Experiences with Soft-Core Processor Design

Franjo Plavec

Blair Fort

Zvonko G. Vranesic

Stephen D. Brown
University of Toronto
Department of Electrical and Computer Engineering
Toronto,ON, Canada
{plavec, fort, zvonko, brown } @eecg.toronto.edu

Abstract

Soft-core processors exploit the flexibility of Field Pro-
grammable Gate Arrays (FPGAs) to allow a system de-
signer to customize the processor to the needs of a target
application. This paper describes the UT Nios implementa-
tion of Altera’s Nios architecture. A benchmark set appro-
priate for soft-core processors is defined. Using the bench-
mark set, the performance of UT Nios is explored and com-
pared with the commercial implementation.

1. Introduction

Field Programmable Gate Arrays (FPGAs) are becom-
ing increasingly popular for implementation of logic cir-
cuits. Inclusion of abundant memory resources in FPGAs
has made them suitable for implementation of embedded
SOPC systems, where a complete system fits on a single
programmable chip. A processor unit in such a system is
usually a soft-core processor.

A soft-core processor is a microprocessor fully described
in software, usually in an HDL, which can be synthesized
in programmable hardware, such as FPGAs. Soft-core pro-
cessors implemented in FPGAs can be easily customized
to the needs of a specific target application. The two major
FPGA manufacturers provide commercial soft-core proces-
sors. Xilinx offers its MicroBlaze processor [1], while Al-
tera has Nios and Nios II processors [2]. In this paper we
focus on the Nios architecture.

Nios is a RISC soft-core processor optimized for imple-
mentation in Altera FPGAs. Many architectural parameters
of Nios can be customized at design time, including the dat-
apath width, register file size, cache size, custom instruc-

This work was supported in part by NSERC, CITR and University of
Toronto Master’s Fellowship

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

tions and others. In this work, we present a new implemen-
tation of the Nios architecture, called UT Nios [3].

In the paper we refer to the original Nios implementation
as Altera Nios, and use the term Nios for the Nios architec-
ture, independent of the implementation. To assess the per-
formance of the UT Nios and compare it with Altera Nios,
a UT Nios benchmark set was defined.

The paper is organized as follows. In section 2, the key
features of the Nios architecture are described, and the UT
Nios implementation is presented. Section 3 defines the UT
Nios benchmark set, and gives the performance comparison
of UT and Altera Nios is given. Section 4 concludes the pa-
per.

2. UT Nios
2.1. Nios architecture

Nios is a highly customizable RISC architecture. One of
the architectural parameters that is selected at design time
is the width of the datapath, which can be 16 or 32 bits [4].
The instruction word is 16 bits wide, regardless of the data-
path width, to reduce the code size compared to the 32 bits
wide instruction word. We will focus on the 32-bit datap-
ath, which is more likely to be used in high performance
applications.

The Nios instruction set supports only the basic arith-
metic and logic instructions, with optional support for in-
teger multiplication. The instruction set can be augmented
with up to five custom instructions. A custom instruc-
tion performs a user-defined operation in hardware, thus
speeding-up the critical parts of an application [5]. Nios has
a load-store architecture, with most instructions using reg-
ister file operands. Although the size of the register file is
configurable, only 32 registers are visible to programs at
any given time. The register file is divided into register win-
dows. The sliding windows overlap, facilitating fast context
switching on entrance and exit from procedures.

YF]',F.

COMPUTER

SOCIETY

Fetch (F) Decode (D) Operand (O) Execute (X)
Branch
i Logic
- D/O —
Prefetch Unit 5 bl OX et
[Fel o b @ Pe
IR Data Memory
Instruction ™
Memory - al» —
Address Data fiom
N General-Purpose - Kster
= Instruction Register File gl
Decoder Register,
o | File L
Address Onehip Merary
Handler
Operand
Handler [["]
On-chip Memory
> Data Control
| ‘“"‘L;":"‘E Registers

Figure 1. UT Nios datapath

Processor, memory and other peripherals are intercon-
nected using the automatically generated Avalon bus [6].
This is a synchronous bus defining the interface and proto-
col for connecting master and slave components in the sys-
tem. Memory modules and peripherals in the system can
reside on or off-chip, but the bus logic is always placed on-
chip.

2.2. UT Nios datapath

UT Nios datapath, shown in Figure 1, is organized in
4 pipeline stages: fetch (F), decode (D), operand (O), and
execute (X). Prefetch unit fetches instructions from the in-
struction memory. The address of the next instruction to be
fetched is stored in the prefetch program counter (PPC).
If the pipeline stalls, the fetched instruction is temporarily
stored in a FIFO buffer. Otherwise, the instruction is for-
warded to the decode stage, where it is decoded and ad-
dresses of its register operands are calculated.

In the operand stage, immediate operands are formed.
Since the instruction word is only 16 bits wide, it is not pos-
sible to specify a 16-bit immediate constant in a single in-
struction word. 16-bit constants are formed by preloading
an 11-bit prefix into the K register using the PFX instruc-
tion. An instruction following PFX specifies the remaining
5 bits to form a 16-bitimmediate operand. Since the Nios ar-
chitecture supports several different addressing modes, de-
pending on the addressing mode used the operands may be
coming from several different sources. Therefore, proper
operands have to be selected from the possible sources.
Operand handling also includes the data forwarding logic.
Branch instructions commit in the operand stage, because
all of the necessary information is available (through the
data forwarding logic); this reduces the branch penalty.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Most instructions commit in the execute stage. The re-
quired calculations are performed by the arithmetic and
logic unit (ALU). The results are stored in the register file
and control registers. Since the result of the instruction exe-
cution may be coming from different sources, such as mem-
ory for load instructions or ALU for arithmetic and logic in-
structions, the result is selected by a register file write mul-
tiplexer.

All UT Nios components were described in Verilog
HDL. The current version of UT Nios does not support
some optional components, such as instruction and data
caches, multiplication support in hardware, and advanced
debug support [3].

3. Performance evaluation
3.1. UT Nios benchmark set

A set of benchmark programs was defined to assess the
performance of UT Nios and compare it with the perfor-
mance of Altera Nios. Although several benchmark sets for
embedded systems already exist, we found most of them
to be inappropriate for benchmarking soft-core processors.
Since many of these benchmarks contain computationally
intensive programs, which are much more efficiently imple-
mented in custom hardware, it is not likely that a soft-core
processor would be used for such an application. A new set
of benchmark programs was defined to measure the perfor-
mance of soft-core processors.

The UT Nios benchmark set is based on MiBench [7], a
freely available benchmark suite. A subset of the MiBench
benchmarks was selected and augmented with other pro-
grams that better characterize the performance of UT Nios.
Since Nios-based systems generally do not include a file-

YF]',F.

COMPUTER

SOCIETY

system, all benchmarks were adapted to use the input data
from memory.

The UT Nios benchmark set is divided into three cate-
gories: test benchmarks, which test the performance of spe-
cific architectural features of the processor, toy benchmarks,
which are small programs performing simple calculations,
and application benchmarks that represent the real applica-
tions expected to run on the processor.

Test benchmarks include Loops, that tests the perfor-
mance of branch instructions, Memory, which performs op-
erations on an array residing in memory, Pipeline, which
tests the data forwarding capabilities of the pipeline imple-
mentation, and PipelineM, which tests the data forwarding
when instruction operands are in the data memory.

Toy benchmarks include Fibo, which calculates the gth
Fibonacci number using a recursive procedure, Multiply,
which uses a triply nested loop to multiply two integer ma-
trices, and Qsortlnt, a program that sorts an integer array
using the gsort algorithm.

Application benchmarks include Bitcount, which counts
the number of bits equal to 1 in an integer array using five
different bit counting algorithms, CRC32, a 32-bit Cyclic
Redundancy Check (CRC) algorithm, Dijkstra, a shortest-
path algorithm, John Conway’s Game of Life (GOL), Patri-
cia, an algorithm that searches the Patricia trie data struc-
ture, QOsort algorithm to sort a large data set, SHA, which
produces a message digest using the secure hash algorithm,
and SSearch, which performs a search for a given string in
an input text. Some of the application benchmarks have two
datasets. Details on the benchmarks and dataset sizes can be
found in [3].

3.2. Experimental environment

Performance comparison between the UT and Altera
Nios was performed using a Nios-based system consisting
of the following components:

e 32-bit Altera Nios 3.0 or UT Nios 1.01 without
cache and multiplication support, with 512 regis-
ters in the register file, interrupt support, writable
WVALID register and RLC/RRC instruction sup-
port. Altera Nios’s pipeline optimization was selected
for “Fewer Stalls / More LEs” and its instruction de-
coder was implemented in logic. UT Nios had the de-
coder implemented in memory, and two registers in a
FIFO buffer. These parameters were selected to maxi-
mize the performance of both implementations, while
keeping them comparable (e.g. enabling cache sup-
port for Altera Nios would increase its performance,
but since UT Nios does not support cache, the com-
parison would not be fair).

e 16 Kbytes of 32-bit on-chip memory with a monitor
program

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

1 MB of 32-bit off-chip SRAM that contains the pro-
gram, the data, and the interrupt vector table.

e Avalon tri-state bridge with default settings

e UART peripheral with default settings used to down-
load the programs to the development board and com-
municate with the program.

e Timer peripheral with default settings used to measure
the program execution time.

The processor’s instruction and data masters were both
connected to the on-chip memory and the tri-state bridge,
while the data master was also connected to the UART and
timer peripherals. The tri-state bridge was connected to the
off-chip SRAM. All arbitration priorities were set to 1. Both
systems were compiled using Quartus II 4.1 SP2 target-
ing the Stratix EP1S10F780C6ES FPGA chip, optimizing
the design for speed, and using the standard fit (highest ef-
fort) fitter option. The benchmarks were compiled using the
gce compiler for Nios, with optimization level 3. Bench-
mark programs were run on the Stratix development board
at 50 MHz. Since both designs ran at the same operating
frequency, comparison of the resulting execution times di-
rectly shows the cycle count ratio of the two processors. To
obtain the wall clock execution times, the times measured
were prorated to account for the difference in the Fj,q..
The F,,., was obtained by synthesizing each design using
ten different seeds (used by the placement algorithm in the
CAD design flow), and choosing the best result obtained.
The F),q. for the Altera Nios is 112 MHz, while the UT
Nios achieves the F},, . of 77 MHz.

3.3. Performance comparison

The results of the performance comparison of Altera and
UT Nios are presented in Table 1. All values show the cy-
cle count improvement and wall clock speedup of UT Nios
over Altera Nios. Considering the cycle count ratio helps to
understand the performance difference of the two proces-
sor implementations. For benchmarks that have two dataset
sizes, the average of the two is given. Similarly, for the Bit-
count benchmark, the average of all five algorithms is given.

The UT Nios has lower cycle count for Loops and Mem-
ory benchmarks, because it implements branches and mem-
ory operations more efficiently. Branches are committed
early in the pipeline (in the operand stage), while memory
operations do not have a dedicated pipeline stage. Since the
Altera Nios has a deeper pipeline, it is expected that branch
penalties will be greater. Results for the Memory bench-
mark, together with a significantly higher operating fre-
quency of Altera Nios (compared to UT Nios) suggest that
the original implementation has a memory pipeline stage.
The difference in the F, 4, results in the UT Nios being

YF]',F.

COMPUTER

SOCIETY

Table 1:

Performance comparison of UT and Altera Nios

= oo
|83 |8 |c|E|lE|8lu|2|2|2E|l=<|S|5
Slesla|lals|Z22] 8 =|0| £ 8 2 8
Benchmark | 3 | S |& |£ |E|S | & | = 6 Alo|&E|S& 5; 21 =
Cycle Count Advantage |[1.56]1.43|1.05[1.18{1.26|2.26(1.68(1.45|1.32|1.47(1.40|1.68|1.51|1.43|1.35]|(1.46
Wall Clock Time Advantage ||1.08]0.98(0.72{0.82|0.87(1.56{1.16{1.00|0.91{1.01{0.97|1.16{1.04]0.99]0.93||1.01

only 8% faster than the Altera Nios for the Loops bench-
mark, and 2% slower for the Memory benchmark.

The Pipeline benchmark performance in terms of cycle
count reveals that both the UT and Altera Nios implement
full data forwarding when operands are in the register file.
The UT Nios performs better in terms of the cycle count
for PipelineM benchmark because it performs memory op-
erations better, as argued above. The difference in F);, 4z
causes poor overall performance of the UT Nios for these
two benchmarks.

The above results for the test benchmarks help us under-
stand the performance of other benchmarks. For instance,
UT Nios exhibits the biggest advantage over Altera Nios
for the Multiply benchmark. The reason is that the Multi-
ply benchmark is both memory- and control-flow-intensive,
which are the two characteristics for which the UT Nios per-
forms better. Similarly, Qsort, and Patricia are also mem-
ory intensive programs, and they experience better perfor-
mance on UT Nios. On average, over all benchmarks, UT
Nios has 46% advantage in terms of cycle count, but is only
1% faster than Altera Nios in terms of the wall clock execu-
tion time.

Another important factor for processor implementation
is the amount of logic (in LEs) and memory resources (in
bits) used on the chip. The UT Nios system uses 3,000
LEs (2,498 LE:s for the processor) and 166,304 memory bits
(35,232 bits for the processor). The Altera Nios system uses
2,293 LEs (1,888 LEs for the processor), and 163,840 mem-
ory bits (32,768 for the processor). Hence, the UT Nios
based system uses 31% more LEs and 2% more memory
bits than the Altera Nios based system. We believe that this
is due to the device specific optimizations done for the Al-
tera Nios. Examples of such optimizations applied to the
Altera Nios ALU targeting the APEX device family can be
found in [8]. The UT Nios does not include such optimiza-
tions, because our aim was to produce a generic implemen-
tation that can be implemented in most modern FPGAs.

4. Conclusions

Soft-core processors play a key role in building systems
on a programmable chip. In this paper the UT Nios im-
plementation of the Nios architecture is presented. The UT

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Nios benchmark set, which can be used to evaluate the per-
formance of soft-core processor architectures is defined. It
was used to evaluate the performance of UT Nios.

The UT Nios exhibits performance comparable to that of
Altera Nios. On average the UT Nios was found to be 1%
faster than the Altera Nios. It is up to 56% faster for some
programs, due to different pipeline organization. The UT
Nios based system requires 31% more LEs and 2% more
memory bits than an equivalent Altera Nios based system,
mainly due to device specific optimizations employed in the
Altera Nios design.

The UT Nios benchmark set is available at [9].

References

[1] Xilinx, Inc. MicroBlaze Soft Processor, August 2004.
htpp://www.xilinx.com/xInx/xil _prodcat_product.jsp?title=

microblaze.
[2] Altera Corporation. Embedded Proces-
sor Solutions Overview, January 2005.

http://www.altera.com/technology/embedded/embedded/emb-

embedded_processor_solutions.html.
[3] F. Plavec. Soft-Core Processor Design. Master’s thesis, Uni-
versity of Toronto, 2004.
Altera Corporation. Nios Features: CPU Architecture, August
2004. http://www.altera.com/products/ip/processors/nios/
features/nio-cpu_architecture.html.
Altera Corporation. ANI188: Custom Instructions
for the Nios Embedded Processor, September 2002.
http://www.altera.com/literature/an/an188.pdf.
Altera Corporation. Avalon Bus Spec-
ification Reference Manual, July 2003.
http://www.altera.com/literature/manual/mnl_avalon_bus.pdf.
M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.
Mudge, R.B. Brown. MiBench: A Free, Commercially Rep-
resentative Embedded Benchmark Suite. In Proc. of the 4th
IEEE Workshop on Workload Characterization, pages 3—14,
2001. Austin, TX.
P. Metzgen. A High Performance 32-bit ALU for Pro-
grammable Logic. In Proc. of the 2004 ACM/SIGDA 12th
international symposium on Field programmable gate arrays,
pages 61-70. ACM Press, 2004.
UuT Nios Homepage, August
http://www.eecg.toronto.edu/ plavec/utnios.html.

[4]

[3]

[6]

[7]

(8]

[91 2004.

YF]',F.

COMPUTER

SOCIETY

