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ABSTRACT 

Estimating the prerequisite structure of skills is a crucial issue in 

domain modeling. Students usually learn skills in sequence since 

the preliminary skills need to be learned prior to the complex 

skills. The prerequisite relations between skills underlie the design 

of learning sequence and adaptation strategies for tutoring 

systems. The prerequisite structures of skills are usually studied 

by human experts, but they are seldom tested empirically. Due to 

plenty of educational data available, in this paper, we intend to 

discover the prerequisite structure of skills from student 

performance data. However, it is a challenging task since skills 

are latent variables. Uncertainty exists in inferring student 

knowledge of skills from performance data. Probabilistic 

Association Rules Mining proposed by Sun et al. (2010) is a novel 

technique to discover association rules from uncertain data. In this 

paper, we preprocess student performance data by an evidence 

model. Then the probabilistic knowledge states of students 

estimated by the evidence model are used by the probabilistic 

association rules mining to discover the prerequisite structure of 

skills. We adapt our method to the testing data and the log data 

with different evidence models. One simulated data set and two 

real data sets are used to validate our method. The discovered 

prerequisite structures can be provided to assist human experts in 

domain modeling or to validate the prerequisite structures of skills 

from human expertise. 
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1. INTRODUCTION 
In most Intelligent Tutoring Systems (ITSs) and other educational 

environments, learning sequence is an important issue 

investigated by many educators and researchers. It is widely 

believed that students should be capable of solving the easier 

problems before the difficult ones are presented to them, and 

likewise, some preliminary skills should be learned prior to the 

learning of the complex skills. The prerequisite relations between 

problems and between skills underlie the adaptation strategies for 

tutoring and assessments. Furthermore, improving the accuracy of 

a student model with the prerequisite structure of skills has been 

exemplified by [1, 2]. The prerequisite structures of problems and 

skills are in accordance with the Knowledge Space Theory [3] and 

Competence-based Knowledge Space Theory [4]. A student’s 

knowledge state should comply with the prerequisite structure of 

skills. If a skill is mastered by a student, all the prerequisites of 

the skill should also be mastered by the student. If any 

prerequisite of a skill is not mastered by a student, it seems 

difficult for the student to learn the skill. Therefore, according to 

the knowledge states of students, we can uncover the prerequisite 

structure of skills. Most prerequisite structures of skills reported in 

the student modeling literature are studied by domain or cognition 

experts. It is a tough and time-consuming task since it is quite 

likely that the prerequisite structures from different experts on the 

same set of skills are difficult to come to an agreement. Moreover, 

the prerequisite structures from domain experts are seldom tested 

empirically. Nowadays, some prevalent data mining and machine 

learning techniques have been applied in cognition models, 

benefiting from large educational data available through online 

educational systems. Deriving the prerequisite structures of 

observable variables (e.g. problems) from data has been 

investigated by some researchers. However, discovering 

prerequisite structures of skills is still challenging since a 

student’s knowledge of a skill is a latent variable. Uncertainty 

exists in inferring student knowledge of skills from performance 

data. This paper aims to discover the prerequisite structures of 

skills from student performance data. 

2. RELATED WORK 
With the emerging educational data mining techniques, many 

works have investigated the discovery of the prerequisite 

structures within domain models from data. The Partial Order 

Knowledge Structures (POKS) learning algorithm is proposed by 

Desmarais and his colleagues [5] to learn the item to item 

knowledge structures (i.e. the prerequisite structure of problems) 

which are solely composed of the observable nodes, like answers 

to test questions. The results from the experiments over their three 

data sets show that the POKS algorithm outperforms the classic 

BN structure learning algorithms [6] on the predictive ability and 

the computational efficiency. Pavlik Jr. et al. [7] used the POKS 

algorithm to analyze the relationships between the observable 

item-type skills, and the results were used for the hierarchical 

agglomerative clustering to improve the skill model. Vuong et al. 

[8] proposed a method to determine the dependency relationships 

between units in a curriculum with the student performance data 

that are observed at the unit level (i.e. graduating from a unit or 

not). They used the statistic binominal test to look for a significant 

difference between the performance of students who used the 

potential prerequisite unit and the performance of students who 

did not. If a significant difference is found, the prerequisite 

relation is deemed to exist. All these methods above are proposed 
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to discover prerequisite structures of the observable variables. 

Tseng et al. [9] proposed to use the frequent association rules 

mining to discover concept maps. They constructed concept maps 

by mining frequent association rules on the data of the fuzzy 

grades from students’ testing. They used a deterministic method to 

transfer frequent association rules on questions to the prerequisite 

relations between concepts, without considering the uncertainty in 

the process of transferring students’ performance to their 

knowledge. Deriving the prerequisite structure of skills from 

noisy observations of student knowledge is considered in the 

approach of Brunskill [10]. In this approach, the log likelihood is 

computed for the precondition model and the flat model (skills are 

independent) on each skill pair to estimate which model better fits 

the observed student data. Scheines et al. [11] extended causal 

discovery algorithms to discover the prerequisite structure of 

skills by performing statistical tests on latent variables. In this 

paper, we propose to apply a data mining technique, namely the 

probabilistic association rules mining, to discover prerequisite 

structures of skills from student performance data. 

3. METHOD 
Association rules mining [12] is a well-known data mining 

technique for discovering the interesting association rules in a 

database. Let                be a set of attributes (called items) 

and                be a set of records (or transactions), i.e. a 

database. Each record contains the values for all the attributes in I. 

A pattern (called itemset) contains the values for some of the 

attributes in I. The support count of pattern X is the number of 

records in D that contain X, denoted by     . An association rule 

is an implication of the form    , where X and Y are related to 

the disjoint sets of attributes. Two measures are commonly used 

to discover the strong or interesting association rules: the support 

of rule     denoted by         , which is the percentage of 

records in D that contain    , i.e.       ; the confidence 

denoted by          , which is the percentage of records in D 

containing X that also contains Y, i.e.       . The rule     is 

considered strong or interesting if it satisfies the following 

condition: 

))((

))((

minconfYXConf

minsupYXSup


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   (1) 

where minsup and minconf denote the minimum support threshold 

and the minimum confidence threshold. The support threshold is 

used to discover frequent patterns in a database, and the 

confidence threshold is used to discover the association rules 

within the frequent patterns. The support condition makes sure the 

coverage of the rule, that is, there are adequate records in the 

database to which the rule applies. The confidence condition 

guarantees the accuracy of applying the rule. The rules which do 

not satisfy the support threshold or the confidence threshold are 

discarded in consideration of the reliability. Consequently, the 

strong association rules could be selected by the two thresholds. 

To discover the skill structure, a database of students’ knowledge 

states is required. The knowledge state of a student is a record in 

the database and the mastery of a skill is a binary attribute with 

the values mastered (1) and non-mastered (0). If skill Si is a 

prerequisite of skill Sj, it is most likely that Si is mastered given 

that Sj is mastered, and that skill Sj is not mastered given that Si is 

not mastered. Thus this prerequisite relation corresponds with the 

two association rules:          and          . If both the 

association rules exist in a database, Si is deemed a prerequisite of 

Sj. To examine if both the association rules exist in a database, 

according to condition (1), the following conditions could be 

used: 
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When condition (2) is satisfied, the association rule           is 

deemed to exist in the database, and when the condition (3) is 

satisfied, the association rule           is deemed to exist in the 

database. Theoretically, if skill Si is a prerequisite of Sj, all the 

records in the database should comply with the two association 

rules. To be exact, the knowledge state              should be 

impossible, thereby               should be 0. According to the 

equations (4) and (5), the confidences of the rules in the equations 

should be 1.0. Since noise always exists in real situations, when 

the confidence of an association rule is greater than a threshold, 

the rule is considered to exist if the support condition is also 

satisfied. We cannot conclude that the prerequisite relation exists 

if one rule exists but the other not. For instance, the high 

confidence of the rule           might be caused by the high 

proportion         in the data. 

1
)1,0()1,1(

)1,1(

)11()11(









SjSiSjSi

SjSi

SjSiPSiSjConf



   (4) 

1
)1,0()0,0(

)0,0(

)00()00(









SjSiSjSi

SjSi

SiSjPSjSiConf



   (5) 

The discovery of the association rules within a database depends 

on the support and confidence thresholds. When the support 

threshold is given a relatively low value, more skill pairs will be 

considered as frequent patterns. When the confidence threshold is 

given a relatively low value, the weak association rules within 

frequent patterns will be deemed to exist. As a result, the weak 

prerequisite relations will be discovered. It is reasonable that the 

confidence threshold should be higher than 0.5. The selection of 

the two thresholds requires human expertise. Given the data about 

the knowledge states of a sample of students, the frequent 

association rules mining can be used to discover the prerequisite 

relations between skills. 

However  a student’s knowledge state cannot be directly obtained 

since student knowledge of a skill is a latent variable. In common 

scenarios, we collect the performance data of students in 

assessments or tutoring systems and estimate their knowledge 

states according to the observed data. The evidence models that 

transfer the performance data of students to their knowledge states 

in consideration of the noise have been investigated for several 

decades. The psychometric models DINA (Deterministic Input 

Noisy AND) and NIDA (Noisy Input Deterministic AND) [13] 

have been used to infer the knowledge states of students from 

their response data on the multi-skill test items. The well-known 

Bayesian Knowledge Tracing (BKT) model [14] is a Hidden 

Markov model that has been used to update students’ knowledge 

states according to the log files of their learning in a tutoring 

system. A Q-matrix which represents the items to skills mapping 

is required in these models. The Q-matrix is usually created by 

domain experts, but recently some researchers [15, 16, 17] 

investigated to extract an optimal Q-matrix from data. Our method 
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assumes that an accurate Q-matrix is known, like the method in 

[11]. Since the noise (e.g. slipping and guessing) is considered in 

the evidence models, the likelihood that a skill is mastered by a 

student can be estimated. The estimated knowledge state of a 

student is probabilistic, which incorporates the probability of each 

skill mastered by the student. Table 1 shows an example of the 

database consisting of probabilistic knowledge states. For 

example, the probabilities that skills S1, S2 and S3 are mastered 

by student “st ” are  .9   .8 and  .9 respectively. 

We discover the prerequisite relations between skills from the 

probabilistic knowledge states of students that are estimated by an 

evidence model. The frequent association rules mining can no 

longer be used to discover the prerequisite relations between skills 

from a probabilistic database. Because any attribute value in a 

probabilistic database is associated with a probability. A 

probabilistic database can be interpreted as a set of deterministic 

instances (named possible worlds) [18], each of which is 

associated with a probability. We assume that the noise (e.g. 

slipping, guessing) causing the uncertainty for different skills is 

mutually independent. In addition, we assume that the knowledge 

states of different students are observed independently. Under 

these assumptions, the probability of a possible world in our 

database is the product of the probabilities of the attribute values 

over all the records in the possible world [18, 19, 20]. For 

example, a possible world for the database in Table 1 is that both 

the knowledge states of the students “st ” and “st2” are  S1=1, 

S2=0, S3=1}, whose probability is about 0.0233 (i.e. 

 .9  .2  .9  .2  .9  .8). The support count of a pattern in a 

probabilistic database should be computed with all the possible 

worlds. Thus the support count is no longer a deterministic 

number but a discrete random variable. Figure 1 depicts the 

probability mass function (pmf) of the support count of pattern 

{S1=1, S2=1} in the database of Table 1. For instance, the 

probability of                  is about 0.7112, which is the sum 

of the probabilities of all the possible worlds in which only one 

record contains the pattern {S1=1, S2=1}. Since there are an 

exponential number of possible worlds in a probabilistic database 

(e.g. 26 possible worlds in the database of Table 1), computing the 

support count of a pattern is expensive. The Dynamic-

Programming algorithm proposed by Sun et al. [20] is used to 

efficiently compute the support count pmf of a pattern. 

Table 1. A database of probabilistic knowledge states 

Student ID Probabilistic Knowledge State 

st1 {S1: 0.9, S2: 0.8, S3: 0.9} 

st2 {S1: 0.2, S2: 0.1, S3: 0.8} 

 

Figure 1. The support count pmf of the pattern {S1=1, S2=1} 

in the database of Table 1 

To discover the prerequisite relations between skills from the 

probabilistic knowledge states of students, the probabilistic 

association rules mining technique [20] is used in this paper, 

which is an extension of the frequent association rules mining to 

discover association rules from uncertain data. Since the support 

count of a pattern in a probabilistic database is a random variable, 

the conditions (2) and (3) are satisfied with a probability. Hence 

the association rules derived from a probabilistic database are also 

probabilistic. We use the formula proposed by [20] to compute the 

probability of an association rule satisfying the two thresholds. It 

can be also interpreted as the probability of a rule existing in a 

probabilistic database. For instance, the probability of the 

association rule           existing in a probabilistic database is 

the probability that the condition (2) is satisfied in the database: 
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           (6) 

where N is the number of records in the database and    denotes 

the support count pmf of pattern X, and  
 
             . 

The probability of the rule related to condition (3) is computed 

similarly. According to formula (6), the probability of an 

association rule changes with the support and confidence 

thresholds. Given the two thresholds, the probability of an 

association rule existing in a probabilistic database can be 

computed. And if the probability is very close to 1.0, the 

association rule is considered to exist in the database. If both the 

association rules related to a prerequisite relation are considered 

to exist, the prerequisite relation is considered to exist. We can 

use another threshold, the minimum probability threshold denoted 

by minprob, to select the most possible association rules. Thus, if 

both                      and                      are 

satisfied, Si is deemed a prerequisite of Sj. When a pair of skills 

are estimated to be the prerequisite of each other, the relation 

between them are symmetric. It means that the two skills are 

mastered or not mastered simultaneously. The skill models might 

be improved by merging the two skills with the symmetric 

relation between them. 

4. EVALUATION 
We use one simulated data set and two real data sets to validate 

our method. The prerequisite structure derived from the simulated 

data is compared with the presupposed structure that is used to 

generate the data, while the prerequisite structure derived from the 

real data is compared with the structure investigated by another 

research on the same dataset or the structure from human 

expertise. Moreover, we adapt our method to the testing data and 

the log data. Different evidence models are used to preprocess the 

two types of data to get the probabilistic knowledge states of 

students. The DINA model is used for the testing data, whereas 

the BKT model is used for the log data. 

4.1 Simulated Testing Data 
Data set. We use the data simulation tool available via the R 

package CDM [21] to generate the dichotomous response data 

according to a cognitive diagnosis model (the DINA model used 

here). The prerequisite structure of the four skills is presupposed 

as Figure 3(a). According to this structure, the knowledge space 

decreases to be composed of six knowledge states, that is ∅, {S1}, 

{S1, S2}, {S1, S3}, {S1, S2, S3}, {S1, S2, S3, S4}. The reduced 

knowledge space implies the prerequisite structure of the skills. 

The knowledge states of 1200 students are randomly generated 

from the reduced knowledge space restricting every knowledge 

state type in the same proportion (i.e. 200 students per type). The 
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simulated knowledge states are used as the input of the data 

simulation tool. There are 10 simulated testing questions, each of 

which requires one or two of the skills for the correct response. 

The slip and guess parameters for each question are restricted to 

be randomly selected in the range of 0.05 and 0.3. According to 

the DINA model with these specified parameters, the data 

simulation tool generates the response data. Using the simulated 

response data as the input of a flat DINA model, the slip and 

guess parameters of each question in the model are estimated and 

the probability of each student’s knowledge on each skill is 

computed. The tool for the parameter estimation of DINA model 

is also available through the R package CDM [21], which is 

performed by the Expectation Maximization algorithm to 

maximize the marginal likelihood of data. 

 

Figure 2. The probabilities of the association rules in the 

simulated data given different confidence or support 

thresholds 

Result. The estimated probabilistic knowledge states of the 

simulated students are used as the input data to discover the 

prerequisite relations between skills. For each skill pair, there are 

two prerequisite relation candidates. For each prerequisite relation 

candidate, we examine if the two corresponding association rules 

         and           exist in the database. The probability 

of an association rule existing in the database is computed 

according to formula (6), which is jointly affected by the selected 

support and confidence thresholds. For the sake of clarity, we look 

into the effect of one threshold leaving the other one unchanged. 

The joint effect of the two thresholds will be discussed in section 

4.4. Giving a small constant to one threshold that all the 

association rules satisfy (perhaps several trials are needed or 

simply assign 0.0), we can observe how the probabilities of the 

association rules change with different values of the other 

threshold. 

Figure 2 (a) and (b) describe how the probabilities of the 

corresponding association rules in the simulated data change with 

different confidence thresholds, where the support threshold is 

given as a constant (0.125 here). When the probability of a rule is 

close to 1.0, the rule is deemed to satisfy the thresholds. All the 

association rules satisfy the support threshold since their 

probabilities are almost 1.0 at first. The rules in the two figures 

corresponding to the same prerequisite relation candidate are 

depicted in the same color. In the figures, when the confidence 

threshold varies from 0.2 to 1.0, the probabilities of the different 

rules decrease from 1.0 to 0.0 in different intervals of threshold 

value. When we choose different threshold values, different sets 

of rules will be discovered. In each figure, there are five rules that 

can satisfy the significantly higher threshold. Given 

minconf=0.78, the probabilities of these rules are almost 1.0 

whereas others are almost 0.0. These rules are very likely to exist. 

Moreover, the discovered rules in the two figures correspond to 

the same set of prerequisite relation candidates. Accordingly, 

these prerequisite relations are very likely to exist. To make sure 

the coverage of the association rules satisfying the high 

confidence threshold, it is necessary to know the support 

distributions of these rules. Figure 2 (c) and (d) illustrate how the 

probabilities of the corresponding association rules change with 

different support thresholds. The confidence threshold is given as 

a constant 0.76, and five association rules in each figure satisfy 

this threshold. Only on these rules, the effect of different support 

thresholds can be observed. In each figure, the rules gather in two 

intervals of threshold value. For example, in Figure 2 (c), to select 

the rules corresponding to r3, r5 and r6, the highest value for the 

support threshold is roughly 0.17, while for the other two rules, it 

is 0.49. If both the confidence threshold and the support threshold 

are appropriately selected, the most possible association rules will 

be distinguished from others. As a result, the five prerequisite 

relations can be discovered in this experiment. 

 

Figure 3. (a) Presupposed prerequisite structure of the skills 

in the simulated data; (b) Probabilities of the association rules 

in the simulated data given minconf=0.76 and minsup=0.125, 

brown squares denoting impossible rules; (c) Discovered 

prerequisite structure 

Figure 3 (b) illustrates the probabilities of the corresponding 

association rules in the simulated data given minconf=0.76 and 

minsup=0.125. A square’s color indicates the probability of the 

corresponding rule. Five association rules in each of the figures 

whose probabilities are almost 1.0 are deemed to exist. And the 

prerequisite relations corresponding to the discovered rules are 

deemed to exist. To qualitatively construct the prerequisite 

structure of skills, every discovered prerequisite relation is 

represented by an arc. It should be noted that the arc representing 

S1

S2 S3

S4

(a) (b)

S1

S2 S3

S4

(c)
(a)

Proceedings of the 8th International Conference on Educational Data Mining 120



the relation that S1 is a prerequisite of S4 is not present in Figure 3 

(a) due to the transitivity of prerequisite relation. Consequently, 

the prerequisite structure discovered by our method which is 

shown in Figure 3 (c), is completely in accordance with the 

presupposed structure shown in Figure 3 (a). 

4.2 Real Testing Data 
Data set. The ECPE (Examination for the Certification of 

Proficiency in English) data set is available through the R package 

CDM [21], which comes from a test developed and scored by the 

English Language Institute of the University of Michigan [22]. A 

sample of 2933 examinees is tested by 28 items on 3 skills, i.e. 

Morphosyntactic rules (S1), Cohesive rules (S2), and Lexical rules 

(S3). The parameter estimation tool in the R package CDM [21] 

for DINA model is also used in this experiment to estimate the 

slip and guess parameters of items according to the student 

response data. And with the estimated slip and guess parameters, 

the probabilistic knowledge states of students are assessed 

according to the DINA model, which are the input data for 

discovering the prerequisite structure of skills. 

 

Figure 4. The probabilities of the association rules in the 

ECPE data given different confidence or support thresholds 

Result. The effect of different confidence thresholds on the 

association rules in the ECPE data is depicted in Figure 4 (a) and 

(b) given the support threshold as a constant (0.25 here). In each 

figure, there are three association rules that can satisfy a 

significantly higher confidence threshold than others. The 

maximum value of the confidence threshold for them is roughly 

0.82. And these rules in the two figures correspond to the same set 

of prerequisite relation candidates, that is, r4, r5 and r6. Thus 

these candidates are most likely to exist. It can be noticed that in 

Figure 4 (a) the rule           can satisfy a relatively high 

confidence threshold. The maximum threshold value that it can 

satisfy is roughly 0.74. However, its counterpart in Fig 4 (b), i.e. 

the rule          , cannot satisfy a confidence threshold higher 

than 0.6. When a strong prerequisite relation is required, the 

relation corresponding to the two rules cannot be selected. Only 

when both the two types of rules can satisfy a high confidence, the 

corresponding prerequisite relation is considered strong. Likewise, 

the effect of different support thresholds is shown in Figure 4 (c) 

and (d), where the confidence threshold is given as 0.80. And in 

each figure, only the three association rules which satisfy the 

confidence threshold are sensitive to different support thresholds. 

It can also be found that these rules are supported by a 

considerable proportion of the sample. Even when minsup=0.27, 

all the three rules in each figure satisfy it. According to the figures, 

when the support and confidence thresholds are appropriately 

selected, these rules can be distinguished from others. 

Consequently, the strong prerequisite relations can be discovered. 

Given the confidence and support thresholds as 0.80 and 0.25 

respectively, for instance, the probabilities of the corresponding 

association rules are illustrated in Figure 5 (b). The rules that 

satisfy the two thresholds (with a probability of almost 1.0) are 

deemed to exist, which are evidently distinguished from the rules 

that do not (with a probability of almost 0.0). Three prerequisite 

relations shown in Figure 5 (c) are found in terms of the 

discovered association rules. To validate the result, we compare it 

with the findings of another research on the same data set. The 

attribute hierarchy, namely the prerequisite structure of skills, in 

ECPE data has been investigated by Templin and Bradshaw [22] 

as Figure 5 (a). Our discovered prerequisite structure totally 

agrees with their findings. 

 

Figure 5. (a) Prerequisite structure of the skills in the ECPE 

data discovered by Templin and Bradshaw [22]; (b) 

Probabilities of the association rules in the ECPE data given 

minconf=0.80 and minsup=0.25, brown squares denoting 

impossible rules; (c) Discovered prerequisite structure 

4.3 Real Log Data 
Data set. We use the 2006-2007 school year data of the 

curriculum “Bridge to Algebra” [23] which incorporates the log 

files of 1146 students collected by Cognitive Tutor, an ITS for 

mathematics learning. The units in this curriculum involve distinct 

mathematical topics, while the sections in each unit involve 

distinct skills on the unit topic. A set of word problems is 

provided for each section skill. We use the sections in the units 

“equivalent fractions” and “fraction operations” as the skills (see 

Table 2). There are 560 students in the data set performing to 

learn one or several of the item-type skills in these units. The five 

skills discussed in our experiment are instructed in the given order 

in Table 2. A student’s knowledge of the prior skills has the 

potential to affect his learning of the new skill. Hence, it makes 

sense to estimate whether a skill trained prior to the new skill is a 

S1

S2

S3

(a) (b)

S1

S2

S3

(c)
( a )
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prerequisite of it. If the prior skill Si is a prerequisite of skill Sj, 

students who have mastered skill Sj quite likely have previously 

mastered skill Si, and students not mastering the skill Si quite 

likely learn the skill Sj with great difficulty. Thus if both the rules 

          and           exist in the data, the prior skill Si is 

deemed a prerequisite of skill Sj. 

Table 2. Skills in the curriculum “Bridge to Algebra” 

Skill Example 

S1: Writing equivalent 

fractions 
Fill in the blank: 

63

2
 . 

S2: Simplifying fractions Write the fraction in 

simplest form: 


30

24 . 

S3: Comparing and 

ordering fractions 
Compare the fractions 

4

3  

and 
6

5 . 

S4: Adding and subtracting 

fractions with like 

denominators 


10

3

10

2  

S5: Adding and subtracting 

fractions with unlike 

denominators 


4

1

3

2  

To discover the prerequisite relations between skills, firstly we 

need to estimate the outcomes of student learning according to the 

log data. A student learns a skill by solving a set of problems that 

requires applying that skill. At each opportunity, student 

knowledge of a skill probably transitions from the unlearned to 

learned state. Thus their knowledge should be updated each time 

they go through a problem. The BKT model has been widely used 

to track the dynamic knowledge states of students according to 

their activities on ITSs. In the standard BKT, four parameters are 

specified for each skill [14]: P(L0) denoting the initial probability 

of knowing the skill a priori, P(T) denoting the probability of 

student’s knowledge of the skill transitioning from the unlearned 

to the learned state, P(S) and P(G) denoting the probabilities of 

slipping and guessing when applying the skill. We implemented 

the BKT model by using the Bayes Net Toolbox for Student 

modeling [24]. The parameter P(L0) is initialized to 0.5 while the 

other three parameters are initialized to 0.1. The four parameters 

are estimated according to the log data of students, and the 

probability of a skill to be mastered by a student is estimated each 

time the student performs to solve a problem on that skill. In the 

log data, students learned the section skills one by one and no 

student relearned a prior section skill. If a prior skill Si is a 

prerequisite of skill Sj, the knowledge state of Si after the last 

opportunity of learning it has an impact on learning Sj. We use the 

probabilities about students’ final knowledge state of Si and Sj to 

analyze whether a prerequisite relation exists between them. Thus 

students’ final knowledge states on each skill are used as the input 

data of our method. 

Result. The probabilities of the association rules in the log data 

changing with different confidence thresholds are illustrated in 

Figure 6 (a) and (b) given the support threshold as a small 

constant (0.05 here). In Figure 6 (a), compared with the rules 

          and          , all the other association rules can 

satisfy a significantly higher confidence, while in Figure 6 (b) if 

given minconf=0.6, only three rules satisfy it. The effect of 

different support thresholds on the probabilities of the association 

rules is depicted in Figure 6 (c) and (d) given the confidence 

threshold as a constant (0.3 here). All the association rules satisfy 

the confidence threshold as the probabilities of the rules are 

almost 1.0 at first. In Figure 6 (c), there are six rules that can 

satisfy a relatively higher support threshold (e.g. minsup=0.2). But 

in Figure 6 (d), even given minsup=0.14, only the rule 

          satisfy it, and the maximum value for the support 

threshold that all the rules can satisfy is roughly 0.07.  

 

Figure 6. The Probabilities of the association rules in the 

“Bridge to Algebra 2006-2007” data given different 

confidence or support thresholds 

Given the confidence and support thresholds as 0.6 and 0.1 

respectively, the probabilities of the association rules in the log 

data are depicted in Figure 7 (b). There are eight of the rules in the 

form of           (left) and three of the rules in the form of 

          (right) discovered, whose probabilities to satisfy the 

thresholds are almost 1.0. According to the result, only the three 

prerequisite relations shown in Figure 7 (c), whose corresponding 

rules both are discovered, are deemed to exist. Figure 7 (a) shows 

the prerequisite structure of the five skills from the human 

experts’ opinions. It makes sense that the skills S1 and S2 rather 

than skill S3 are required for learning the skills S4 and S5. This is 

supported by the chapter warm-up content in the student textbook 

of the course [25]. The discovered rules in the form of           

completely agree with the structure from human expertise. But the 

discovered rules in the form of           is inconsistent with it. 

The counterparts of a large part of the discovered rules 

          do not satisfy the confidence threshold. Even reducing 

the confidence threshold to the lowest value, i.e. 0.5, the rules 

          and           still do not satisfy it (see Figure 6 

(b)). It seems that the rules           are more reliable than 
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          since most of the former can satisfy a higher support 

threshold than the latter (see Figure 6 (c) and (d)). In addition, the 

log data is very likely to contain much noise. It is possible that 

some skills could be learned if students take sufficient training, 

even though some prerequisites are not previously mastered. In 

this case, the support count               would increase. Or 

perhaps students learned the prerequisite skills by solving the 

scaffolding questions in the process of learning new skills, even 

though they performed not mastering the prerequisite skills 

before. In this case, the observed values of               would be 

higher than the real values. According to the equations (4) and (5), 

if               increases, the confidence of the rules will 

decrease. And when the noise appears in the data, the confidences 

of the association rules which are supported by a small proportion 

of sample will be affected much more than those supported by a 

large proportion of sample. 

 

Figure 7. (a) Prerequisite structure from human expertise; (b) 

Probabilities of the association rules in the “Bridge to Algebra 

2006-2007” data given minconf=0.6 and minsup=0.1, brown 

squares denoting impossible rules; (c) Discovered prerequisite 

structure 

4.4 Joint Effect of thresholds 
We have discussed the effect of one threshold on the probability 

of association rules while eliminating the effect of the other one in 

the three experiments. To determine the values for the thresholds, 

we investigate how the two thresholds simultaneously affect the 

probability of an association rule. Figure 8 depicts how the 

probabilities of the association rules for the skill pair S2 and S3 in 

the ECPE data change with different support and confidence 

thresholds, where (a) and (c) involve one relation candidate while 

(b) and (d) involve the other one. The figures demonstrate that the 

probability of a rule decreases almost from 1.0 to 0.0 when the 

confidence and support thresholds vary from low to high. It can be 

found that the rules in the left figures can satisfy an evidently 

higher confidence threshold than those in the right figures, and 

have the same support distributions with them. If we set 

minconf=0.8 and minsup=0.25, only the rules in the left figures 

satisfy them. Suppose that a rule satisfy the thresholds if its 

probability is higher than 0.95, i.e. minprob=0.95. When we 

change the values of the confidence and support thresholds from 

0.0 to 1.0, for each rule, we can find a point whose coordinates 

consist of the maximum values of the confidence and support 

thresholds that the rule can satisfy. Finding the optimal point is 

hard and there are probably several feasible points. To simplify 

the computation, the thresholds are given by a sequence of 

discrete values from 0.0 to 1.0. We find the maximum value for 

each threshold when only one threshold affects the probability of 

the rule given the other as 0.0. And for each threshold, minprob is 

given as 0.97, roughly the square root of the original value. The 

found maximum values for the two thresholds are the coordinates 

of the point. The found point is actually an approximately optimal 

point. For convenience, the point is named maximum threshold 

point in this paper. The points for all the rules in the three data 

sets are found by our method as well as plotted in Figure 9 (some 

points overlap). When we set certain values to the thresholds, the 

points located in the upper right area satisfy them and the related 

rules are deemed to exist. For one prerequisite relation, a couple 

of related points should be verified. Only when both of them are 

located in the upper right area, they are considered eligible to 

uncover the prerequisite relation. The eligible points in Figure 8 

and Figure 9 are indicated given the thresholds. 

 

Figure 8. Probabilities of the association rules within the skill 

pair S2 and S3 in the ECPE data given different confidence 

and support thresholds, and their maximum threshold points 

which are eligible (green) or not (red) given minconf=0.8 and 

minsup=0.25 

 

Figure 9. Maximum threshold points for the association rules 

in our three experiments, where eligible points are indicated 

in green given the thresholds 

5. CONCLUSION AND DISCUSSION 
Discovering the prerequisite structure of skills from data is 

challenging in domain modeling since skills are the latent 

variables. In this paper, we propose to apply the probabilistic 

association rules mining technique to discover the prerequisite 

structure of skills from student performance data. Student 

performance data is preprocessed by an evidence model. And then 

the probabilistic knowledge states of students estimated by the 

evidence model are used as the input data of probabilistic 

association rules mining. Prerequisite relations between skills are 

discovered by estimating the corresponding association rules in 

the probabilistic database. The confidence condition of an 

association rule in our method is similar to the statistical 

hypotheses used in the POKS algorithm for determining the 

prerequisite relations between observable variables (see the details 

in [5]). But our method targets on the challenge of discovering the 

prerequisite relations between latent variables from the noisy 

observable data. In addition, our method takes the coverage into 

account (i.e. the support condition), which could strengthen the 

reliability of the discovered prerequisite relations. Determining 

the appropriate confidence and support thresholds is a crucial 

issue in our method. The effect of a single threshold and the joint 

effect of two thresholds on the probabilities of the rules are 

S1

S2

S3 S4

S5

(a) (b) (c)

S1

S2

S3 S4

S5
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discussed. The maximum threshold points of the probabilistic 

association rules are proposed for determining the thresholds. We 

adapt our method to two common types of data, the testing data 

and the log data, which are preprocessed by different evidence 

models, the DINA model and the BKT model. An accurate Q-

matrix is required for the evidence models, which is a limitation 

of our method. According to the results of the experiments in this 

paper, our method performs well to discover the prerequisite 

structures from a simulated testing data set and a real testing data 

set. However, applying our method in the log data still needs to be 

improved. Since much noise exist in the log data, the strategies to 

reduce the noise need to be applied. The prerequisite structures of 

skills discovered by our method can be applied to assist human 

experts in skill modeling or to validate the prerequisite structures 

of skills from human expertise.  
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