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Fuzzy Logic Tracking Control for Unicycle Mobile
Robots

Oscar Castillo, Luis T. Aguilar, and Sélene Cardenas

Abstract— This paper addresses the problem of trajectory
tracking control in an autonomous, wheeled, mobile robot of
unicycle type using Fuzzy Logic. The Fuzzy Logic Control
(FLC) is based on a backstepping approach to ensure asympiot
stabilization of the robot's position and orientation around
the desired trajectory, taking into account the kinematicsand
dynamics of the vehicle. We use the Mamdani inference systetan
construct a controller, with nine IF-THEN rules and the centroid
of area method as our deffuzification strategy where the inpt
torques and velocities are considered as linguistic varidbs. The
performance of this FLC are illustrated in a simulation study.

Index Terms— Fuzzy logic, tracking control, unicycle mobile
robots, backstepping.

I. INTRODUCTION
A. Overview

an automatic control strategy. The conceptual advantage of
FLC is very useful when the processes are too complex for
analysis, or when the available resource of information are
inexact or uncertain. There exist three different fuzzgiahce
systems, known as the Mamdani ([21]), Tagaki-Sugeno ([25])
and Tsukamoto [28] fuzzy models. These are frameworks built
on the concepts of fuzzy sets, fuz#¢THEN rules, and fuzzy
reasoning. Recent representative papers on the use of FLC
in mobile robots include [1], [7], [8], [13], [16], [18], [42

and [29]. The Tagaki-Sugeno approach is the most commonly
used fuzzy logic model in the tracking control problem of
autonomous vehicles, because it provides remarkable iexper
mental results and a more systematic approach to FLC design
(see [26] and references therein).

UNICYCLE mobile robot is an autonomous, wheele®. Contribution

vehicle capable of performing missions in fixed or uncer- In this paper we introduce a Fuzzy Logic Controller based
tain environments. Mobile robots have attracted conshleraon the Mamdani fuzzy model and the Centroid of Area
interest in the robotics and control research community, bgefuzzification method to force a unicycle mobile robot to
cause they posses nonholonomic properties caused by eenifgllow a desired trajectory. Currently, many research pspe

grable differential constraints. The motion of a nonholmm

consider only the kinematic model (steering system) ésge

mechanical systems [4] is constrained by its own kinematiqsg], [20], [24], [30], and references therein) to solve the
so its control laws are not derivable in a straightforwargtacking control problem, where the velocity, used as input
manner (Brockett condition [6]). Backstepping methodglogcontrol, is assumed to be supplied by the mobile robot whose

is a suitable choice in solving the tracking control probfem

dynamic of the actuators is neglected. However, real pyptot

mobile robots, in both kinematic and Euler-Lagrange madeliobile robots have actuated wheels whose slip rate, rolling
Recent developments include the introduction of an adaptiyiertia moments, and mass distribution contribute to thed®

tracking controller based on a backstepping approach §#],

exerted on the structure of the vehicle thus affecting the

a dynamical extension that enables the integration of katem accuracy and full manoeuvrability of the robot. Motivated b
and torque controllers into a nonholonomic mobile robo{ [11this, the vehicle dynamics, represented by the Euler-lragra
The backstepping approach consists of two steps: 1) findisguations, is considered to convert a steering system into
the velocities that stabilize the kinematic model and 2)ifigd control inputs for the actual vehicle ([10], [11]). We use
a control law that will ensure the converge of real velositieriangle- and trapezoid-shaped membership functions in ou

to those values.

control design, with three fuzzy partitions and nine fuzzy

Fuzzy logic control (FLC) ([31]) has been recognized fofules. It is worth noting that FLC does not require inforroati
its effectiveness in the control of industrial processek [%f the parameters of the Euler-Lagrange equation (masses,
mechanical systems [27], chemical processes [9], medicimertias, damping, etc.), thus avoiding an extra work on its
[5], pattern recognition [2], and others (see [17] and [23])dentification.
In essence, FLC provides an algorithm which can convert
a linguistic control strategy based on expert knowledge (o Organization
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This paper is organized as follows: Section Il presents the
problem statement and the kinematic and dynamic model of
the unicycle mobile robot. Section Il introduces the fuzzy
logic control system using a Mamdani-type model where the
wheel input torques, linear velocity, and angular velowiiif
be considered as linguistic variables. Section IV provides
a simulation study of the unicycle mobile robot using the



The control objective is established formally as follows:
Given a continuously differentiable, bounded trajectond a
orientationgy, we must design a fuzzy logic controllersuch
that the positiong(t) reach the desired postugg(t), that is

A {|ga(t) = g(t)[| =0 )

<0

IIl. Fuzzy CONTROL DESIGN

Fig. 1. Schematic diagrameft) of Unicycle mobile robot with actuated . .
wheels (ight). We now present the synthesis of the FLC to achieve

stabilization of a unicycle mobile robot around a desirethpa
The backstepping approach plays an important role.
controller described in Section Ill. Finally, Section V pemits ~ The system (1)-(2) is in cascade interconnection; thahés, t
the conclusions. kinematic subsystem (1) is controlled only indirectly thgh
the velocity vector. Stabilizing control laws for systems in
Il. PROBLEM STATEMENT such a hierarchical form can be designed using the method of

i ) i i backstepping [14], which consists of the following two step
In this paper, we consider a unicycle mobile robot as a case

study. The robot body is symmetrical around the perpenaicul ) \I:\'/e must find a VEIO([‘)'ty vecton, = IT sucgl that the

axis and the center of mass is at the geometric center of thy memaui:.system (1) E afsymstotlcahyhsta €.

body. It has two driving wheels fixed to the axis that passed) A control inputr must be found, such that

throughC and one passive orientable wheel that is placed in

front of the axis and normal to it. The two fixed wheels are

controlled independently by motors, and the passive wheel . A

prevents the robot from tipping over as it moves on a plane. wheret, < OO Is the reachabﬂny_ time.

In what follows, we assume that the motion of passive whel@l (5), we consider that real mobile robots have actuated

can be ignored in the dynamics of the mobile robot. Wheels, so the control |npUt I8, that IS, the actual control
We propose a fuzzy logic controller for the unicycle mobiléPut 7 is designed so as to stabilize the system (2) without

robot governed by the following equation of motion [15]:  destabilizing the system (1) by forcing — v,. Moreover,
if (5) is satisfied in an infinite timet{ = oo) then v, will

Jim llon(t) = v(®)]| = 0 )

' cosf 0] r be different fromwv duringt < oo, with the result that the
g=|sind 0 L}] (1) mobile robot will be neither positioned nor oriented at the
0 1] = desired point. Figure 2 illustrates the feedback connectio
S(a) v which involves the fuzzy controller.
M(q)v+ C(q,¢)v + Dv =7 + K(t) (2)

A. Control of the kinematic model
whereq = (z,y,0)" is the vector of generalized coordinates
v = (v,w)T is the vector of velocitiesy = (r1,72) is the
vector of torques applied to the wheels of the robdt,) is
the 2 x 1 uniformly bounded disturbance vectat/(q) is a
2 x 2 positive-definite inertia matrix(C'(¢, ¢)v is the vector

' To solve the tracking control problem for the kinematic
model, we followed the procedure proposed by Fierro and
Lewis [11] and Leeet al. [15]. Suppose the reference trajectory
q4(t) satisfies

of centripetal and Coriolis forces; and is a2 x 2 diagonal cos04(t) 0
positive-definite matrix. Equation (1) represents the kiatics Ga(t) = | sin64(t) 0 [ v14(t) } (6)
of the system, wherer, y) is the position in theY —Y (world) 0 1 v2a(t)

reference framef is the angle between the heading direction

and thez-axis; v andw are the linear and angular velocitiesvheref,(t) is the desired orientation, and,(t) andvaq(t)
respectively; and; andr, denote the torques of the right anddenote the linear and angular desired velocities, resfyti
left wheel, respectively (see Fig. 1). Furthermore, theaesys In the robot’s local frame, the error coordinates can be dfin

(2)-(2) has the following nonholonomic constraint: as
(] (t)
ycosh — xsinh = 0, 3) ea(t) | =
es(t)

which corresponds to a no-slip wheel condition preventing
the robot from moving sideways [19]. The system (1) fails to

meet Brockett's necessary condition for feedback staitin cos 0(t) sind(t) 0| [ za(t) - (t)
[6]. This implies that no continuous static state-feedback —sinf(t) cos6(t) 0 ya(t) —y(@) |, (7)
0 0 1| 6a(t)— 00

controller exists that stabilizes the closed-loop systeourd
the equilibrium point. Te(qa(t)—q(t))
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Fig. 2. Feedback connection.

where (z4,yq) is the desired position in the world — Y T ) e
coordinate system. The tracking error model is given by 3’ S
ey T1
él v2€2 _ ’Ul + vdl COS 63 15‘1 0.5 ] 05 1 J;l 0.5 ] 05 1
é = —vg€e Vg1 sine . 8 S : » A z
°2 2€1 + Va1 3 C) - =
€3 Vd2 — U2 05 05
€w T2
o) 3 : W g 3 ; W g

We are now in position to state the main result of thiSig. 3. a Membership functions of the input variablés,, e.,), and b)
subsection in the form of theorem (the proof can be fourgmpership functions of output variablgs , 7).
in [11]).

Theorem 1 ([11]): Let the tracking error system (8) be
driven by the control law

TABLE |
Fuzzy RULES

Cw
v N Z P
Ur1 = Vaicoses +kyer ©) NN | Nz P
: Z || zN | ziz | ziP

Upo = Vg2 + Vg1koes + k3 sines (20) bl el Pz | P
wherek, ko, andks are strictly positive constants.4f = v,;
and v, = v,2, then the origin of the closed-loop system [(8)-
(10)] is asymptotically stable. nine fuzzy rulesare:

Ri: IFeyis Z ande, isZ THEN 71 is Z andrs IS Z,
Ry: IFe,is Z ande, is P THEN 71 is Z andt, is P,

B. Fuzzy |ogic control Synthesis Rs: IFey is Z ande, iS N THEN 71 iS Z andr is N,

Ry: IFe,is Pande, isP THEN 71 is P andrs is P,

We proceed to derive a Fuzzy Logic Controller that can §5 : I|'; ev 'éf;i’:}‘;ew Iizg I:EE i 'é];z?]‘éﬁ Iiz g’

- . 6 - (&9 Cw T1 T2 )

force the re_al vglocmes _of the mobile robot (1)-(2) to nfatc Re: IFeyis N ande, is N THEN 7 is N andrs is N,

those required in equations (9)-(10) of theorem 1 and thus gy : |r ¢, is N ande,, is P THEN 7 is N andrs is P,

satisfy the control objective given in (4). In this paper we Ry: IFe, is N ande, is Z THEN 7, is N andr is Z.
adopt theMamdani Fuzzy model

The fuzzy rulesare presented as a mapping from the linear the fyzzy rules can be summarized in Table 1. The elements
and angular velocity errors (the linguistic input varia)le i, the first row and column of Table 1 are the input linguistic
variables, while the others correspond to the output listiii

€y = Up1 — U1 (11) variables.
ey = Upg — Uy (12) We use the Centroid of Area as our defuzzification strategy,
ie.
to the required torquér;, 72) (the linguistic output variables). _ fZ pra(z)zdz (13)
We point out that equations (7)-(10) allows us to express ZcoA = 1, na(z)dz

velocity information in terms of the position measurements
only. The membership functions, depicted in Figure 3, are . . .
shaped like triangles and trapezoids with three fuzzy fiamg Wherer.a(z) is the aggregated output of membership function,

denoted asnegative (N), zero (Z), and positive (P). The and | denotes the union df, 1(2)) pairs. Figure 4 shows the
universe of discourse is normalized into the rahgg, 1]. The input-output curves.
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IV. SIMULATION RESULTS g O 7 ~

In this section, we evaluate, through computer simulatio o\ |
performed inMATLAB® and S|MU|—|NK®, the ab|I|ty of the
proposed controller to stabilize the unicycle mobile robot
defined by (1), (2). The following matrix values Fig. 5. Simulation results for the closed-loop system: thpeuturbed case.

Error X-Y Path

[ 0.3749  —0.0202 e
M(@) = | “0.0202 03739 } N e N
0 0.13500 - R S
C s 7 = . , > 0 £ oos
@® = | g13500 0 ] A s
(10 0 B R AT
D= 0 10] ’ e e T s e e
were taken from [10]. . .
H H g-uz g 0 A k k
In the simulations, we choose W = Yl —l
va1(t) = 0.25 — 0.25 cos(22t) N
vi(t) = 5 14 o o
a(®) {vdg(t)zo as A -

as desired lineary; and angular velocitiesys, subject to the L . |
initial conditions

q(0) = (0.1,0.1, O)T andv(0)=0¢€ R2. Fig. 6. Simulation results for the closed-loop system: teeusbed case.

The gainsk; of equations (9)-(10) were set to the values of 5.
Figure 5 shows the posture erros— Y position, velocity V. CONCLUSIONS
errors, and input torques for the closed-loop system for theThis paper addressed the problem of tracking control around
FLC presented in Section 3. It should be noted that tlee desired position and orientation, taking into account the
horizontal and vertical displacements are brought to zefb5 dynamics of the vehicle, for unicycle mobile robots. The
[sec] and 1.0 [sec], respectively, while the orientationvesge proposed solution is based on the backstepping approatth, wi
att = 1.2 [sec]. The controller brings the velocity errors taan internal loop governed by a Mamdani-based fuzzy logic
zero att, = 0.25 [sec]. Figure 5 also demonstrates the fagfontroller (FLC). The FLC forces the real velocities toward
switching of the input control. Clearly, the proposed coliér the values required to achieve the control objective. Two
achieves regulation of the velocity errors in a finite timash inputs (the linear and angular velocity errors) and two otgp
satisfies the control objective. (the torques) were used to create niReTHEN fuzzy rules,
We demonstrate the robustness properties of the closgd-loesulting in minimal software complexity. Future research

system by injecting impulse disturbances every two secondspics of interest include the problem of tracking contrblem
only displacement measurements are available, and adaptin

K)=0(t—tr) tr=2,4,... this work to more complex systems such as four-wheeled
robots.
whered(¢) is the Delta-Dirac function. Simulation results are
depicted in Figure 6, which shows the closed-loop responses REFERENCES
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