
 
 

 

 

 

  

Abstract—This paper presents a generalized linear quadratic 
Gaussian and loop transfer recovery method to design an 
optimal lateral control system for an F-16 aircraft. The 
traditional linear quadratic Gaussian and loop transfer 
recovery method has been quite popular for aircraft control 
system design. In the proposed method we derive an optimal 
control law to minimize a generalized linear quadratic 
performance index to achieve better recovery quality in the 
LTR process and better some performance in time-domain 
responses and frequency-domain responses as well. The 
resulting controller can achieve a prescribed degree of stability 
even in the face of a non-minimum phase problem. Finally, the 
numerical simulation of an optimal lateral control system for an 
F-16 aircraft demonstrates the proposed method can provide 
good robustness and performance properties in both time- and 
frequency-domain responses. 

Index Terms—Generalized linear quadratic Gaussian, 
Loop transfer recovery, Optimal control 

I. INTRODUCTION 
 powerful Linear Quadratic Gaussian and Loop Transfer 
Recovery (LQG/LTR) approach, originally proposed by 

Doyle et al. [1],  is an optimal control design for many 
multivariable systems. In some practical circumstances the 
dynamics of controlled plant may not be exactly modeled, 
and there may be system disturbances and measurement 
noises in the plant. The traditional LQG/LTR method can 
provide good performance and guaranteed stability in the face 
of such noises.  It allows such good robustness and 
performance properties with a prominent “loop shaping” 
concept for the principal gains of the return ratio in a two-step 
design procedure. The first step is to design an optimal 
state-feedback controller subject to a Linear Quadratic (LQ) 
performance index and also “loop shaping” a target feedback 
loop evaluated at the input of plant to meet the satisfactory 
specifications. The resulting static state-feedback controller 
has certain guaranteed robustness properties with infinite 
gain margin and at least 60  phase margin in each input 
channel. The second step is to design a Kalman filter to make 
the return ratio at the input of the LQG-compensated plant 
sufficiently close to the above target feedback loop as 
possible. The adoption of Kalman filter can provide some 
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built-in robustness in the presence of system modeling 
uncertainty and noises [3]. The literatures [4]-[10] have 
adopted above design procedure and made much contribution 
to the improvement in the recovery quality of target feedback 
loop function for a general system that includes both 
minimum- phase and non-minimum phase systems. In 
addition, they have paid much attention to the Kalman filter 
design for the recoverable quality of the return ratio in 
frequency-domain requirements. On the other hand, 
Anderson et al. [11] have used the Hamilton-Jacobi equation 
to design a state-feedback controller with a prescribed degree 
of stability to minimize a modified LQ performance index. 
This motivates us to develop a Generalized LQG/LTR 
(GLQG/LTR) method with a Generalized LQ (GLQ) 
performance index to better the recovery quality and some 
performance. 

From practical point of view, it is appropriate to design the 
return ratio at the output of the plant rather than the input 
point. The design procedure is dual to that described above. 
According to the separation principle, a Kalman filter is first 
designed to provide an optimal estimate of the state vector 
and to shape the principal gains of the target feedback loop at 
the output of the plant to meet the requirements. Then, an 
optimal state-feedback controller is designed to make the 
return ratio at the output of LQG-compensated plant 
sufficiently converge toward the resulting target feedback 
loop in the LTR process as close as possible. The proposed 
GLQG/LTR method also adopts above design procedure for 
practical consideration. In addition, we design a 
state-feedback controller subject to a tunable GLQ 
performance index in the LTR process. The resulting 
controller can provide a prescribed degree of stability.  

For easy of presentation, the problem formulation of an 
optimal lateral control system for F-16 aircraft is first briefed 
in Section II. And then we design the Kalman filter for target 
feedback loop, as well as state-feedback controller with a 
prescribed degree of stability in the LTR procedure. In 
Section III, we demonstrate an optimal lateral control system 
design for an F-16 aircraft with the proposed method, and 
comparisons with that obtained by the traditional LQG/LTR 
method are also given. Finally, brief conclusions are drawn in 
Section IV. 

II. PROBLEM AND METHODOLOGY FORMULATION 

A. F-16 Aircraft Lateral Model 
A nonlinear F-16 model has been linearized at some 
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nominal flight condition by Stevens and Lewis [11]. The state 
variables of lateral dynamic and are sideslip β, bank angle φ , 
roll rate p , and  yaw rate r . The state variables rδ  and aδ  
are also introduced by the deflections of aileron and rudder 
actuators with the approximating transfer function 
20.2/(s+20.2). The aircraft turn coordinator control system in 
Fig. 1 is to provide coordinated turns by making the bank 
angle follow a desired command and simultaneously keep the 
sideslip angle at zero as possible. Therefore, it is a 
diagonalizable plant with a two-channel input vector 

[ ]Tuuu βφ=  and a two-variable output vector [ ]Ty βφ=  . 
The principal gains of the linearized aircraft dynamics at a 
nominal flight condition show constant values and wide 
separation of principal gains at lower frequencies. The plant 
is a type-0 system with constant steady state error in the 
performance of reference command tracking. To eliminate 
the steady-state error and make the speed of the system 
response in all input channels be nearly the same, two 
integrators are inserted in each input channel along with a 
pre-compensator to ensure the balance of the principal gains 
at lower frequency. Lewis [12] has developed the method to 
design the pre-compensator for the low-frequency balancing. 
The overall state vector including aircraft state variables, 
actuators, and integrators is defined as  

[ ]Trarpx βφ εεδδφβ=             (1) 
And the resulting augmented system is expressed in the form 
of state-variable model. The state equation is  

)()()( tButAxtx +=                           (2) 
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And the output equation is 
)(tCxy =                                  (5) 
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The lateral control system of F-16 aircraft is aimed to provide 
coordinated turns by making the bank angle swiftly track a 
desired command and simultaneously keep the sideslip angle 
at zero as possible. Therefore the tracking error is  
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B. Problem Definition 
Suppose the plant is generally described by the dynamic 

equations in the form of state-space representation shown in 
Fig. 2 as follows 

)()()()( twtButAxtx Γ++=                       (8) 
and     

)()()( tvtCxty +=                                (9) 

where n)( ℜ∈tx , m)( ℜ∈tu , and q)( ℜ∈ty  are the state, 

input, and output vectors, respectively, nn×ℜ∈A , 
mn×ℜ∈B , pn×ℜ∈Γ , and nq×ℜ∈C  are the state, input of 

plant, input of disturbance, and output matrices, respectively. 
The system disturbance )(tw  and the measurement noise 

)(tv  are p- and q- dimensional uncorrelated Gaussian white 
noise processes with zero-mean, and the associated 
covariance matrices are defined as:   

)()()}()({ τδτ −= ttWwtwE T                    (10) 

)()()}()({ τδτ −= ttVvtvE T                     (11) 
and 

0)}()({ =τTwtvE                           (12) 
where }{⋅E  is an expectation function operator, )(tW  and 

)(tV  are the system disturbance and measurement noise 
covariance matrices, respectively. The performance index 
can be modified in the form of generalized GLQ 

})]()()()()[2exp(5.0{
0∫ += ft TT dttRututQetetEJ α    (13) 

where Q  and R are mm ×  positive semi-definite and  
positive-definite weighting matrices, respectively, and α  is a 
nonnegative constant which can provide with the 
compensated plant with a prescribed degree of stability in the 
LQ regulation problem. If we choose 0=α , then an optimal 
state-feedback controller is designed by the traditional 
LQG/LTR method. To have a prescribed relative degree of 
stability and better good recovery quality as well as 
performance properties, we adopt the proposed GLQG/LTR 
approach to have another degree of freedom to manipulate the 
nonnegative parameter α .  

C. Methodology Formulation 
According to the separation principle, we firstly design a 

Kalman filter to provide an optimal estimated state vector and 
shape the principal gains of the return ratio at the output of the 
plant to meet the system specifications, and then design an 
optimal state-feedback controller subject to the GLQ 
performance index in the LTR process. 

1) Kalman filter design 
The Kalman filter would be designed by substituting )(tx  

with )(ˆ tx , which is defined by the following state estimation 
equation 

)ˆ(ˆˆ xCyKBuxAx f −++=                        (14)  

where fK  is a Kalman-filter gain matrix defined as 



 
 

 

 

 

1−= VCPK T
ff                                  (15) 

and fP  is the covariance of xx ˆ− , defined as 

])ˆ)(ˆ[( T
f xxxxEP −−=                         (16)  

which can be determined by the following Filter Algebraic 
Riccati Equation (FARE) 

01 =−ΓΓ++ −
f

T
f

TT
ff CPVCPWAPAP        (17) 

There are two assumptions for the existence of the Kalman 
filter. To assume that ) ,( WA Γ  is reachable means the 
system disturbance on the plant couples with the plant 
directly on the states, thus the input matrix of disturbance Γ  
is chosen as the identity matrix. Another assumption that 

0>V  means the measurement noise corrupts the output 
vector. The Kalman-filter gain matrix for a general system 
can be determined by manipulating the covariance matrices 
W  and V . The Kalman filter is used to shape the open-loop 
principal gains of the return ratio ft KAsICsG 1)()( −−−=  to 

meet the required specifications. )(sGt  is called a target 
feedback loop. The associated sensitivity function and 
complementary sensitivity function are then defined as 

11 ])([)( −−−+= ff KAsICIsS                     (18) 

and  
)()( sSIsT ff −=                             (19) 

The key points of a Kalman filter design are to meet the 
crossover frequencies of the principal gains of return ratio for 
the open-loop transfer function, to balance the principal gains 
as possible, and to adjust the low-frequency behavior. In 
addition, the suitable step responses of the target feedback 
loop are considered. 

2) Recovery target loop transfer function at plant output 
An optimal control law for the GLQ problem is derived as 

follows. According to the associated performance index 
defined as (13), the corresponding Hamilton function can be 
defined as 

)ˆ()ˆ)(2exp(5.0 BuxAPRuuQxxtH TTT +++−= α      (20) 
The optimal control law can be derived by satisfying the 
Euler-Lagrange equations, which can be obtained  

PBRtu T1)2exp( −−−= α                           (21) 
Assume that xPP c ˆ= . After some manipulations, we have 
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Since (22) is always true for any x̂ , we have   
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According to a sub-optimal control law, the control input can 
be defined   

)(ˆ)( txKtu c−=                               (24) 
where cK  is the gain matrix of state-feedback controller 
defined as  

c
T

c PBRK 1−=                                (25) 
where cP  is a positive definite symmetric matrix, which 
satisfies the following Controller Algebraic Riccati equation 
(CARE).    

0)()( 1 =+−+++ − QPBBRPPIAIAP c
T

cc
T

c αα     (26) 
Therefore, the closed-loop dynamic equation of compensated 
system can be arranged as 
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and  
[ ][ ] [ ][ ]Tc

T tvtwtrItxtxCty )()()(00)(ˆ)(0)( +=  (28) 
Since the transfer function of observer-based state- feedback 
controller is  

ffcc KCKBKAsIKsK 1)()( −++−−=                   (29) 

The return ratio at the output of compensated plant is  
)()( sKsG  

ffcc KCKBKAsIBKAsIC 11 )()( −− ++−−−=      (30) 

The associated sensitivity function and complementary 
sensitivity function for the compensated plant are 
respectively defined as 

1)]()([)( −+= sKsGIsSGK                     (31) 
and 

)()()()( sKsGsSsTGK =                        (32) 
In the GLQG/LTR methodology, the closed-loop 

eigenvalues of compensated plant are just the union of the 
eigenvalues of a Kalman filter and those of an optimal 
state-feedback controller. The weighting matrices Q  and R  
in the GLQ performance index are tunable parameters. We 
manipulate these parameters to recover the principal gains of 
the return ratio )()( sKsG  at the output of compensated plant 
to the target feedback loop )(sGt  as close as possible. In 
synthesis of a state-feedback controller, we can solve the 
CARE defined in (26) with IQ =  and IR ρ= .  As 0→ρ , 
it is obvious that )(),()(lim

0
sGsKsG t=

→
ρ

ρ
. The higher gain 

matrix of state-feedback controller, the better recoverable 
quality in the LTR process. Besides, there is an additional 
parameter α  in the proposed method, which can be tuned to 
get better performance.  

III. NUMERICAL EXAMPLE AND SIMULATION RESULTS 
The principal gains of the augmented F-16 aircraft with 

integrators and pre-compensator are shown in Fig. 3. At 
lower frequencies the principal gains is 20− dB/decade, and 
the augmented is a type-1 system with zero steady-state error 
in tracking the step response. In addition, the principal gains 
are well-balanced to have the approximately same speed of 
time-domain responses in the two input channels.  



 
 

 

 

 

A. Kalman Filter Design for Target Feedback Loop 
 We design the Kalman filter by solving the FARE (9). 

There are three matrices in (9). Lewis et al [13] have chosen  
I=Γ , ( )110001.001.001.001.0diagW = , and 

IV ×= 1 . The Kalman-filter gain matrix is obtained  
T

fK ⎥
⎦

⎤
⎢
⎣

⎡
−−−−−

−−−
=

6846.07290.07653.11855.00201.01978.00066.00967.0
7290.06846.08662.11981.00932.01993.01300.00066.0    

(33) 
The principal gains of target feedback loop )(sGt , sensitivity 
function )(sS f , and the complementary sensitivity function 

)(sT f  at the plant output are shown in Figs. 4-5. The 

associated unit-step responses of bank angle are shown in Fig. 
6.  

B. Optimal Controller Design in LTR Process 
The tunable parameters Q , R , and α  are manipulated to 

shape the principal gains of return ratio, sensitivity function, 
and complementary sensitivity function for the compensated 
plant to get better recoverable quality. After some iterations, 
the parameters ρ  and α  are selected as 

11101 −×=ρ                              (33) 
and 

12=α                                   (34) 
The gain matrix of state-feedback controller is obtained as 
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 In general, the smaller R , the better the loop transfer 
recovery. It should be noted that there is a tradeoff between 
the loop transfer recovery and the time-domain response.  

The principal gains of return ratio, sensitivity function, and 
complementary sensitivity function of compensated plant are 
shown in Figs. 7-8. The unit-step responses of bank angle 

)(tφ , and the associated actuator inputs are also shown in 
Figs. 9-10. For comparison purpose, the results obtained by 
the traditional LQG/LTR method with 0=α  are also shown 
in Figs. 7-10. As shown in Fig. 7, the proposed method has 
better recovery quality at lower frequencies and higher 
frequencies as well. In Fig. 8 the largest principal gains of 
sensitivity function )(sSGK  of the proposed method at low 
frequencies are decreased by 1 dB, and the rejection 
capability of system disturbance is increased. In addition, the 
proposed method has smaller condition number 

)(/)( GKGK TT σσ at high frequencies for the complementary 
sensitivity function )(sTGK , and this result makes the 
proposed method have better robustness in the face of 
high-frequency measurement noise. In the unit-step 
responses shown in Fig. 9, the maximum overshoot of bank 
angle )(tφ  and cross coupling of sideslip angle )(tβ  for the 
unit step responses are also reduced by the proposed method. 
In addition, the maximal transient commands of aileron and 

rudder actuators are decreased as shown in Fig. 10. Table I 
shows the root mean square (r.m.s.) of aileron and rudder 
actuators for the unit-step responses of bank angle, and the 
proposed GLQG/LTR method can also lessen the energy 
consumption of actuators. In face of system and measurement 
noises with 1=W  and 1=V , the white noise responses for 
both GLQG/LTR and LQG/LTR methods are all listed in 
Table II. These results show that the proposed GLQG/LTR 
method has better noise rejection and less energy 
consumption. Therefore, the GLQG/LTR method can make 
the compensated plant have good robustness and 
performance properties in the noise rejection.  

IV. CONCLUSIONS 
From the previous derivation, we have applied the 

GLQG/LTR method for not only minimum-phase system but 
non-minimum phase one as well. This makes the proposed 
technique more generalized in some practical applications. 
By numerical simulations and comparing these results 
obtained by the traditional LQG/LTR technique, the proposed 
method can achieve better robustness and performance 
properties in both frequency- and time-domain responses. 
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Fig. 1. Model of F-16 aircraft lateral control system 
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Fig. 2. GLQG/LTR control structure 
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Fig. 3.  Principal gain of  BAsIC 1)( −−  for augmented plant 
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Fig. 4.  Open-loop principal gain of return ratio )(sGt . 
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Fig. 5.  Principal gain plots of )(sS f  and )(sT f  for )(sGt . 
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Fig. 6.  Unit-step response of target feedback loop )(sGt . 
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Fig. 7.  Principal gain plots of return ratio )()( sKsG . 
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Fig. 8.  Principal gains of )(sSGK  and )(sTGK . 
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Fig. 9.  Unit-step responses of ϕ . 
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Fig. 10.  Actuator inputs for unit-step responses of ϕ . 
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Table I Root mean square of actuators for unit-step responses of bank angle )(tφ . 

Item GLQG/LTR LQG/LTR 

Unit step responses of ϕ  
)(rms aδ  
)(rms rδ  

2319.0  

7220.1  
2455.0  

0380.2  

Table II Covariances of output responses in face of  white noises. 

Item GLQG/LTR LQG/LTR 
)( TE φφ  

)( TE ββ  

3103780.3 ×  
3105779.3 ×  

3104048.3 ×  
3103484.4 ×  White noise response 

with 1=W  and 1=V  )( T
aaE δδ  

)( T
rrE δδ  

55.6590 
191.6590 

57.2271 
200.0845 

 
 


