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Abstract—For a positioning system with sensors, a maximum of
( 1) 2 distinct time-difference-of-arrival (TDOA) measurements,

which are referred to as the full TDOA set, can be obtained. In this paper,
closed-form expressions regarding optimum conversion of the full TDOA
set to the nonredundant TDOA set, which corresponds to ( 1) TDOA
measurements with respect to a common reference receiver, in the case of
white signal source and noise, are derived. The most interesting finding is
that optimum conversion can be achieved via the standard least squares
estimation procedure. Furthermore, the Cramér-Rao lower bound for
TDOA-based positioning is produced in closed-form, which will be useful
for optimum sensor array design.

Index Terms—Optimum processing, source localization, time delay
estimation.

I. INTRODUCTION

Estimation of the time differences of arrival (TDOAs) between noisy
versions of the same signal received at spatially separated sensors has
been an important research topic [1]–[3]. Classical applications for
time delay estimation include source localization and speed sensing in
sonar and radar systems. Recent requirements for TDOA-based posi-
tioning are speaker tracking by microphone arrays [4], third-generation
mobile communication systems [5], wireless local area networks [6],
as well as sensor networks [7]. For two-dimensional (2-D) positioning,
each TDOA measurement, which is proportional to the differences in
source-sensor range, defines a hyperbolic locus on which the source
must lie and the position estimate can be obtained from the intersec-
tion of two or more hyperbolas.

For a positioning system withL sensors, there areL(L�1)=2 distinct
TDOA measurements from all possible sensor pairs, and we call them
the full TDOA set. Alternatively, the so-called spherical TDOA set [8],
renamed the nonredundant set here, is a subset of the full set and con-
tains only (L� 1) TDOAs measured from sensor pairs with a common
reference sensor, can be utilized for localization. In fact, most of the
TDOA-based positioning algorithms in the literature, such as [4] and
[9]–[11], are based on the nonredundant set, while only a few [12], [13]
have considered the full set. The motivation of this paper is to answer the
fundamental question of whether the full or nonredundant TDOA sets
can give optimum positioning performance. The results show that opti-
mality can be attained by both sets if the nonredundant TDOA measure-
ments are properly converted from the full set. This conclusion conflicts
with [8], which did not consider optimum processing of the nonredun-
dant set. The contributions here are as follows.

1) Optimum conversion of the full TDOA set to the nonredundant
set, assuming that each sensor receives a white source signal in
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white noise. Although the results agree with [14], we are able to
produce the corresponding closed-form conversion expressions.

2) A proof that the Gauss–Markov nonredundant set estimates can be
obtained from the full set with the use of the standard least squares
(LS). The asymptotic cases of high and low signal-to-noise ratio
(SNR) conditions have also been investigated.

3) A verification that for TDOA-based positioning, the full and opti-
mized nonredundant sets give identical Cramér–Rao lower bound
(CRLB), which demonstrates their efficiency.

Hence, localization algorithms should always use the nonredundant set,
since there is a less number of equations to solve. In addition, the CRLB
is in closed-form which will be beneficial for the design of optimum
2-D sensor arrays.

The rest of the paper is organized as follows. In Section II, we con-
sider TDOA estimation for a white source signal in additive white
noise. After optimally estimating the full TDOA set, the Gauss–Markov
estimate of the nonredundant TDOA set is derived in closed form.
It is shown that Gauss–Markov estimate is in fact equal to the stan-
dard LS estimate. The closed-form expression of the CRLB for TDOA-
based positioning is given in Section III. Section IV provides numer-
ical examples to validate the theoretical findings. Finally, conclusions
are drawn in Section V.

II. OPTIMUM CONVERSION OF FULL SET TO NONREDUNDANT SET

The discrete-time signal received at the ith sensor is

zi(n) = s(n�Di)+qi(n); i=1; 2; � � �L; n=0; 1; � � �N�1 (1)

where s(n) is the passive source signal, and qi(n) and Di 2 are
the additive noise and signal propagation delay, respectively, at the
ith sensor. Without loss of generality, the sampling frequency is 1 Hz.
Prior to sampling, the continuous-time signals are first lowpass filtered
with a cutoff frequency of 0.5 Hz. That is, the discrete-time signals
are obtained at the Nyquist rate, and they are band-limited between
�0.5 and 0.5 Hz. Following standard practices, fqi(n)g in (1) are
zero-mean white Gaussian processes which are independent of s(n).
The derivation below assumes that s(n) is also a zero-mean white
Gaussian process. This means that the continuous-time source signal
has a flat spectrum over the lowpass filter bandwidth. Then after sam-
pling at the Nyquist rate, all samples in s(n) are independent and iden-
tically distributed. Certainly not all sources have flat spectra, but many
signals do possess approximately this property. Examples are in the
localization of an explosion underground, in the air or underwater. In
electronic warfare, localizing a wideband jammer or a direct sequence
spread spectrum transmitter will also have s(n) that are near white
noise processes. The task of TDOA estimation is to find the time dif-
ference between fDig from the L�N measurements of fzi(n)g.

Let Di;j = Di � Dj , where i > j, be the TDOA between zi(n)
and zj(n), which is generally not an integral multiple of the sampling
interval. A full set of fDi;jg contains L(L� 1)=2 elements. It is well
known [15] that for continuous-time white Gaussian signal and noises,
the maximum-likelihood estimate is given by the cross-correlator peak.
For the discrete-time signals of (1), the estimate ofDi;j based on cross-
correlation, denoted by D̂i;j , is computed as

D̂i;j = argmax
~D

ri;j( ~Di;j) (2)

where

ri;j( ~Di;j) =

N�1

n=0

zi(n)zj(n� ~Di;j) (3)
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is the cross-correlation function of zi(n) and zj(n) with lag ~Di;j ,
which denotes the variable for Di;j , and thus its value is not neces-
sarily an integer. It is worthy to mention that since we do not assume
~Di;j 2 , the results derived in this paper are not immediately ap-
plicable for typical discrete-time TDOA estimation where D̂i;j is re-
stricted to be an integral multiple of the sampling interval. Utilizing the
inverse discrete-time Fourier transform for e�j!

~D , the time-shifted
signal zj(n � ~Di;j) is generated as [16]

zj(n� ~Di;j) =

P

i=�P

zj(n� i)sinc(i� ~Di;j) (4)

where sinc(v) = sin(�v)=(�v) is the sinc function and P , whose
ideal value is infinity, should be chosen large enough to make the mod-
eling error negligible. Let �2s and f�2q g be the variances of s(n) and
fqi(n)g, respectively, and their values are assumed known. Consider
that N is sufficiently large and SNR = �2s=�

2
q is identical at each

sensor with �2q = �2q , i = 1; 2; � � � ; L. When D̂i;j � Di;j , the vari-
ance of D̂i;j at N ! 1, denoted by var(D̂i;j), is derived using a
first-order approximation as (see Appendix A)

var(D̂i;j) �
3(1 + 2SNR)

�2NSNR2 : (5)

Because of the optimality of the cross-correlator for continuous-time
white signals, there is no surprise that var(D̂i;j) equals the CRLB for
TDOA estimation [17] between two discrete-time sensor outputs, de-
noted by CRLB2. It is noteworthy to point out that an asymptotic vari-
ance expression for cross-correlation-based time-delay estimate has
been derived in [18]. Apart from different derivation approaches, the
variance of [18] is larger than CRLB2 mainly because suboptimal par-
abolic interpolation is used while we have employed the optimum sinc
interpolator.

The cross covariance of D̂i;j and D̂k;l at N ! 1, denoted by
cov(D̂i;j ; D̂k;l) is (see Appendix A)

cov(D̂i;j ; D̂k;l)

�

3
� NSNR

; i = k and j 6= l or i 6= k and j = l

� 3
� NSNR

; i = l and j 6= k or i 6= l and j = k

0; i 6= j 6= k 6= l:

(6)

Note that in Appendix A, we have in fact derived the general forms of
var(D̂i;j) and cov(D̂i;j ; D̂k;l)when the SNR at each sensor is distinct.

Let Df = [D2;1; D3;1; � � � ; DL;1; D3;2; � � � ; DL;L�1]
T2

L(L�1)=2�1, where T denotes transpose, be the full set
TDOA vector and its estimate using cross correlation be
D̂f = [D̂2;1; D̂3;1; � � � ; D̂L;1; D̂3;2; � � � ; D̂L;L�1]

T . With the use of
(5) and (6), it can be shown that the asymptotic covariance matrix of
D̂f , denoted by Cf 2

L(L�1)=2�L(L�1)=2, is of the form

Cf =
3

�2NSNR
JJ

T +
1

SNR
I (7)

where

J = J
T
1 J

T
2 � � � J

T
L�1

T

2 �L (8)

with

Ji = 0(L�i)�(i�1) � 1L�i IL�i 2 (L�i)�L

and Ii, 0i�j and 1i represent the i�i identity matrix, i�j zero matrix
and i � 1 vector with all elements 1, respectively. It is noteworthy
that (7) agrees with the covariance matrix for the correlator scheme

measurement error vector given in [14] but we are able to produce it in
closed form.

In the noise-free case, the nonredundant TDOA set can generate
the full TDOA set without errors, that is, the full set contains redun-
dant TDOA measurements. Without loss of generality, we take the first
sensor as the reference sensor and denote the nonredundant TDOA set
as Ds = [D2;1; D3;1; � � � ; DL;1]

T 2 (L�1)�1. The full and nonre-
dundant TDOA sets are related by

Df = HDs (9)

where H = JK 2 L(L�1)=2 � L with K = [0(L�1)�1 IL�1]
T 2

L�(L�1). Let D̂s = [
^̂
D2;1;

^̂
D3;1; � � � ;

^̂
DL;1]

T be the Gauss–Markov
estimate of Ds based on D̂f . Employing the inverse of Cf as the

weighting matrix, ^̂Ds is easily obtained as the weighted LS estimate

^̂
Ds = H

T
C
�1
f
H

�1

H
T
C
�1
f
D̂f (10)

where �1 denotes the matrix inverse. We have found the closed-form
expression of C�1

f
as

C
�1
f

= �
�2NSNR3

3(1 + LSNR)
JJ

T �
1 + LSNR

SNR
I : (11)

With the use of (11), HT
C
�1
f

can be simplified to (see Appendix B)

H
T
C
�1
f

=
�2NSNR2

3(1 + LSNR)
H

T (12)

so that

H
T
C
�1
f
H

�1

H
T
C
�1
f

= (HT
H)�1HT : (13)

Thus, the Gauss–Markov estimate of Ds is in fact the standard LS
estimate and computational complexity can be significantly reduced
for optimum conversion of the full TDOA set to the nonredundant.
Furthermore, the closed-form expression of (HT

H)�1HT is (see
Appendix C)

(HT
H)�1HT =

1

L
IL�1 + 1L�11

T
L�1

�HT (14)

where �HT is a partition ofHT which contains only its last (L�1)(L�
2)=2 columns. For reference sensors other than the first, we only need
to change HT accordingly to obtain the corresponding estimate of the

nonredundant set. In fact, it can also be deduced easily from ^̂
Ds that

the LS estimation procedure implies ^̂
Di;j +

^̂
Dj;k +

^̂
Dk;i = 0 [13].

That is, ^̂
Di;j =

^̂
Di;1 �

^̂
Dj;1 for i 6= j 6= 1. Note that the zero

residual of f ^̂Di;jg is also mentioned in [19] for consistency checks
but no suggestion is provided for achieving it.

Furthermore, the covariance matrix of ^̂
Ds, denoted by Cs 2

(L�1)�(L�1), is then

Cs = H
T
C
�1
f
H

�1

: (15)

With the use of (12), the closed-form expression for Cs is (see
Appendix C)

Cs =
3(1 + LSNR)

�2NSNR2 (HT
H)�1

=
3(1 + LSNR)

�2LNSNR2 IL�1 + 1L�11
T
L�1 (16)

while its inverse is (see Appendix C)

C
�1
s =

�2NSNR2 LIL�1 � 1L�11
T
L�1

3(1 + LSNR)
: (17)
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Note that (17) will be employed for computing the CRLB for posi-
tioning using the estimate of the nonredundant TDOA set in the next
section.

Recall that the Fisher information matrix (FIM) for TDOA estimates
using the nonredundant set is [14]

F =
N

2�

�

��

!2
S2(!)

1 + L
i=1 S(!)=Qi(!)

� tr Q�1(!) Q�1p (!)�Q�1p (!)1L�11
T
L�1Q

�1
p (!) d!

(18)

where S(!) and Qi(!) represent the power spectra of s(k) and qi(k),
respectively, while Q(!) = diag(Q1(!); Q2(!); � � � ; QL(!)) and
Qp(!) = diag(Q2(!);Q3(!); � � � ; QL(!)). It is noteworthy that
(18) is derived under the following assumptions:

1) the continuous-time random signals are wide-sense stationary
processes;

2) instead of analyzing the signals in the time domain, they are an-
alyzed in the frequency domain by sampling their Fourier trans-
forms with frequency interval of 2�=T where T is the observation
interval; since we have assumed unity sampling interval in (1), we
have T = N ;

3) the observation interval-bandwidth product of the processes is
sufficiently large such that the Fourier samples are uncorrelated
and thus the discrete summation can be changed to continuous
integration.

For white signal and noises with variances �2s and �2q , we have S(!) =
�2s , Qi(!) = �2q , i = 1; 2; � � � ; L, Q(!) = �2qIL and Qp(!) =
�2qIL�1. Substituting these values into (18) with SNR = �2s=�

2
q , we

can easily show that (17) and (18) are identical. Since the CRLB forDs

is given by the inverse of the FIM, it follows that ^̂
Ds is the asymptot-

ically optimum estimate of the nonredundant set. This finding is again
consistent with [14], but we are able to produce the corresponding
closed form expressions here. On the other hand, although Schmidt
[13] has also suggested to employ the LS technique or averaging for
improving the full set TDOA estimates, there is no discussion regarding
the optimality issue.

From the diagonal of (15), the CRLB for fDi;1g, i = 2; 3; � � � ; L,
using L sensors, denoted by CRLBL, is

CRLBL =
6(1 + LSNR)

�2LNSNR2 : (19)

Clearly, (19) agrees with (5) when L = 2. The performance im-

provement of using ^̂
Ds over the truncated set from D̂f , namely

fD̂2;1; D̂3;1; � � � ; D̂L;1g, can be investigated from the ratio of CRLBL

to CRLB2 as follows:

CRLBL

CRLB2
=

2(1 + LSNR)

L(1 + 2SNR)
: (20)

For SNR � 1, this ratio approaches 1, which indicates that there

is no improvement and ^̂
Di;1 � D̂i;1, i = 2; 3; � � � ; L. As a result,

estimating only fD̂i;1g is sufficient to achieve optimum processing
while computations can be saved because estimation of the remaining
fD̂i;jg and the LS procedure for calculating the Gauss–Markov esti-
mate are not required. It is noteworthy that this finding conforms with
(7) as Cf will become an ill-conditioned matrix at SNR � 1 due
to the rank deficiency of JJT . At SNR � 1, CRLBL=CRLB2 ap-
proaches 2=L which means that the enhancement only increases lin-
early with respect to the sensor number. Interestingly, we have also
found that for sufficiently small SNR, the covariance matrix is Cf �

3=(�2NSNR2)IL(L�1)=2. With this value ofCf , (13) can be obtained
much simpler.

III. POSITIONING PERFORMANCE BOUND

Let [x y]T and [xi yi]
T , i = 1; 2; � � � ; L, be the unknown target po-

sition and known sensor positions, respectively, then their relationship
with the TDOAs is

vDi;j = (x� xi)2 + (y � yi)2� (x� xj)2 + (y � yj)2 (21)

where v represents the signal propagation speed which is a known con-
stant. The minimum achievable mean square position error (MSPE),
denoted by Ef(x̂ � x)2 + (ŷ � y)2g, where x̂ and ŷ represent the
unbiased estimates of x and y and E is the expectation operator, is
developed as follows. The 2 � 2 FIM for 2-D positioning with the pa-
rameter vector [x y]T using the nonredundant set, denoted by Fs, is
given by [11]

Fs =
GsC

�1
s GT

s

v2
(22)

where

Gs = [g21 g31 � � �gL1] 2 2�(L�1)

gi1 =gi � g1

gi =
gx;i
gy;i

=

x�xp
(x�x ) +(y�y )

y�yp
(x�x ) +(y�y )

:

In Appendix D, we have expressed GsC
�1
s GT

s as

GsC
�1
s G

T
s =

�2NSNR2

3(1 + LSNR)
LGT

G�GT
1L1

T
LG (23)

where

G =
gx;1 gx;2 � � � gx;L
gy;1 gy;2 � � � gy;L

T

:

Substituting (23) into (22) and then taking the inverse, we can obtain
the closed-form CRLB for x and y from its diagonal elements.

On the other hand, the FIM for 2-D positioning using the full TDOA
set, denoted by Ff , is given by [20]

Ff =
GfC

�1
f
GT

f

v2
(24)

where

Gf =[g12 g13 � � � g1L g23 � � � g2L � � � gL�1L] 2 2� :

With the use of (15) and Gf = GsH
T , it is easy to obtain

GfC
�1
f
GT

f = GsC
�1
s GT

s . Hence, localization using the full or
nonredundant sets will have the same CRLB. This is not a surprising
result in view of the development in Section II. Hence, localization
algorithms should always use the nonredundant set because there is a
less number of equations to solve. The findings in this section can also
contribute to the research of optimum 2-D sensor array design. Al-
though Yang and Scheuing [8], [20] have performed some pioneering
study on the impact of the sensor array geometry on the TDOA-based
localization accuracy, their assumption of a scaled identity matrix for
Cf is rather restrictive. As seen in Section II, this is valid only for
SNR � 1. In contrast, (23) provides the basis for study of sensor
array geometry effects on the CRLB.

IV. SIMULATION STUDY

Computer simulations have been performed to verify the theoretical
development on TDOA-based positioning. A microphone array appli-
cation scenario with eight sensors is considered and the speed of signal
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Fig. 1. Mean square position error when sensor outputs have same SNRs.

propagation is v = 340 ms�1. The eight microphones are at (0,0)m,
(0,50)m, (0,100)m, (50,100)m, (100,100)m, (100,50)m, (100,0)m, and
(50,0)m, while the source position is at (10,20)m. The MSPE is em-
ployed as the performance measure, and all results provided are aver-
ages of 1000 independent runs.

In the first test, the SNRs of all sensor outputs are identical. Based
on the investigated geometry, the optimum full set TDOA estimates,
namely, D̂f , are generated with the covariance matrix of (7) according
to a Gaussian distribution. In doing so, we have implicitly assumed
sufficiently high SNR conditions such that there are no large errors in
the TDOA estimates. It should be emphasized that the TDOA estima-
tion problem of (2) is nonlinear, and hence in practice, it will suffer
from the threshold phenomenon when SNR is small enough. The op-
timum nonredundant estimate of Ds is then obtained from D̂f with
the use of the LS procedure of (14). The performance of the truncated
set fD̂2;1; D̂3;1; � � � ; D̂8;1g is also evaluated. From each set of TDOA
measurements, the position estimate, namely, (x̂; ŷ), is determined by
finding the maximum of the corresponding maximum likelihood cost
functions. The Newton–Raphson iterative procedure is employed for
the maximum search and the true position is selected as the initial
guess. Again, we have ignored the threshold phenomenon. Fig. 1 shows
the MSPEs of the three sets of TDOA estimates versus SNR. It is seen
that the MSPEs based on the full set and optimized nonredundant set
perform equally and meet the CRLB for all SNR conditions, which
agrees with the findings in Section III. Furthermore, we observe that
employing fD̂2;1; D̂3;1; � � � ; D̂8;1g can provide optimum position es-
timates only at high SNRs, as predicted in Section II.

In the second test, we study the comparative positioning accuracy
for different schemes of processing the TDOA measurements when
the sensor outputs have unequal SNRs. We use the covariance matrix
in Appendix A to generate the full set TDOA measurements. For
simplicity, we set �2q = 20�2q and �2q = �2q = �2q = � � � = �2q
with SNR = �2s=�

2

q , which implies that the truncated set
fD̂2;1; D̂3;1; � � � ; D̂8;1g is now more noisy than other TDOA es-
timates in the full set. The MSPEs of different methods are plotted
in Fig. 2. Note that for this scenario, (13) does not hold and thus
the results for the Gauss–Markov estimate of (10) are also included.
Again, we observe that the estimators using the full set and optimized
nonredundant set give optimum performance for the whole SNR
range. Due to a smaller SNR condition at fD̂2;1; D̂3;1; � � � ; D̂8;1g,
the MSPE from using the truncated set cannot meet the CRLB even
at high SNRs. On the other hand, it is interesting to see that the per-
formance of the simple LS procedure for TDOA’s attains optimality

Fig. 2. Mean square position error when the first sensor output has smaller
SNR.

Fig. 3. Mean square position error when the second sensor output has smaller
SNR.

for SNR 2 [�10; 30]dB. This test is repeated with �2q = 20�2q and
�2q = �2q = �2q = � � � = �2q , and the results are plotted in Fig. 3.
The observations are similar to those of Fig. 2 except that the truncated
set can give optimum estimation performance at higher SNRs because
now fD̂2;1; D̂3;1; � � � ; D̂8;1g is generally less noisy compared to the
remaining TDOA estimates in the full set.

V. CONCLUSION

Optimal conversion of the full time-difference-of-arrival (TDOA) set
estimates to the nonredundant can be achieved using the standard least
squares procedure and the corresponding closed form expressions are
derived for the case of white signal in additive white noise. It is proved
that both the full and nonredundant sets of TDOA estimates can give the
same position estimation performance. Cramér–Rao lower bound for
TDOA-based positioning is also derived in closed form, and this should
facilitate the design of optimum sensor placement for localization.

APPENDIX A

The TDOA variance of the cross-correlator is first derived as follows.
For simplicity but without loss of generality, we only consider TDOA
estimation between z1(n) and z2(n) and let D1 = 0 and D = D2;1 =
D2 be the time difference. The powers of the Gaussian processes s(k)
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and qi(k), i = 1; 2; � � � ; L, are denoted by �2s and �2q , respectively.
The corresponding cross-correlator function is then

r2;1( ~D) =

N�1

n=0

z2(n)z1(n� ~D) (A1)

where

z1(n� ~D) =

P

i=�P

z1(n� i)sinc(i� ~D): (A2)

We consider the asymptotic condition of N ! 1 and P is chosen
sufficiently large. Denote D̂ as the TDOA estimate which is the ~D
which maximizes r2;1( ~D). This implies

r02;1( ~D)
~D=D̂

= 0 (A3)

where r02;1( ~D) is the first derivative of r2;1( ~D) with respect to ~D.
When Efr02;1( ~D)g is sufficiently smooth around ~D = D, we have
the following first-order approximation [21]:

dE r02;1( ~D)

d ~D
~D=D

= E r002;1( ~D)
~D=D

�
r02;1( ~D)

~D=D̂
� r02;1( ~D)

~D=D

D̂ �D
(A4)

where r002;1( ~D) is the corresponding second derivative. With the use of
(A3) and (A4), the mean value of D̂ is

EfD̂g � D �
E r02;1( ~D)

E r00
2;1(

~D)
~D=D

: (A5)

Employing (A1) and (A2), r02;1( ~D)j ~D=D is

r02;1( ~D)
~D=D

= �

N�1

n=0

P

i=�P

z2(n)z1(n� i)sinc0(i�D): (A6)

For uncorrelated q1(n) and q2(n), taking the expected value of (A6)
yields

E r02;1( ~D)
~D=D

= �

N�1

n=0

P

i=�P

E fs(n�D)s(n� i)g sinc0(i�D)

= �

N�1

n=0

P

i=�P

1

j=�1

E fs(n� i)s(n� j)g

� sinc0(i�D)sinc(j �D)

= �N�2s

P

i=�P

sinc0(i�D)sinc(i�D)

� �N�2ssinc
0(0) = 0 (A7)

because sinc0(0) = 0. In a similar manner, the termEfr002;1( ~D)gj ~D=D

is evaluated as

E r002;1( ~D)
~D=D

=

N�1

n=0

P

i=�P

E fs(n�D)s(n� i)g sinc00(i�D)

� N�2ssinc
00(0) = �

N�2s�
2

3
(A8)

with the use of sinc00(0) = ��2=3 [22]. Substituting (A7) and (A8)
into (A5) yields

EfD̂g � D (A9)

which shows the approximate unbiasedness of the cross-correlator.
Squaring both sides of (A4) with the use of (A3) and (A9), the vari-

ance of D̂ based on the first-order approximation, is

var(D̂) =E D̂ � EfD̂g
2

� E (D̂ �D)2

�
E r022;1( ~D)

E r00
2;1(

~D)
2

~D=D

: (A10)

It is noteworthy that (A10) can also be derived by expanding r02;1( ~D)
in a Taylor series about D and retaining only linear terms [23]. By
squaring (A6), the numerator of (A10) is

E r022;1(D)

=

N�1

n=0

N�1

m=0

P

i=�P

P

j=�P

E fz1(n� i)z1(m� j)z2(n)z2(m)g

� sinc0(i�D)sinc0(j �D): (A11)

Using the properties that the signal and noise are uncorrelated and
white Gaussian processes as well as the sinc function, namely,
1

i=�1
sinc02(v) = �2=3 for any real value of v [22] and

sinc0(0) = 0, we have simplified (A11) as

E r022;1(D) �
�2N �2s�

2

q + �2s�
2

q + �2q �2q

3
: (A12)

Substituting (A8) and (A12) into (A10) with �2q = �2q = �2q and
SNR = �2s=�

2

q yields (5).
Following the variance development for (A10), the covariance be-

tween D̂i;j and D̂k;l is then

cov(D̂i;j; D̂k;l)

�E (D̂i;j�Di;j)(D̂k;l�Dk;l)

�
E r0i;j( ~Di;j)r

0

k;l( ~Dk;l)

E r00i;j(
~Di;j) E r00k;l(

~Dk;l)
~D =D ; ~D =D

: (A13)

With the use of (A8), it is easy to see that

E r00i;j( ~Di;j)
~D =D

=E r00k;l( ~Dk;l)
~D =D

��
N�2s�

2

3
:

(A14)

In a similar manner, the numerator of (A13) can be derived as

E r0i;j( ~Di;j)r
0

k;l( ~Dk;l)
~D =D ; ~D =D

�

N� � �

3
; i = k and j 6= l or i 6= k and j = l

�
N� � �

3
; i = l and j 6= k or i 6= l and j = k

0; i 6= j 6= k 6= l:

(A15)

Putting (A14), (A15) into (A13) with �2q = �2q = �2q yields (6).
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APPENDIX B

In this Appendix, (12) will be proved, namely, HT
C
�1
f

is propor-
tional to HT . First of all, JTJJT is evaluated as follows. Recall (8)

J = J
T
1 J

T
2 � � � J

T
L�1

T

where Ji = [0(L�i)�(i�1) � 1L�i IL�i], we have

J
T
i Ji =

0(i�1)�(i�1) 0(i�1)�1 0(i�1)�(L�i)

01�(i�1) L� i �1
T
L�i

0(L�i)�(i�1) �1L�i IL�i

: (B1)

Hence

J
T
J =

L�1

i=1

J
T
i Ji

=

L� 1 �1 �1 �1 � � � �1

�1 1 0 0 � � � 0

�1 0 1 0 � � � 0

�1 0 0 1 � � � 0
...

...
...

...
. . .

...
�1 0 0 0 � � � 1

+

0 0 0 0 � � � 0

0 L� 2 �1 �1 � � � �1

0 �1 1 0 � � � 0

0 �1 0 1 � � � 0
...

...
...

...
. . .

...
0 �1 0 0 � � � 1

+

0 0 0 0 � � � 0

0 0 0 0 � � � 0

0 0 L� 3 �1 � � � �1

0 0 �1 1 � � � 0
...

...
...

...
. . .

...
0 0 �1 0 � � � 1

+ � � �

+

0 0 0 0 � � � 0

0 0 0 0 � � � 0

0 0 0 0 � � � 0
...

...
...

...
. . .

...
0 0 � � � 0 1 �1

0 0 � 0 �1 1

=LIL � 1L1
T
L : (B2)

From (B2), we get

J
T
JJ

T = LIL � 1L1
T
L J

T = LJ
T (B3)

since 1L1TLJ
T = 0L�(L(L�1)=2).

Using (11) and (B3), HT
C
�1
f

is then evaluated as

H
T
C
�1
f

=KT
J
T
C
�1
f

=�
�
2
NSNR3

3(1+LSNR)
LK

T
J
T
�K

T
J
T 1+LSNR

SNR

=
�
2
NSNR2

3(1+LSNR)
H

T (B4)

which is (12).

APPENDIX C

In this Appendix, (14), (16), and (17) will be proved. Using (B2),
(HT

H)�1 becomes

(HT
H)�1 =(KT

J
T
JK)�1

= K
T

LIL � 1L1
T
L K

�1

= LIL�1 � 1L�11
T
L�1

�1

: (C1)

With the use of (C1), taking the inverse of (16) yields (17).
Using the matrix inversion lemma, (C1) can also be expressed as

LIL�1 � 1L�11
T
L�1

�1

= � �LIL�1 + 1L�11
T
L�1

�1

= (LIL�1)
�1 +

(�LIL�1)
�1
1L�11

T
L�1(�LIL�1)

�1

1 + 1TL�1(�LIL�1)
�11L�1

=
1

L
IL�1 + 1L�11

T
L�1 : (C2)

From (12) and (C2), we easily obtain (16). Using (C2),
(HT

H)�1HT is evaluated as follows:

(HT
H)�1HT

=
1

L
H

T + 1L�11
T
L�1

� K
T
J
T
1 K

T
J
T
2 K

T
J
T
3 � � � K

T
J
T
L�1

=
1

L
H

T + 1L�11
T
L�1

� IL�1 K
T
J
T
2 K

T
J
T
3 � � � K

T
J
T
L�1

=
1

L
H

T + 1L�1

� 1
T
L�1 0

T
(L�2)�1 0

T
(L�3)�1 � � � 0

T
1�1

=
1

L
IL�1 + 1L�11

T
L�1

�HT
: (C3)

APPENDIX D

In this Appendix, we will prove (23). We first write Gs as

Gs = G
T
J
T
1 :

By using (B1), we have

J
T
1 J1 =

L� 1 �1
T
L�1

�1L�1 IL�1
: (D1)

Moreover, by the property of J

J
T
1 1L�1 =

�L+ 1

1L�1

) J
T
1 1L�11

T
L�1J1 =

(1� L)2 (1� L)1TL�1
(1� L)1L�1 1L�11

T
L�1

(D.2)
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GsC
�1

s
G
T

s
is derived with the use of (C1), (D1) and (D2) as follows,

which is (23):

GsC
�1

s G
T

s =
�
2
NSNR2

3(1 + LSNR)
G
T
J
T

1

� LIL�1 � 1L�11
T

L�1 J1G

=
�
2
NSNR2

3(1 + LSNR)
G
T

�

L� 1 �1
T

L�1

�1L�1 LIL�1 � 1L�11
T

L�1

G

=
�
2
NSNR2

3(1 + LSNR)
G
T

LIL � 1L1
T

L G: (D.3)
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