matrices of 

weights TT WV , , we can write the NN equation in terms of 
vectors as 
 )( xVWy TTσ=            (19) 

with the vector of activation functions defined by 
T

nzzz )]()([)( 1 σσσ =  for a vector nRz ∈ . The bias weights 
are included as the first column of the weight matrices. To 
accommodate bias weights the vectors x and (.)σ  need to be 
augmented by replacing 1 as their first element e.g. 

T
nxxxx ]1[ 21≡ . 

B. Function Approximation Property 

Let )(xf be a smooth function from nR  to mR . Let 
n

x RU ⊆ then for xUx ∈ there exists some number of hidden 
layer neurons N and weights W and V such that [30] 
 εσ += )()( xVWxf TT           (20) 

The value of ε  is called the NN functional approximation 
error. In fact, for any choice of a positive number Nε , one can 
find a NN such that Nεε <  in xU . For a specified value of Nε  
the ideal approximating NN weights exist. The, an estimate of 

)(xf can be given by 

 )ˆ(ˆ)(ˆ xVWxf TTσ=           (21) 

whereŴ and V̂ are estimates of the ideal NN weights that 
are provided by some on-line weight tuning algorithms. 

B. Error Backpropagation Algorithm 
This is a common weight-tuning algorithm that is based on 

gradient descent algorithm. If the NN is training off-line to 
match specified exemplar pairs ),( dd yx , with dx  the ideal 
NN input that yields the desired NN output dy , then the 
continuous-time version of the backpropagation algorithm for 
the two-layer NN is given by 
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where GF ,  are positive definite design learning parameter 
matrices. The backpropagated error Ε  is selected as the 
desired NN output minus the actual NN output yyd −=Ε . 
For the scalar sigmoid activation function (18) the hidden-
layer output gradientσ ′ˆ  is 
 )}]ˆ({)}[ˆ({ˆ d

T
d

T xVdiagIxVdiag σσσ −≡′         (23) 
where I denotes the identity matrix, and }{zdiag  means a 

diagonal matrix whose diagonal elements are the components 
of the vector z . In the next section design of NN controller is 
presented. 

 

IV. NN CONTROLLER DESIGN 
In this section we consider the design of an image based 

control algorithm for tracking of an object moving along an 
unknown curve. It is assumed that the object moves along a 
smooth trajectory with bounded velocity )t()t( O

W
O

W vp =  and 
acceleration )t(dt/)t(d O

W
O

W ap = . It establishes a practical 
restriction on the object trajectory. Also, there exists a 
trajectory in the joint space )t(dq  such that the vector of 
desired fixed features dξ  is achievable, ensuring that the 
control problem is solvable. dξ  is taken to be a constant 

feature vector in the image plane. The depth z
C p  i.e. the 

distance from the camera to the object is available to be used 
by the controller.  
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Now the control problem can be formulated. The control 
problem is to find out a control law so that control error in the 
image plane )t()t(~

d ξξξ −=  is ultimately bounded in the 
small ball rB . An auxiliary velocity control input that achieves 
tracking for (15) is given by 

( ) O
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Oi pJJdttKtKJtu ++ −+= ∫ )(~)(~)( P ξξ         (24) 

where PK  and iK  are design matrices, termed as 

proportional gain and integral gain matrices and 1−+ = JJ  if 
J is invertible else +J is the pseudo-inverse defined as 

1)( −+ = TT JJJJ . Assuming perfect velocity tracking and 
substituting )(tu for q  in (15) we get 

0)(~)(~)(~
P =++ ∫ dttKtKt i ξξξ           (25) 

Taking the first derivatives of (25) yields 

0~~~
P =++ ξξξ iKK            (26) 

To analyze the stability of (26), the following Lyapunov 
function is chosen: 
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From (26) and (27), we have 
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Therefore, from Lyapunov stability and LaSalle’s Theorem, 

we conclude that 0)(~
→tξ  as ∞→t . This implies that 

dt ξξ →)( . 

Given the desired velocity 1n×∈ Ru , define the auxiliary 
velocity tracking error as )()()( tvtute −= . Differentiating )(te  
and using (1), the robot dynamics may be written in terms of 
the velocity tracking error as 

)()()(),()()( yftteqqCteqM m +−−= τ          (29) 
where )()(),()()()( qGtuqqCtuqMyf m ++=  is called 

robot nonlinear function. The vector y  is given 
by T][ TTT uuvy = . The function )(yf contains all the robot 
parameters such as masses, moments of inertia, gravity, 
friction etc. This function is partially known or unknown. 
Therefore, a suitable control input for velocity following is 
given by  

)(ˆ)( teKft v+=τ            (30) 
with vK  a diagonal positive definite gain matrix, and 

)(ˆ yf an estimate of the robot function that is provided by a 
feedforward neural network (FFNN). Now, with this control 
the closed-loop error system becomes. 
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where fff ˆ~
−= is the functional estimation error. The 

functional approximation of )(ˆ yf with a FFNN may be given 
as  

)ˆ(ˆ)(ˆ yVWyf TTσ=            (32) 

Using this FFNN functional approximation the velocity 
error dynamics becomes 
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In order to proceed further we need the following 
definitions [20]. 

Definition 1:  The solution of a nonlinear system with state 
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the largest and smallest eigenvalue of a matrix. To be specific 
we denote the p-norm by 

p
⋅  and the absolute value as ⋅ . 

Definition 3:  Given nm
ij RBaA ×∈= ],[  the Frobenius norm 
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T

F
aAAtrA

,

22  with {}⋅tr  as the trace 

operator. The associated inner product is { }., BAtrBA T
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Definition 4:  For notational convenience, define the matrix of 
all NN weights as { }VWdiagZ ,≡  and the weight estimation 

errors as ZZZandVVVWWW ˆ~ˆ~,ˆ~
−=−=−= .  The ideal 

NN weights bounded so that MF
ZZ ≤  with known MZ . 

Also define the hidden layer output error for a given y  as 

).ˆ()(ˆ~ yVyV TT σσσσσ −=−=  

Adding and subtracting )ˆ( yVW TTσ  in (33), we get 
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The Taylor series expansion of )( yV Tσ  about given yV T  
gives us 
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=′ σσ  the Jacobian matrix and 2)(zO  

denoting terms of second order. Denoting )ˆ(ˆ yV Tσσ ′=′  we 
have 2)~(~ˆ~ yVOyV TT +′= σσ . Replacing for σ~  in (34) we get 
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where the disturbance terms are 
εσ ++′= 2
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Finally, adding and subtracting yVW TT ˆˆ~ σ ′   (36) becomes 
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where the disturbance terms are 
εσ ++′= 2)~(ˆ~)( yVOWyVWtw TTTT              (39) 

A. NN Weights Update Law 
With positive definite design parameters GF ,  and 0>κ , 

the adaptive NN weight update law is given by 
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Then the errors state vector e  and W~ V~  are uniformly 
ultimately bounded and the error state vector e  can be made 
arbitrary small by adjusting the weights. 
Proof:  Consider the following Lyapunov function candidate 
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The time derivative L  of the Lyapunov function becomes 
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From property A.2, the matrix ),(2)( qqCqM m− is skew-
symmetric, hence 
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( )
( )
( )

( )

( )VeVWyeVWyeVtr

WeW

eyVWyeVWeW
tr

weeKe

VeVWyeVtr

WeWyeVWeWtr

weyVWeyVWeeKeL

TTTTTTTTT

T

TTTTTTTT

T
v

T

TTTTT

TTTTTT

TTTTTTT
v

T

ˆ~ˆˆ~ˆˆ~
ˆ~

ˆˆˆ~~ˆ~ˆ~

ˆ~ˆˆ~
ˆ~~ˆ~ˆ~

ˆˆˆ~~ˆˆ

κσσ

κ

σσσσ

κσ

κσσ

σσσ

+′+′−+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

′−+′+−
+

+−=

+′−+

+′+−+

+′−+′+−=

 

or ( ) ( )VeVtrWeWtrweeKeL TTT
v
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Taking norm of both sides, assuming 0=w  (though w can 

be shown to be bounded) we get 
 ( )22
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The following inequality is used in the derivation of  (43) 
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Using Cauchy-Schwartz inequality, we 
have MFF

ZZZZ ~,~
≤ , and then the Eq. (4.21) is derived. 

Completing the square term, we get 
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The expression for L  given by (43) remains negative as 
long as the quantity in the bracket is positive i.e. either (45) or 
(46) hold 
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where Ze CandC ~  are the convergence regions. According 
to Lyapunov theory and LaSalle extension the UUB of e  and 
Z~  is proved [20]. 

 

V. SIMULATION RESULTS 
The simulation has been performed for three-link articulated 

robotic manipulators (Fig. 3) tracking an object point moving 
on an elliptical path. The mathematical model of the robotic 
manipulator is expressed as 
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Fig. 3 
The parameter values for the model are taken as 

8.9,5.2,5.2.5.2,2,4,5 321321 ======= gaaammm  
The camera parameters are set to be 01.0,1000 == λα . The 

gain parameters are 
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The point object is considered moving on the following 
elliptical path with 1.0=ω  
 [ ]T

O
W ttp 0)sin(5.15.2)cos( ωω += . 

The target point for image feature is taken to be the center 
of the image plane. The initial values for joint angles and joint 
velocities are 10/)0(,4/)0(,10/)0( 321 πππ === qqq  

0)0(,0)0(,0)0( 321 === qqq . The architecture of the FFNN 
is composed of 9 input units & 1 bias unit, 10 hidden 
sigmoidal units & 1 bias unit and 3 output units. The learning 

rate in the weight-tuning algorithm is 
0001., 1011 === κandIGIF . The simulation of the whole 

system is shown for 1 second (transient response) and 15 
seconds (steady state response). 
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VI. CONCLUSION 
In this paper a stable control algorithm is presented for 

visual tracking of moving objects with for robot manipulators 
with camera-in-hand configuration using direct visual 
feedback with unknown robot dynamics. The unknown robot 
dynamics is fully compensated with a feedforward neural 
network. The neural network learns the dynamics online and 
requires no preliminary learning. The NN weights may be 
simply initialized to zero and errors may be kept arbitrarily 
small by increasing the gain vK . The stability of the overall 
system is proved using Lyapunov function that is generated by 
weighting matrices. Simulation of 3 DOF manipulator 
tracking an object point feature, moving on an elliptical path is 
carried out to illustrate the control methodology. The 
simulation results show that the feedforward neural network 
with the on-line updating law can compensate the full robot 
dynamics efficiently. 

REFERENCES 
[1] Hutchinson S., Hager G.D. and Corke P.I, “A Tutorial on Visual Servo 

Control,” IEEE Trans. Robot. Automa, Vol. 12, No. 5, 1996, pp 651-
670. 

[2] Allen P.K., B. Yoshimi and A. Timcenko, “Real-time Visual Servoing,” 
Proc. IEEE Inter. Conf. Robot. Autom, 1991, pp. 851-856. 

[3] Koivo A.J. and Hounshangi N., “Real-Time Vision Feedback for 
Servoing of a Robotic Manipulator with Self-tuning Controller,” IEEE 
Trans. Sys. Man Cyber, Vol. 21, No.1, 1991, pp 134-142. 

[4] Papanikolopoulos N.P. and Khosla P.K., “Feature-Based Robotic Visual 
Tracking of 3-D Translational Motion,” Proc. 30th Conf. Decision 
Contr, Brighton-England, 1991, pp 1877-1882. 

[5] Papanikolopoulos N.P., Nelson B. and Khosla P.K., “Monocular 3-D 
Visual Tracking of a Moving Target by an Eye-in-Hand Robotic 
system,” Proc. 31st Conf. Decision Contr, Tucson-Arizona, 1992, pp 
3805-3810. 

[6] P. Allen, A. Timcenko, B. Yoshimi and P. Michelman; “Automated 
Tracking and Grasping of a Moving Object with a Robotic Hand-eye 
System,” IEEE Trans. Robot. Autom, Vol. 9, No. 1, 1993, pp 152-165. 

[7] K. Hashimoto, T. Ebine and H. Kimura, “Visual Servoing with Hand-
Eye Manipulator – Optimal Control Approach,” IEEE Trans. Robot. 
Autom, Vol. 12, No. 5, 1996, pp 766-774. 

[8] Weiss Lee L., Sanderson A.C. and Neuman C.P., “Dynamic Sensor 
based Control of Robots with Visual Feedback,” IEEE Journ. Robot. 
Autom, Vol. RA-3, No. 5, 1987, pp 404-417. 

[9] Feddema John T. and Mitchell Owen R., “Vision-Guided Servoing with 
Feature-Based Trajectory Generation,” IEEE Trans. Robot. Autom, Vol. 
5, No. 5, 1989, pp 691-700. 

[10] Papanikolopoulos N.P., Khosla P.K. and Kanade T., “Visual Tracking of 
a Moving Target by a Camera Mounted on a Robot: A Combination of 



 
 

 

Control and Vision,” IEEE Trans. Robotic. Autom, Vol. 9, No. 1, 1993, 
pp 14-35. 

[11] Papanikolopoulos N.P. and Khosla P.K., “Adaptive Robotic Visual 
Tracking: Theory and Experiments,” IEEE Trans. Automatic Contr, Vol. 
38, No. 3, 1993, pp. 429-445. 

[12] Asada M., Tanaka T. and Hosoda K., “Adaptive Binocular Visual 
Servoing for Independently Moving Target Tracking,” Proc. IEEE Inter.        
Conf. Robotic. Autom, San Francisco, CA, 2000. 

[13] Hsu L., Costa R. and Aquino P., “Stable Adaptive Visual Servoing for 
Moving Targets,” Proc. 2000 American Contr. Conf, Vol. 3, June 28–
30, 2000, pp. 2008–2012. 

[14] Astofli A. Hsu L., Netto M. and Ortega R., “A solution to the adaptive 
visual servoing problem,” Proc. IEEE Inter. Conf. Robot. Autom, Vol. 1, 
May 21–26, 2001, pp. 743–748. 

[15] Nasisi O and Carelli R., “Adaptive Servo Visual Robot Control,” Robot. 
Autonomous Sys, Vol. 43, 2003, pp 51-78. 

[16] Zergeroglu E., Dawson D.M., M. S. de Queiroz and A. Behal, “Vision-
Based Nonlinear Tracking Controllers with Uncertain Robot-Camera 
Parameters,” IEEE/ASME Trans. Mechatron, Vol. 6, No. 3, 2001, pp. 
322-337. 

[17] Bascetta L. and Rocco P., “Task Space Visual Servoing of Eye-in-Hand 
flexible Manipulators,” Proc. IEEE/ASME Intern. Conf. Advanced Intell. 
Mechatron. AIM, 2003, pp. 1442-1448. 

[18] Hashimoto H., Kubota T., Sato M. and Harashima F., “Visual Control of 
Robotic Manipulators Based on Neural Networks,” IEEE Trans. Indust. 
Electron, Vol. 39, No. 6, 1992, pp. 490-496. 

[19] Ishiguro A., Furuhashi T., Okuma S. and Uchikawa Y., “A Neural 
Network Compensator for Uncertainties of Robot Manipulators,” IEEE 
Trans. Indust. Electron, Vol. 39, No. 6, 1992, pp 565-570. 

[20] Lewis F.L., Jagannathan S. and Yesildirek A., Neural Network Control 
of Robot Manipulators, Taylor & Francis, 1999. 

[21] Lewis F.L., Liu K. and Yesildirek A., “Neural Net Robot Controller with 
Guaranteed Tracking Performance,” IEEE Trans. Neural Net, Vol. 6, 
No. 3, 1995, pp. 703-715. 

[22] Cheah C., Lee K., Kawamura S. and Arimoto S., “Asymptotic Stability 
of Robot Control with Approximate Jacobian Matrix and its Application 
to Visual Servoing,” Proc. 39th IEEE Conf. Decision Contr, Vol. 4, 
December 12–15, 2000, pp. 3939–3944. 

[23] Corke P. and S. Hutchison. “Real-Time Vision, Tracking and Control,” 
Proc. IEEE Inter. Conf. Robot. Autom, San Francisco, CA, 2000. 

[24] Espiau B., Chaumette F. and Rives P., “A New Approach to Visual 
Servoing in Robotics,” IEEE Trans. Robot. Autom, Vol. 8, No. 3, 1992, 
pp 313-326. 

[25] Hager G.D., “A modular system for robust positioning using feedback 
from stereo vision,” IEEE Trans. Robot. Autom, Vol. 13, 1997, pp 582-
670. 

[26] Sukavanam N., “Image Based Visual Servo Control in Robotics,” Proc. 
Conf. Math. Appl. Engg. Indust, University of Roorkee, Narosa 
Publishing Home, 1996, pp 263-270. 

[27] Feddema J., Lee C. and Mitchell O.R., “Weighted Selection of Image 
Features for Resolved Rate Visual Feedback Control,” IEEE Trans. 
Robot. Autom, Vol. 7, 1991, pp 31-47. 

[28] Craig J.J., Introduction to Robotics Mechanics and Control, Addison-
Wesley, 1986. 

[29] Hashimoto K., Kimoto T., Ebine T. and Kimura H., “Manipulator 
Control with Image – Based Visual Servo,” Proc. IEEE Inter. Conf. 
Robot. Autom, 1991, pp. 2267-2272. 

[30] Hassoun M.H., Fundamentals of Artificial Neural Networks, Prentice-
Hall of India, 1998. 

[31] Sciavicco L. and Siciliano B., Modeling and Control of Robot 
Manipulators, McGraw-Hill, 1996. 

 


