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Abstract— This paper addresses the problem of trajectory
tracking control in an autonomous, wheeled, mobile robot of
unicycle type using Fuzzy Logic. The Fuzzy Logic Control
(FLC) is based on a backstepping approach to ensure asymptotic
stabilization of the robot’s position and orientation around
the desired trajectory, taking into account the kinematics and
dynamics of the vehicle. We use the Mamdani inference systemto
construct a controller, with nine IF -THEN rules and the centroid
of area method as our deffuzification strategy where the input
torques and velocities are considered as linguistic variables. The
performance of this FLC are illustrated in a simulation study.

Index Terms— Fuzzy logic, tracking control, unicycle mobile
robots, backstepping.

I. I NTRODUCTION

A. Overview

A UNICYCLE mobile robot is an autonomous, wheeled
vehicle capable of performing missions in fixed or uncer-

tain environments. Mobile robots have attracted considerable
interest in the robotics and control research community, be-
cause they posses nonholonomic properties caused by noninte-
grable differential constraints. The motion of a nonholonomic
mechanical systems [4] is constrained by its own kinematics,
so its control laws are not derivable in a straightforward
manner (Brockett condition [6]). Backstepping methodology
is a suitable choice in solving the tracking control problemfor
mobile robots, in both kinematic and Euler-Lagrange models.
Recent developments include the introduction of an adaptive
tracking controller based on a backstepping approach [12],and
a dynamical extension that enables the integration of kinematic
and torque controllers into a nonholonomic mobile robot [11].
The backstepping approach consists of two steps: 1) finding
the velocities that stabilize the kinematic model and 2) finding
a control law that will ensure the converge of real velocities
to those values.

Fuzzy logic control (FLC) ([31]) has been recognized for
its effectiveness in the control of industrial processes [3],
mechanical systems [27], chemical processes [9], medicine
[5], pattern recognition [2], and others (see [17] and [23]).
In essence, FLC provides an algorithm which can convert
a linguistic control strategy based on expert knowledge to
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an automatic control strategy. The conceptual advantage of
FLC is very useful when the processes are too complex for
analysis, or when the available resource of information are
inexact or uncertain. There exist three different fuzzy inference
systems, known as the Mamdani ([21]), Tagaki-Sugeno ([25]),
and Tsukamoto [28] fuzzy models. These are frameworks built
on the concepts of fuzzy sets, fuzzyIF-THEN rules, and fuzzy
reasoning. Recent representative papers on the use of FLC
in mobile robots include [1], [7], [8], [13], [16], [18], [22],
and [29]. The Tagaki-Sugeno approach is the most commonly
used fuzzy logic model in the tracking control problem of
autonomous vehicles, because it provides remarkable experi-
mental results and a more systematic approach to FLC design
(see [26] and references therein).

B. Contribution

In this paper we introduce a Fuzzy Logic Controller based
on the Mamdani fuzzy model and the Centroid of Area
defuzzification method to force a unicycle mobile robot to
follow a desired trajectory. Currently, many research papers
consider only the kinematic model (steering system) (seee.g.,
[18], [20], [24], [30], and references therein) to solve the
tracking control problem, where the velocity, used as input
control, is assumed to be supplied by the mobile robot whose
dynamic of the actuators is neglected. However, real prototype
mobile robots have actuated wheels whose slip rate, rolling,
inertia moments, and mass distribution contribute to the forces
exerted on the structure of the vehicle thus affecting the
accuracy and full manoeuvrability of the robot. Motivated by
this, the vehicle dynamics, represented by the Euler-Lagrange
equations, is considered to convert a steering system into
control inputs for the actual vehicle ([10], [11]). We use
triangle- and trapezoid-shaped membership functions in our
control design, with three fuzzy partitions and nine fuzzy
rules. It is worth noting that FLC does not require information
of the parameters of the Euler-Lagrange equation (masses,
inertias, damping, etc.), thus avoiding an extra work on its
identification.

C. Organization

This paper is organized as follows: Section II presents the
problem statement and the kinematic and dynamic model of
the unicycle mobile robot. Section III introduces the fuzzy
logic control system using a Mamdani-type model where the
wheel input torques, linear velocity, and angular velocitywill
be considered as linguistic variables. Section IV provides
a simulation study of the unicycle mobile robot using the
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Fig. 1. Schematic diagram (left) of Unicycle mobile robot with actuated
wheels (right).

controller described in Section III. Finally, Section V presents
the conclusions.

II. PROBLEM STATEMENT

In this paper, we consider a unicycle mobile robot as a case
study. The robot body is symmetrical around the perpendicular
axis and the center of mass is at the geometric center of the
body. It has two driving wheels fixed to the axis that passes
throughC and one passive orientable wheel that is placed in
front of the axis and normal to it. The two fixed wheels are
controlled independently by motors, and the passive wheel
prevents the robot from tipping over as it moves on a plane.
In what follows, we assume that the motion of passive wheel
can be ignored in the dynamics of the mobile robot.

We propose a fuzzy logic controller for the unicycle mobile
robot governed by the following equation of motion [15]:

q̇ =





cos θ 0
sin θ 0

0 1





︸ ︷︷ ︸

S(q)

[
ν

ω

]

︸ ︷︷ ︸

v

(1)

M(q)v̇ + C(q, q̇)v + Dv = τ + κ(t) (2)

whereq = (x, y, θ)T is the vector of generalized coordinates;
v = (ν, ω)T is the vector of velocities;τ = (τ1, τ2) is the
vector of torques applied to the wheels of the robot;κ(t) is
the 2 × 1 uniformly bounded disturbance vector;M(q) is a
2 × 2 positive-definite inertia matrix;C(q, q̇)v is the vector
of centripetal and Coriolis forces; andD is a 2 × 2 diagonal
positive-definite matrix. Equation (1) represents the kinematics
of the system, where(x, y) is the position in theX−Y (world)
reference frame;θ is the angle between the heading direction
and thex-axis; ν andω are the linear and angular velocities
respectively; andτ1 andτ2 denote the torques of the right and
left wheel, respectively (see Fig. 1). Furthermore, the system
(1)-(2) has the following nonholonomic constraint:

ẏ cos θ − ẋ sin θ = 0, (3)

which corresponds to a no-slip wheel condition preventing
the robot from moving sideways [19]. The system (1) fails to
meet Brockett’s necessary condition for feedback stabilization
[6]. This implies that no continuous static state-feedback
controller exists that stabilizes the closed-loop system around
the equilibrium point.

The control objective is established formally as follows:
Given a continuously differentiable, bounded trajectory and
orientationqd, we must design a fuzzy logic controllerτ such
that the positionsq(t) reach the desired postureqd(t), that is

lim
t→∞

‖qd(t) − q(t)‖ = 0. (4)

III. F UZZY CONTROL DESIGN

We now present the synthesis of the FLC to achieve
stabilization of a unicycle mobile robot around a desired path.
The backstepping approach plays an important role.

The system (1)-(2) is in cascade interconnection; that is, the
kinematic subsystem (1) is controlled only indirectly through
the velocity vectorv. Stabilizing control laws for systems in
such a hierarchical form can be designed using the method of
backstepping [14], which consists of the following two steps:

i) We must find a velocity vectorvr = v such that the
kinematic system (1) be asymptotically stable.

ii ) A control inputτ must be found, such that

lim
t→ts

‖vr(t) − v(t)‖ = 0 (5)

wherets < ∞ is the reachability time.

In (5), we consider that real mobile robots have actuated
wheels, so the control input isτ ; that is, the actual control
input τ is designed so as to stabilize the system (2) without
destabilizing the system (1) by forcingv → vr. Moreover,
if (5) is satisfied in an infinite time (ts = ∞) then vr will
be different fromv during t < ∞, with the result that the
mobile robot will be neither positioned nor oriented at the
desired point. Figure 2 illustrates the feedback connection
which involves the fuzzy controller.

A. Control of the kinematic model

To solve the tracking control problem for the kinematic
model, we followed the procedure proposed by Fierro and
Lewis [11] and Leeet al. [15]. Suppose the reference trajectory
qd(t) satisfies

q̇d(t) =





cos θd(t) 0
sin θd(t) 0

0 1





[
v1d(t)
v2d(t)

]

(6)

whereθd(t) is the desired orientation, andv1d(t) andv2d(t)
denote the linear and angular desired velocities, respectively.
In the robot’s local frame, the error coordinates can be defined
as





e1(t)
e2(t)
e3(t)



 =





cos θ(t) sin θ(t) 0
− sin θ(t) cos θ(t) 0

0 0 1





︸ ︷︷ ︸

Te(qd(t)−q(t))





xd(t) − x(t)
yd(t) − y(t)
θd(t) − θ(t)



 , (7)
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Fig. 2. Feedback connection.

where (xd, yd) is the desired position in the worldX − Y

coordinate system. The tracking error model is given by





ė1

ė2

ė3



 =





v2e2 − v1 + vd1 cos e3

−v2e1 + vd1 sin e3

vd2 − v2





︸ ︷︷ ︸

f(e,vd,k)

. (8)

We are now in position to state the main result of this
subsection in the form of theorem (the proof can be found
in [11]).

Theorem 1 ([11]): Let the tracking error system (8) be
driven by the control law

vr1 = vd1 cos e3 + k1e1 (9)

vr2 = vd2 + vd1k2e2 + k3 sin e3 (10)

wherek1, k2, andk3 are strictly positive constants. Ifv1 = vr1

andv2 = vr2, then the origin of the closed-loop system [(8)-
(10)] is asymptotically stable.

B. Fuzzy logic control synthesis

We proceed to derive a Fuzzy Logic Controller that can
force the real velocities of the mobile robot (1)-(2) to match
those required in equations (9)-(10) of theorem 1 and thus
satisfy the control objective given in (4). In this paper we
adopt theMamdani Fuzzy model.

The fuzzy rulesare presented as a mapping from the linear
and angular velocity errors (the linguistic input variables):

eν = vr1 − v1 (11)

eω = vr2 − v2 (12)

to the required torque(τ1, τ2) (the linguistic output variables).
We point out that equations (7)-(10) allows us to express
velocity information in terms of the position measurements
only. The membership functions, depicted in Figure 3, are
shaped like triangles and trapezoids with three fuzzy partitions
denoted asnegative (N), zero (Z), and positive (P). The
universe of discourse is normalized into the range[−1, 1]. The
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Fig. 3. a) Membership functions of the input variables(eν , eω), and b)
Membership functions of output variables(τ1, τ2).

TABLE I

FUZZY RULES

eω

eν N Z P
N N/N N/Z N/P
Z Z/N Z/Z Z/P
P P/N P/Z P/P

nine fuzzy rulesare:

R1 : IF eν is Z andeω is Z THEN τ1 is Z andτ2 is Z,

R2 : IF eν is Z andeω is P THEN τ1 is Z andτ2 is P,

R3 : IF eν is Z andeω is N THEN τ1 is Z andτ2 is N,

R4 : IF eν is P andeω is P THEN τ1 is P andτ2 is P,

R5 : IF eν is P andeω is N THEN τ1 is P andτ2 is N,

R6 : IF eν is P andeω is Z THEN τ1 is P andτ2 is Z,

R7 : IF eν is N andeω is N THEN τ1 is N andτ2 is N,

R8 : IF eν is N andeω is P THEN τ1 is N andτ2 is P,

R9 : IF eν is N andeω is Z THEN τ1 is N andτ2 is Z.

The fuzzy rules can be summarized in Table 1. The elements
in the first row and column of Table 1 are the input linguistic
variables, while the others correspond to the output linguistic
variables.

We use the Centroid of Area as our defuzzification strategy,
i.e.

zCOA =

∫

Z
µA(z)zdz

∫

Z
µA(z)dz

(13)

whereµA(z) is the aggregated output of membership function,
and

∫
denotes the union of(z, µ(z)) pairs. Figure 4 shows the

input-output curves.



Fig. 4. Overall input-output curves.

IV. SIMULATION RESULTS

In this section, we evaluate, through computer simulation
performed inMATLAB r and SIMULINK r, the ability of the
proposed controller to stabilize the unicycle mobile robot,
defined by (1), (2). The following matrix values

M(q) =

[
0.3749 −0.0202
−0.0202 0.3739

]

,

C(q, q̇) =

[
0 0.1350θ̇

−0.1350θ̇ 0

]

,

D =

[
10 0
0 10

]

,

were taken from [10].
In the simulations, we choose

vd(t) =

{
vd1(t) = 0.25 − 0.25 cos(2πt

5 )
vd2(t) = 0

(14)

as desired linearvd1 and angular velocitiesvd2, subject to the
initial conditions

q(0) = (0.1, 0.1, 0)T andv(0) = 0 ∈ IR2.

The gainski of equations (9)-(10) were set to the values of 5.
Figure 5 shows the posture errors,X −Y position, velocity

errors, and input torques for the closed-loop system for the
FLC presented in Section 3. It should be noted that the
horizontal and vertical displacements are brought to zero in 0.5
[sec] and 1.0 [sec], respectively, while the orientation converge
at t = 1.2 [sec]. The controller brings the velocity errors to
zero atts = 0.25 [sec]. Figure 5 also demonstrates the fast
switching of the input control. Clearly, the proposed controller
achieves regulation of the velocity errors in a finite time thus
satisfies the control objective.

We demonstrate the robustness properties of the closed-loop
system by injecting impulse disturbances every two seconds

κ(t) = δ(t − tk) tk = 2, 4, . . .

whereδ(t) is the Delta-Dirac function. Simulation results are
depicted in Figure 6, which shows the closed-loop responses
for the displacement errors, posture, velocity error, and input
torques. Note that the position and orientation errors remain
stable, in spite of the external disturbances.
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Fig. 5. Simulation results for the closed-loop system: the unperturbed case.
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Fig. 6. Simulation results for the closed-loop system: the perturbed case.

V. CONCLUSIONS

This paper addressed the problem of tracking control around
a desired position and orientation, taking into account the
dynamics of the vehicle, for unicycle mobile robots. The
proposed solution is based on the backstepping approach, with
an internal loop governed by a Mamdani-based fuzzy logic
controller (FLC). The FLC forces the real velocities towards
the values required to achieve the control objective. Two
inputs (the linear and angular velocity errors) and two outputs
(the torques) were used to create nineIF-THEN fuzzy rules,
resulting in minimal software complexity. Future research
topics of interest include the problem of tracking control when
only displacement measurements are available, and adapting
this work to more complex systems such as four-wheeled
robots.
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