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To Paulo Ribenboim and his friends, the primes.

1. INTRODUCTION. It has long been known that there are infinitely many primes,
and that there are infinitely many primes in any arithmetic progression a, a + d,

a + 2d, . . . provided gcd(a, d) = 1 and d ≥ 1. If we ask slightly more involved
questions, such as whether there exist infinitely many primes of the form n2 + 1, or
infinitely many pairs of primes of the form p, p + 2, then these questions are open,
indeed wide open, though computations suggest that the answer to both of these ques-
tions is ‘yes.’ One slight variation on the above theme is to ask for consecutive terms of
an arithmetic progression to be prime. Obviously any two primes form an arithmetic
progression of length two, so the first nontrivial question along these lines is whether
there exist many three-term arithmetic progressions of primes, that is, triples of primes
of the form a, a + d, a + 2d where a and d are nonzero integers. In 1933 van der
Corput proved that there are indeed infinitely many such triples of (distinct) primes,
and there have been several different proofs subsequently. However, the question as
to whether one can have four (or more) primes occurring in arithmetic progression in-
finitely often had seemed far beyond the reach of the current methods of mathematical
research until very recently.

In 2005 this situation changed dramatically with the revolutionary paper [4] of Ben
Green of Cambridge University in England and Terry Tao of UCLA in the United
States. Using a panorama of new ideas they showed that for any integer k there are
infinitely many k-term arithmetic progressions of primes, that is, there exist infinitely
many distinct pairs of nonzero integers a, d such that

a, a + d, . . . , a + (k − 1)d

are all prime. Their work is based on ideas from many fields: harmonic analysis (and in
particular the ideas of Tim Gowers), ergodic theory, additive number theory, discrete
geometry, and the combinatorics of set addition. It has helped bring the techniques
of the newly defined mathematical discipline, additive combinatorics, to a wider au-
dience, leading to spectacular results in graph theory, group theory, and theoretical
computer science as well as analytic number theory. This article is not the place to
discuss these developments in depth, and indeed we are going to go in a quite different
direction.

It is often the case that the conjectures made in mathematics lie just beyond the
horizon of what has already been well established. Thus there are many conjectures
as to the distribution of primes in various sequences (check out Paulo Ribenboim’s
charming book The little book of BIGGER primes [9], or Chris Caldwell’s The Prime
Pages [3], a website with a cornucopia of questions, data and discussion). However,
the horizon was extended so far by the wonderful breakthrough of Green and Tao that
we now have little idea of what lies just beyond it. It had been my purpose to ask some
new “beyond the horizon” questions, but something surprising happened: I found that
the first few questions I asked myself, which had seemed to be far beyond the Green-
Tao theorem, turned out to be simple deductions from the Green-Tao theorem! Let me
show you, though first let us examine the Green-Tao theorem in a little more detail.
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2. PRIME NUMBER PATTERNS: RESULTS, EXAMPLES, AND PREDIC-
TIONS. Following up on the wonderful breakthrough of Green and Tao [4] there are
many cute types of patterns of primes that we can now prove to exist. I am interested in
trying to find examples of each of these patterns, finding the smallest examples of such
patterns,1 and even predicting how large the smallest example is, in some generality.
This leaves lots of challenges for the computationally minded.

2.1. Arithmetic progressions of primes. The smallest arithmetic progression of ten
primes is given by 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089, which
we can write as 199 + 210n, 0 ≤ n ≤ 9. The smallest examples of k-term arithmetic
progression of primes, with k between 3 and 21, are given by (though see [1] for more
details):

Length k Arithmetic Progression (0 ≤ n ≤ k − 1) Last Term

3 3 + 2n 7
4 5 + 6n 23
5 5 + 6n 29
6 7 + 30n 157
7 7 + 150n 907
8 199 + 210n 1669
9 199 + 210n 1879

10 199 + 210n 2089
11 110437 + 13860n 249037
12 110437 + 13860n 262897
13 4943 + 60060n 725663
14 31385539 + 420420n 36850999
15 115453391 + 4144140n 173471351
16 53297929 + 9699690n 198793279
17 3430751869 + 87297210n 4827507229
18 4808316343 + 717777060n 17010526363
19 8297644387 + 4180566390n 83547839407
20 214861583621 + 18846497670n 572945039351
21 5749146449311 + 26004868890n 6269243827111

The k-term arithmetic progression of primes with smallest last term.

Can we predict, without data, the size of the last term of the smallest k-term arith-
metic progression of primes? In order to get a good understanding of this we first seek
a formula for how many arithmetic progressions a, a + d, . . . , a + (k − 1)d of primes
there are with each prime ≤ x . In Section 4 we will analyze this question in some de-
tail, not just for primes in arithmetic progression but for all the patterns that arise in
this article. From a careful analysis of the formulas that arise in Section 4 we expect
that the smallest k-term arithmetic progression of primes has largest prime around

(e1−γ k/2)k/2. (2.1)

(Here e is the base of the natural logarithm, and γ = .5772156649 . . . is the Euler-
Mascheroni constant defined by γ = limN→∞

(
1
1 + 1

2 + 1
3 + · · · + 1

N

) − log N . Most
important in this article is that e−γ = .5614594836 . . . .) In fact, if the largest prime

1By “smallest” we mean the example in which the largest prime in the set is smallest (and, if there is a tie,
the set in which the second largest prime is smallest, etc.).
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of the smallest example of a k-term arithmetic progression of primes is divided by
(e1−γ k/2)k/2, then the quotient lies in (2/5, 2) for each n, 15 ≤ n ≤ 21, a remarkably
good fit for such a fast growing function.

Green and Tao were able to show that there exists a k-term arithmetic progression
of distinct primes all at most

22222222100k

,

a spectacular achievement. Based on (2.1) and the numerical data above we conjecture
that this bound should be improvable to k! + 1, for each k ≥ 3.

2.2. Generalized arithmetic progressions of primes. Generalized arithmetic pro-
gressions (GAPs) are sets of integers of the form

a + n1b1 + n2b2 + · · · + ndbd , (2.2)

with 0 ≤ n1 ≤ N1 − 1, 0 ≤ n2 ≤ N2 − 1, . . . , 0 ≤ nd ≤ Nd − 1,

for given integers a, b1, b2, . . . , bd , and integers N1, N2, . . . , Nd ≥ 2. These appear
prominently in the theory of set addition mentioned above. (The GAP in (2.2) has
dimension d, with volume N1 . . . Nd .) The integers in a GAP are not necessarily dis-
tinct, though must be so if there is no linear dependence amongst the b j with small
coefficients.

We are interested in finding generalized arithmetic progressions of distinct primes
of any given dimension and volume. Although this appears to be a big generalization of
primes in arithmetic progressions (the dimension 1 case), it turns out that such GAPS
are easily shown to exist as a consequence of the dimension 1 case:

Let N = max1≤ j≤d N j and k = N d . Suppose that we have a k-term arithmetic pro-
gression of primes, a + jq, 0 ≤ j ≤ k − 1. Let bi = N i−1q for each i , so that

a + n1b1 + n2b2 + · · · + ndbd = a + jq

where we write j = n1 + n2 N + n3 N 2 + · · · + nd N d−1 in base N . Therefore the GAP
is a subset of our k-term arithmetic progression (and no two elements of the GAP are
equal since each j has a unique representation in base N ), and so the GAP is made up
entirely of distinct primes, as desired.

The smallest 2-by-k GAPs (i.e., GAPs of the form a + bi + cj , 0 ≤ i ≤ 1,
0 ≤ j ≤ k − 1) are:

k GAP Last Term

2 3 + 8i + 2 j 13
3 7 + 24i + 6 j 43
4 5 + 36i + 6 j 59
5 11 + 96i + 30 j 227
6 11 + 42i + 60 j 353
7 47 + 132i + 210 j 1439
8 199 + 3300i + 210 j 4969
9 199 + 3300i + 210 j 5179

The 2-by-k GAPs of distinct primes with smallest last term

A few other examples of smallest GAPs are:
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5 17 29

47 59 71

89 101 113

29 41 53

59 71 83

89 101 113

The 3-by-3 GAPs 5 + 12i + 42 j and 29 + 12i + 30 j .

11 47 83

101 137 173

191 227 263

281 317 353

503 1721 2939 4157

863 2081 3299 4517

1223 2441 3659 4877

1583 2801 4019 5237

The 4-by-3 GAP 11 + 90i + 36 j , and the 4-by-4 GAP 503 + 360i + 1218 j .

We have been unable to find a 3-by-3-by-3 GAP of distinct primes.
We expect that the smallest N1-by-N2-by-· · · -by-Nd GAP of distinct primes has

largest prime around

(
e1/κ−γ k

(d + 1)

)k/(d+1)

, (2.3)

where κ := N1 N2 . . . Nd−1, k := κ Nd , and N1, N2, . . . , Nd−1 ≤ Nd .

2.3. Balog cubes. In [2] Balog proved that there are infinitely many 3-by-3 squares
of distinct primes where each row and each column forms an arithmetic progression.
Similarly he proved that there are infinitely many 3-by-3-by-3 cubes of distinct primes
where each row and each column and each vertical line forms an arithmetic progres-
sion. And indeed the same is true in d dimensions.

Balog’s gorgeous result is now improved by the result of Green and Tao since any
GAP of distinct primes with dimension d and N1 = N2 = · · · = Nd = N gives rise to
an N -by-N -by- · · · -by-N Balog cube of primes. Note that a Balog cube does not have
to be a GAP; indeed the smallest examples are not:

11 17 23

59 53 47

107 89 71

83 131 179 227

251 257 263 269

419 383 347 311

587 509 431 353

The smallest 3-by-3 and 4-by-4 Balog cubes of primes.

It is not difficult to find many examples of 3-by-3 and 4-by-4 Balog cubes, though
I have not yet found a 5-by-5 Balog cube.

Going to the next dimension is also difficult, though we eventually have been able
to compute many 3-by-3-by-3 Balog cubes, the smallest of which is:

47 383 719

179 431 683

311 479 647

149 401 653

173 347 521

197 293 389

251 419 587

167 263 359

83 107 131

A 3-by-3-by-3 Balog cube of primes.
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(Remember, each row and each column of each 3-by-3 square, which is a layer of the
3-by-3-by-3 Balog cube, is an arithmetic progression of primes, and also the (i, j)th
elements of each of the three 3-by-3 squares form an arithmetic progression of primes
for each fixed 1 ≤ i, j ≤ 3: for example, for i = 2, j = 1 we have 179, 173, and 167.)
Notice that this is not a GAP, and indeed we have been unable to find a 3-by-3-by-3
GAP of distinct primes.

2.4. Sets of primes, averaging in pairs. Balog [2] established yet another remark-
able result: there exist arbitrarily large sets A of distinct primes such that for any
a, b ∈ A the average a+b

2 is also prime (and all of these averages are distinct). (In
Section 3 we indicate why we believe that there exist infinitely large such sets A.)
Balog’s result also follows from the result of Green and Tao [4]:

Suppose that we want A to have n elements. If we did not mind whether the aver-
ages were all distinct then we could take any k(= 2n)-term arithmetic progression of
primes a + jd, 0 ≤ j ≤ k − 1, and let A = {a + 2 jd : 0 ≤ j ≤ n − 1}. In this case
1
2((a + 2id) + (a + 2 jd)) = a + (i + j)d is prime, since whenever 0 ≤ i, j ≤ n − 1
we have 0 ≤ i + j < k − 1. However, we do want all the averages to be distinct, and
so we modify this construction using a Sidon sequence:

A sequence of integers b1 < b2 < · · · < bn is called a Sidon sequence if all of the
sums bi + b j , i < j , are distinct. The easiest example is bi = 2i , in which case the
(bi + b j )/2 give rise to distinct binary expansions, and so distinct integers. (There has
been a lot of research on the minimal length (bn − b1) of a Sidon sequence with n
elements, which, as one might guess, is something like a constant times

√
n.) If we

suppose that b1 = 0 (which can be achieved, without loss of generality, by adding
a constant to each element of the sequence) then take a k (= 2bn)-term arithmetic
progression of primes a + jd, 0 ≤ j ≤ k − 1, and the averages of the elements of the
set A = {a + 2bi d : 1 ≤ i ≤ n} are distinct primes, since the averages take the form
a + (bi + b j )d.

n Set of primes

2 3, 7

3 3, 7, 19

4 3, 11, 23, 71

5 3, 11, 23, 71, 191

6 3, 11, 23, 71, 191, 443

7 5, 17, 41, 101, 257, 521, 881

8 257, 269, 509, 857, 1697, 2309, 2477, 2609

9 257, 269, 509, 857, 1697, 2309, 2477, 2609, 5417

10 11, 83, 251, 263, 1511, 2351, 2963, 7583, 8663, 10691

11 757, 1009, 1117, 2437, 2749, 4597, 6529, 10357, 11149, 15349, 21757

12 71, 1163, 1283, 2663, 4523, 5651, 9311, 13883, 13931, 14423, 25943, 27611

Sets of n primes whose pairwise averages are all
distinct primes, with smallest largest element.

Balog gave a beautiful geometric interpretation of such sets A. Think of the ele-
ments of A as labels for the vertices of an (n − 1)-dimensional tetrahedron, with the
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average of any two elements being placed on the edge in between the associated ver-
tices. Then along any edge of the (n − 1)-dimensional tetrahedron one can read off a
3-term arithmetic progression of primes.

In Section 4 we will indicate why we expect that the smallest such set A with n
elements should have largest prime around

(e−γ n/2)n/2. (2.4)

2.5. Sets of primes, averaging all subsets. Now we want arbitrarily large sets of
integers A such that the average of the elements of any nontrivial subset S of A is also
a prime, and that all of these primes are, in fact, distinct.

For a set A of integers and nontrivial subset S of A, let μS be the average of the
values in S. If we did not mind whether the μS were all distinct then we could take
any k (= n(n!))-term arithmetic progression of primes a + jd, 0 ≤ j ≤ k − 1, and let
A = {a + j (n!)d : 0 ≤ j ≤ n − 1}. Then for any nonempty subset J of {1, 2, . . . , n},
and corresponding S = SJ = {a + j (n!)d : j ∈ J }, we have

μS = 1

|J |
∑
j∈J

(a + j (n!)d) = a + d

(∑
j∈J

j

)
n!
|J | ,

which is an element of our arithmetic progression and thus prime since n!/|J | is an
integer and 0 ≤ n! ∑ j∈J j

/|J | < n(n!) = k.
However we want all of the averages to be distinct, and so we modify this construc-

tion using any set B = {b1 < b2 < · · · < bn} of integers for which the averages μS,
S ⊂ B, S 
= ∅, are all distinct. We take any k (= (bn − b1)n!)-term arithmetic progres-
sion of primes a + jd, 0 ≤ j ≤ k − 1, and then let A = {a + (b j − b1)(n!)d : 1 ≤
j ≤ n}; the result then follows by working through an argument analogous to that in
the previous paragraph.

I am not sure of the simplest construction of such a set B, but one can certainly
take B = {( j + 1)! : 1 ≤ j ≤ n}. In this case, we can determine each subset S from
its average μS , and therefore the averages must be distinct: To do so we select J to be
the minimal integer for which (J + 1)! ≥ μS and then r to be the minimal integer for
which rμS ≥ (J + 1)!. Then |S| = r and rμS is a sum of distinct factorials, which are
easily identified.2

The minimal examples are:

n Minimal set of primes

2 3, 7
3 7, 19, 67
4 5, 17, 89, 1277
5 209173, 322573, 536773, 1217893, 2484733

Sets of n primes all of whose subsets have averages that are distinct primes.

We predict that the smallest example of such a set of n primes will have largest
prime of size about

22n
/(eγ n)2n/n. (2.5)

2To prove all this, first note that if (J + 1)! is the largest element of S then μS ≥ mini≤J (2! + 3! + · · · +
i ! + (J + 1)!)/ i ≥ (J + 1)!/J > J ! and μS ≤ maxi≤J ((J + 2 − i)! + . . .! + (J + 1)!)/ i ≤ (J + 1)!. Now
r ≤ |S| ≤ J , and so if r = J then |S| = J = r . Otherwise r ≤ J − 1 and so (r + 1)μS = (1 + 1/r)rμS ≥
(1 + 1/(J − 1))(J + 1)! > (J + 1)! + J ! + · · · + 2! so |S| < r + 1, and therefore |S| = r .
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I had been unable to find examples with more than 4 elements! Tony Noe sent me
the 5-element example above on August 8, 2006. If (2.5) is correct then 6-element
examples will be hard to find whereas 7-element examples will remain out of reach.

2.6. Initial polynomial values that are primes. The arithmetic progression a + jd,
0 ≤ j ≤ k − 1, can equally be thought of as the first k values of the polynomial
d X + a. Thus the Green-Tao theorem tells us that there are infinitely many linear
polynomials for which the first k values are prime. This then suggests the question,
how about quadratic polynomials and beyond?

The infamous quadratic polynomial X 2 + X + 41 is prime for X = 0, 1, . . . , 39,
and it is known that 41 is the largest integer m for which X 2 + X + m is prime for X =
0, 1, . . . , m − 2. This is “equivalent” to the classification of imaginary quadratic fields
of class number one, a famously difficult result. More simply one can ask whether, for
each k, there exists m such that X 2 + X + m is prime for X = 0, 1, . . . , k. We believe
so, as we will explain in Section 3.6b.

We have so far taken our prime producing quadratic polynomials in a particular
form, most importantly monic. If we drop this requirement then the examples known
with the most initial prime values are (the absolute values of) 36X 2 − 810X + 2753
and 36X 2 − 2358X + 36809, both of which give distinct primes for X = 0, 1, . . . , 44.
Notice that these both have discriminant 259668 = 62 × 7213 and that p is not con-
gruent to a square (mod 7213) for any prime p in the range 5 ≤ p ≤ 53, so no prime
≤ 53 ever divides values of these polynomials.

For cubic polynomials there are several nice examples: The absolute value of the
polynomial (X − 14)3 + (X − 14)2 + 17 is prime for all integers X , 0 ≤ X ≤ 24. The
best polynomial known of degree 3 is |3n3 − 183n2 + 3318n − 18757|, which is prime
for 0 ≤ n ≤ 46; note that no prime < 37 ever divides the value of this polynomial.

Following a 2006 programming competition [10], we now know that |X 4 − 97X 3 +
3294X 2 − 45458X + 213589| is prime for all integers X , 0 ≤ X ≤ 49; and that
1
4 |X 5 − 133X 4 + 6729X 3 − 158379X 2 + 1720294X − 6823316| is prime for all in-
tegers X, 0 ≤ X ≤ 56.

More generally we can ask whether there are infinitely many polynomials of degree
d which give distinct primes for X = 0, 1, . . . , k. Balog [2] showed that this is so for
k = 2d (generalizing the “three primes in arithmetic progressions” theorem, which is
the case d = 1, k = 2). The general result follows easily from the Green-Tao theorem,
for if we take a (kd + 1)-term arithmetic progression of primes a + jb, 0 ≤ j ≤ kd ,
then the polynomial bX d + a is prime for X = 0, 1, 2, . . . , k.

We have been unable to settle the more interesting question as to whether there are
infinitely many monic polynomials of degree d for which the first k values give distinct
primes.

We predict that if d ≥ 2 and k is large compared to d (in fact k ≥ 4(d log d)2) then
there exists a monic polynomial f (X) of degree d, with all of its coefficients positive,
for which each of f (0) < f (1) < · · · < f (k − 1) are prime, where f (k − 1) is about

(
e−γ k

d

)k/d

. (2.6)

If we allow the leading coefficient of f to be any nonzero integer then we make a
similar prediction, adjusting (2.6) by replacing d with d + 1.

2.7. Monochromatic arithmetic progressions of primes. Green and Tao actually
proved a substantially stronger theorem than that used above: Fix any δ > 0 and any
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integer k ≥ 3. If x is sufficiently large (that is, x is larger than a constant that de-
pends only on δ and k) and if P is a subset of the primes up to x containing at least
δπ(x) elements3 then P contains a k-term arithmetic progression of primes. One easy
consequence of this is that if you color the primes with r colors then there will be
monochromatic4 arithmetic progressions of primes of arbitrary length: For if we want
an arithmetic progression of length k then take δ = 1/r in the result above with x suf-
ficiently large. Let P1, . . . , Pr be the partition of the primes up to x into their assigned
colors. At least one of the Pj has ≥ δπ(x) elements, so contains a k-term arithmetic
progression of primes of color j by the (strong) Green-Tao theorem.

2.8. Arithmetic progressions of primes, beginning with a given prime. We expect
that for any given prime p there are infinitely many k-term arithmetic progressions of
primes which begin with p, for any k ≤ p (that is, an arithmetic progression of primes
p + jd, j = 0, 1, . . . , k − 1). It is evident that we cannot have k ≥ p + 1 because the
(p + 1)th term of the arithmetic progression, p + pd = p(1 + d), will be composite.

Terry Tao pointed out to me that the strong version of the Green-Tao theorem (given
in Section 2.7) implies that, for any fixed k, “almost all” primes are indeed the first
term of a k-term arithmetic progression of primes. More precisely, suppose that there
are (1 − εk(x))π(x) primes up to x which are the first term of a k-term arithmetic
progression of primes. We are claiming that for each fixed k, we have εk(x) → 0 as
x → ∞.

Fix δ > 0 arbitrarily small and suppose that x is sufficiently large (as in Section
2.7). Let Q be the set of primes ≤ x which are the first term of some k-term arithmetic
progression of primes all ≤ x , and let P denote the rest of the primes. Note that P
cannot contain a k-term arithmetic progression of primes, else the first term of the
arithmetic progression would be in Q not P . Therefore |P| ≤ δπ(x) (by the strong
version of the Green-Tao theorem given in Section 2.7) and so |Q| ≥ (1 − δ)π(x).
Our claim follows.

We predict that the smallest k-term arithmetic progression of primes that begins
with p will have largest term around

(
e1−γ max

{
k,

log p

log k

})k−1

; (2.7)

in particular for k = p this yields (e1−γ p)p. Computations have yielded the following
data:

p Arithmetic Progression Last Term

2 2 + n 3
3 3 + 2n 7
5 5 + (2 · 3)n 29
7 7 + 5 · (2 · 3 · 5)n 907

11 11 + 7315048 · (2 · 3 · 5 · 7)n 15361600811
13 13 + 4293861989 · (2 · 3 · 5 · 7 · 11)n 119025854335093
17 17 + 11387819007325752 · (2 · 3 · 5 · 7 · 11 · 13)n 5471619276639877320977

The smallest p-term arithmetic progression of primes beginning with p.

3Here and throughout, π(x) denotes the number of primes ≤ x .
4That is, all of the same color.
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(Note that the common difference must be divisible by every prime q < p, else at least
one of the terms of the arithmetic progression will be divisible by q.)

2.9. Magic squares of primes. A magic square is an n-by-n array of distinct integers
such that the sum of the numbers in any row, or in any column, or in either diagonal,
equals the same constant. These have been very popular in the recreational mathemat-
ics literature (see, e.g., [7]). Here are two small examples.

17 89 71

113 59 5

47 29 101

41 89 83

113 71 29

59 53 101

Examples of 3-by-3 magic squares of primes.

Do you recognize the primes involved? Do you notice any similarities with the smallest
3-by-3 GAPs of primes (see Section 2.2)? The reason is that every 3-by-3 GAP can be
rearranged to form a 3-by-3 magic square and vice-versa!

37 83 97 41

53 61 71 73

89 67 59 43

79 47 31 101

41 71 103 61

97 79 47 53

37 67 83 89

101 59 43 73

Examples of 4-by-4 magic squares of primes.

It has long been known that there are n-by-n magic squares for any n ≥ 3. If the
entries are mi, j , 1 ≤ i, j ≤ n, then the square with (i, j)th entry a + mi, j b is also an n-
by-n magic square. The Green-Tao theorem implies that there are infinitely many pairs
of integers a, b for which all of the integers a + �b, mini, j mi, j ≤ � ≤ maxi, j mi, j are
prime, and this yields infinitely many n-by-n magic squares of primes.

By the obvious modifications of this argument we can show that if there is a magic
cube of a given size then there are infinitely many magic cubes of primes of the same
size, and the same is true for higher dimensional objects of this type. Bi-magic squares
are magic squares for which the squares of the entries also form a magic square. Since∑

(a + mi, j b)2 = a2
∑

1 + 2ab
∑

mi, j + b2
∑

m2
i, j (summing over any appropriate

domain), we see that if there exist n-by-n bi-magic squares then there are infinitely
many n-by-n bi-magic squares of primes.

The examples of 4-by-4 magic squares of primes given above have another property.
The primes involved are all of the primes between 31 and 101, and between 37 and
103, respectively. Proving that there are infinitely many examples of n-by-n magic
squares in which the primes involved are all of the primes from some interval does
seem, to me, to be beyond the scope of applications of the Green-Tao theorem.

2.10. Other prime patterns? I am sure that there are other beguiling consequences
of the Green-Tao theorem, and I hope that the reader will find some!

There are prime patterns of this type which do not seem to follow from the Green-
Tao theorem but do follow easily from older work (as Antal Balog remarked to me):
from [2], though seemingly not from [4], one can immediately deduce that there are
infinitely many sets of four primes such that the sum of any three is also prime.

April 2008] PRIME NUMBER PATTERNS 287



3. IN WHAT SITUATIONS DO WE EXPECT TO HAVE PRIME PATTERNS?
THE PRIME k-TUPLETS CONJECTURE AND BEYOND. To generalize the no-
tion of an arithmetic progression a + jd, 0 ≤ j ≤ k − 1, which is a set of k linear poly-
nomials in Z[a, d], we consider the k-tuple of linear polynomials L1(a1, . . . , an), . . . ,

Lk(a1, . . . , an) ∈ Z[a1, . . . , an]. We wish to determine whether there are infinitely
many sets of integers {a1, a2, . . . , an} for which each |L j (a1, a2, . . . , an)| is prime.
There are examples for which there are only a finite number of sets {a1, a2, . . . , an}
with each |L j (a1, a2, . . . , an)| prime; for example, if we have the polynomials L j (a) =
d j + a for 1 ≤ j ≤ p, where prime p does not divide integer d, then p always divides
the value of one of the linear forms no matter what the choice of a. To exclude this
possibility we call the set of linear forms admissible if, for all primes p, there are in-
tegers a1, . . . , an such that

∏k
j=1 L j (a1, . . . , an) is not divisible by p. The extended

prime k-tuplets conjecture states that if the set of linear forms is admissible then there
are infinitely many choices of integers a1, . . . , an for which each |L j (a1, . . . , an)| is
prime.

In this subsection we will prove various results concerning extensions of the prime
patterns discussed in Section 3. (The subsection numbers are coordinated so as to refer
to the same problem in each section; for example Sections 2.3 and 3.3 both discuss
Balog cubes).

3.1. All arithmetic progressions of primes are finite. Suppose that all the terms of
the arithmetic progression q + jd, 0 ≤ j ≤ k − 1, with d ≥ 1, are prime. In Section
2.8 we noted that q divides q + qd, so k ≤ q. We will now improve this bound by
showing that k ≤ p, where p is the smallest prime that does not divide d. Suppose
that k ≥ p so that p ≤ k ≤ q, and therefore p < q + jd for all j ≥ 1. Now, for any
prime � that does not divide d, one in every � consecutive terms of the arithmetic pro-
gression q + jd is divisible by �, so, in particular, some prime q + jd, 0 ≤ j ≤ p − 1
(≤ k − 1), is divisible by p, and thus must be p. Therefore q = p (since we noted that
the other terms of the arithmetic progression are > p) and our claim follows.

Now we show that an arithmetic progression in which the absolute values of the
terms are all prime has no more than 2p − 1 terms, where p is the smallest prime that
does not divide d. If it had ≥ 2p terms then two would be divisible by p, and so would
have to be −p and p, implying that d divides 2p. This is impossible, for if d = 1 or 2
then the arithmetic progression would contain the non-prime 1, and if d = p or 2p it
would contain 0, −3p or 3p. The upper bound 2p − 1 can be attained: by −3, 2, 7 for
p = 2, by −13, −5, 3, 11, 19 for p = 3, and by 5 + 12 j , −4 ≤ j ≤ 4 for p = 5. For
arbitrary p let m be the product of the primes < p. The set

{p + jmt, −(p − 1) ≤ j ≤ p − 1}
of linear forms in Z[t] is admissible (as may be seen by selecting t = 1 so that the
product of the linear forms is not divisible by p, and t = 0 to test for non-divisibility
by any other prime). The extended prime k-tuplets conjecture thus predicts that there
are infinitely many choices of integers n such that |p + jmn| is prime for all j in the
range −(p − 1) ≤ j ≤ p − 1.

3.2. All GAPs of primes are finite. A GAP is a set of integers of the form {a + n1b1 +
· · · + ndbd : 0 ≤ n1 ≤ N1 − 1, . . . , 0 ≤ nd ≤ Nd − 1} for given integers a, b1, b2,

. . . , bd , and integers N1, N2, . . . , Nd ≥ 2. By the argument of Section 3.1 we know
that if the terms of the GAP are distinct primes then Ni ≤ pi for each i = 1, 2, . . . , d,
where pi is the least prime that does not divide bi . If d ≥ 2 then we can improve this
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to Ni ≤ pi − 1: for if Ni = pi then, for any fixed n1, . . . , ni−1, ni+1, . . . , nd , we have
an arithmetic progression of length pi and common difference bi (as ni varies), so that
some element of that arithmetic progression is divisible by pi and thus must be pi ,
contradicting the hypothesis that the elements of the GAP are distinct primes.

Using a tool of additive combinatorics, we will show that if the terms of our GAP
are distinct primes and ∑

i : p does not divide bi

(Ni − 1) ≥ p − 1, (3.1)

then some element of our GAP must equal p. Moreover we will show that if we have
a GAP of distinct primes then ∑

i : p does not divide bi

(Ni − 1) ≤ p − 1; (3.2)

and if (3.1) holds then p does not divide b1b2 . . . bd . The set

{p + n1b1 + n2b2 : 0 ≤ n1 ≤ N1 − 1, 0 ≤ n2 ≤ N2 − 1, {n1, n2} 
= {0, 0}}
⊆ Z[b1, b2]

where (N1 − 1) + (N2 − 1) = p − 1 is admissible (for example, by taking b1 ≡ b2 ≡
1 (mod p), and b1 ≡ b2 ≡ 0 (mod q) whenever q 
= p), and so we believe that there are
infinitely many GAPs of distinct primes of this form, by the extended prime k-tuplets
conjecture (and thus (3.1) is best possible).

Now, let Ip be the set of i ∈ {1, . . . , d} for which p does not divide bi . The sets
{ni bi (mod p) : 0 ≤ ni ≤ Ni − 1} each consist of min{Ni , p} distinct elements. We
define the addition of two sets A and B of residues mod p by

A + B = {a + b (mod p) : a ∈ A, b ∈ B}.
The Cauchy-Davenport theorem tells us that if A, B are sets of residues mod p then
|A + B| ≥ min{|A| + |B| − 1, p}. Since our GAP (mod p) equals

{a} + {n1b1 (mod p) : 0 ≤ n1 ≤ N1 − 1} + · · ·
+ {ndbd (mod p) : 0 ≤ nd ≤ Nd − 1},

we deduce, by induction, that the size of our GAP (mod p) is

≥ min{p, 1 +
∑
i∈Ip

(Ni − 1)}.

In particular it contains 0 (mod p) once
∑

i∈Ip
(Ni − 1) ≥ p − 1, that is, (3.1) holds,

and so the GAP contains p.
We have just seen that if (3.1) holds then some element a + m1b1 + · · · + mdbd of

our GAP is divisible by p; if p divides b j then a + m1b1 + · · · + m j−1b j−1 + n j b j +
m j+1b j+1 + · · · + mdbd is divisible by p for each 0 ≤ n j ≤ N j − 1, contradicting the
fact that the GAP consists of distinct primes.

We have now seen that if
∑

i∈Ip
(Ni − 1) ≥ p then there is some element a + m1b1 +

· · · + mdbd which is divisible by p and Ip = {1, 2, . . . , d}. Adding the sets
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{a} + {n1b1 (mod p) : 0 ≤ n1 ≤ N1 − 1} + . . .

+ {nd−1bd−1 (mod p) : 0 ≤ nd−1 ≤ Nd−1 − 1}
+ {ndbd (mod p) : 0 ≤ nd ≤ Nd − 1, nd 
= md},

we find, by the Cauchy-Davenport theorem, that there is a second element of our GAP
that is divisible by p, contradicting the fact that the GAP consists of distinct primes.

3.3. All Balog cubes are finite. Were there an infinite Balog cube of primes it would
contain an infinite arithmetic progression of primes, which is impossible (see Section
3.1).

3.4. Infinite sets of primes, averaging in pairs. We will construct an infinite se-
quence of primes p1 = 3 < p2 = 7 < p3 = 19 < p4 < · · · such that all pi, j =
(pi + p j )/2 are prime and distinct for 1 ≤ i ≤ j using the extended prime k-tuplets
conjecture. We find pk for each k ≥ 4 by induction: Let mk be the product of the primes
≤ k and let nk be the product of the primes in mk of the form p1, j for 1 ≤ j ≤ k − 1.
Let ak be the least residue mod 4mk for which

ak ≡

⎧⎪⎨
⎪⎩

3 (mod 4mk/nk)

7 (mod nk/(5, nk))

19 (mod (5, nk))

We look for the desired pk to be of the form ak + 4rmk for some integer r , so we
need to find r such that the linear forms ak + 4rmk and (ak + p j )/2 + 2rmk for
1 ≤ j ≤ k − 1 are all prime; and so we now show that this set is admissible. If p > k
then p does not divide 2mk and thus we can find an integer r for which none of the
linear forms is divisible by p, since there are only k < p forms in our set. If p di-
vides mk/nk then ak + 4rmk ≡ 3 
≡ 0 (mod p) and (ak + p j )/2 + 2rmk ≡ p1, j 
≡ 0
(mod p). Similarly if p divides nk/(nk, 5) then ak + 4rmk ≡ 7 
≡ 0 (mod p) and
(ak + p j )/2 + 2rmk ≡ p2, j 
≡ 0 (mod p). Finally if 5 divides nk then ak + 4rmk ≡
19 
≡ 0 (mod 5) and (ak + p j )/2 + 2rmk ≡ p3, j 
≡ 0 (mod 5). Hence such a pk exists
by the extended prime k-tuplets conjecture.

3.5. Averaging sets of integers must be finite. We now show that averaging sets of
integers, and thus averaging sets of primes, must be finite. Suppose that a < b are two
elements of A and let p be the smallest prime which does not divide b − a. If |A| ≥
p + 1 then we should have that the average of every p elements of A is an integer. So
let S be a subset of A \ {a, b} with p − 1 elements. Then p divides a + ∑

s∈S s and
b + ∑

s∈S s, so that p divides their difference, a contradiction. Therefore |A| ≤ p.

3.6a. Only a finite number of initial values of a polynomial can be prime. For
f (x) ∈ Z[x] of degree d ≥ 1, suppose that | f (0)|, | f (1)|, . . . , | f (k)| are distinct
primes, and let p = f (0). Then f (p) ≡ f (0) ≡ 0 (mod p) and so | f (p)| cannot be a
prime distinct from p = | f (0)|. Therefore k ≤ p − 1.

3.6b. An arbitrary number of initial values of a monic degree d polynomial can
be prime. Let g(x) ∈ Z[x] be any monic polynomial which, for each prime p, is
NOT a permutation polynomial for the residues mod p (g is a permutation polynomial
if g permutes the residues mod p or, equivalently, if the map g : Z/pZ → Z/pZ is
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1-to-1). The easiest way to achieve this is to take g(x) = x(x − 1)h(x) for some monic
polynomial h(x) of degree d − 2, since then g(0) = g(1) = 0 and so the map cannot
be 1-to-1. The point of the requirement is that for every prime p there exists m p such
that g(r) 
≡ m p (mod p) for all integers r , and so, for any integer k, the set of linear
forms a + g(0), a + g(1), . . . , a + g(k) is admissible. Therefore the prime k-tuplets
conjecture predicts that there will be infinitely many prime k-tuplets of this form. Take
such an integer a and let f (x) = g(x) + a to obtain a monic polynomial of degree d
for which f (0), f (1), . . . , f (k) are all prime.

A similar argument indicates that the bound in Section 3.6a is best possible: For any
given prime p let g(x) be any monic polynomial with g(0) = p, and let k = p − 1. For
any prime q, the set {g( j)/j (mod q) : 1 ≤ j ≤ min{q − 1, k}} contains < q elements
and so there exists aq such that −aq (mod q) is not in this set. Therefore if 1 ≤ j ≤
k and q does not divide j then g( j) + jaq 
≡ 0 (mod q). If q divides j then q 
=
p, and therefore g( j) + jaq ≡ g(0) = p 
≡ 0 (mod q). Therefore the set g(1) + a,

g(2) + 2a, . . . , g(k) + ka of linear forms is admissible, and so we expect infinitely
many integers a for which they are all prime. Take such an integer a and let f (x) =
g(x) + ax to obtain a monic polynomial of degree d for which f (0), f (1), . . . , f (k)

are all prime with k = | f (0)| − 1.

4. THE NUMBER OF SUCH PRIME PATTERNS, AND THE SMALLEST
SUCH PATTERN. Given an admissible k-tuple of linear polynomials

L1(a1, . . . , an), . . . , Lk(a1, . . . , an) ∈ Z[a1, . . . , an],
with k > n, we wish to determine the number of sets of integers {a1, . . . , an} ∈ A
for which each |L j (a1, . . . , an)| is prime. Here A is some “reasonable” domain (for
example, convex) such that, for almost all (a1, . . . , an) ∈ A, each |L j (a1, . . . , an)| is
about size x .

The prime number theorem states that there are about x/ log x primes up to x ; in
other words, 1 in every log x of the integers close to x is prime. Thus, if the values
of the L j (a), a ∈ A, could be considered independently then we would expect that 1
in every (log x)k such k-tuples is prime. However in many examples such forms are
obviously dependent; for example, the pair of linear forms n, n + 2 are coprime to 3 for
1 in every 3 choices of n, whereas two independent linear forms are coprime to 3 for 4
out of every 9 choices (note 4/9 = (2/3)2). We can similarly adjust our probabilities
for divisibility by each prime, and end up with the conjecture:

The proportion of {a1, . . . , an} ∈ A for which each |L j (a1, . . . , an)| is prime is
about

1

(log x)k

∏
p prime

Prob((L1(a) . . . Lk(a), p) = 1 : 0 ≤ a1, . . . , an ≤ p − 1)

Prob((�, p) = 1 : 0 ≤ � ≤ p − 1)k
.

(4.1)

(Here the notation Prob(Event E : Range R) means the probability that event E is
true if the variables are chosen from the range R, with each assignment of values of
the variables from R having equal probability.)

In order to use this to make predictions (as at the conclusion of each subsection
in Section 2) we need to give reasonably good approximations to each term in the
formula. We start by evaluating the easier terms, and by clarifying how to determine
some other terms.
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We now take A to be the set of integers {a1, . . . , an} for which each

|L j (a1, . . . , an)| ≤ x .

It is not difficult to show that |A| ∼ cL xn , for some constant cL > 0.
For a given prime p we have Prob((�, p) = 1 : 0 ≤ � ≤ p − 1) = 1 − 1/p. Defin-

ing ω(p) to be the number of choices of a1, . . . , an (mod p) for which L1(a) . . . Lk(a)

is divisible by p, we have Prob((L1(a) . . . Lk(a), p) = 1 : 0 ≤ a1, . . . , an ≤
p − 1) = 1 − ω(p)/pn. Using these remarks we can rewrite (4.1) as:

The number of {a1, . . . , an} ∈ A for which each |L j (a1, . . . , an)| is prime is
about

cL

∏
p prime

{(
1 − ω(p)

pn

) (
1 − 1

p

)−k
}

xn

(log x)k
(4.2)

This is the quantitative prime k-tuplets conjecture.
We need two estimates concerning primes. The prime number theorem states that

π(y), the number of primes up to y, is about y/ log y. Hence most primes up to y will
have size near y (by which I mean larger than y/ log y), so we can deduce that the
product of the primes up to y is about yy/ log y = ey . Mertens’ theorem, which can also
be deduced from the prime number theorem (though preceeds it historically), states
that

∏
p≤y

(
1 − 1

p

)−1

≈ eγ log y.

Armed with these two estimates let us proceed to approximate (4.2) for the simplest
example discussed in this article:

4.1. Arithmetic progressions of primes. There are ∼ x2/(2(k − 1)) pairs of in-
tegers a, d ≥ 1 with a + (k − 1)d ≤ x , and therefore we predict that the number
of k-term arithmetic progressions of distinct primes all ≤ x is given by (4.2) with
cL = 1/(2(k − 1)) and n = 2.

Next we wish to evaluate ω(p). For each prime p ≤ k we have seen that at least
one of a + jd, 0 ≤ j ≤ p − 1 ≤ k − 1, is divisible by p unless p divides d. In that
case one of them is divisible by p if and only if p divides a. Therefore ω(p) =
p(p − 1) + 1, and so

∏
p prime, p≤k

{(
1 − ω(p)

p2

) (
1 − 1

p

)−k
}

=
∏

p prime, p≤k

1

p

(
1 − 1

p

)−(k−1)

,

(4.3)

which is roughly of size e−k · (eγ log k)k = (eγ−1 log k)k by the two estimates for prime
numbers given above.

For the primes p > k we note that p divides some a + jd, 0 ≤ j ≤ k − 1, if and
only a ≡ − jd (mod p) for some 0 ≤ j ≤ k − 1. When p does not divide d these k
values mod p are distinct so we deduce that ω(p) = k(p − 1) + 1, and so the pth term
in (4.2), for p > k, equals
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(
1 − k − 1

p

) (
1 − 1

p

)−(k−1)

. (4.4)

Taking logarithms and using the Taylor series for log(1 − x), we find that the first
term of each Taylor series, k−1

p , cancels, and that what remains is dominated by the k2

p2

term. We can now bound the total contribution of ALL the primes p > k to (4.2): The
logarithm of their contribution is bounded by a constant multiple of

∑
p>k

k2

p2 ; and the

prime number theorem can be used to show that
∑

p>k
1
p2 is bounded by a constant

multiple of 1
k log k .

Collecting together all these evaluations, we have shown that our prediction for the
number of k-term arithmetic progressions of distinct primes all ≤ x is about(

eγ−1 log k

log x

)k

x2. (4.5)

We have avoided many technicalities by the use of the word “about”; for example, the
contributions of cL , and of the primes p > k, are negligible at this level of precision.
To be more precise we could replace ‘eγ−1’ by ‘eγ−1 + o(1)’, where o(1) represents
some function which tends to 0 as k and x get large.

If we take x = ((e1−γ /2 − ε)k)k/2 then (4.5) gives roughly e−cεk such k-term arith-
metic progressions of primes, for some constant c > 0. Note that e−cεk is very small,
far less than 1, so our prediction is that there should be no such arithmetic progressions
up to this x , or at most very few. On the other hand if we take x = ((e1−γ /2 + ε)k)k/2

then we expect more than (1 + cε)k such k-term arithmetic progressions of primes.
Now (1 + cε)k is exponential in k, so once k is large this is very very large, hence we
are pretty sure that at least one such k-term arithmetic progressions of primes exists.
This sharp transition around ((e1−γ /2)k)k/2 (the value given in (2.1)) is very typical
in these predictions and the evidence from our data in Section 2.1 gives us confidence
that we are guessing correctly.

We end this subsection by being more precise than in (2.1): we conjecture that
the smallest k-term arithmetic progression of distinct primes will have largest prime
((e1−γ /2 + o(1))k)k/2.

4.2. The other patterns. In all of the other cases we can understand most of the
terms in (4.2) in an analogous way: The terms in the product for the primes p > k
similarly contribute little. The product of (1 − 1/p)−k over the primes p ≤ k can again
be understood by Mertens’ theorem. We can even determine the total contribution of
the “small” primes p in some generality:

The set of linear forms is admissible if and only if ω(p) < pn for every prime p.
Since ω(p) is an integer this implies that ω(p) ≤ pn − 1 and so 1 − ω(p)/pn ≥ 1/pn .
This implies that, for fixed ε > 0,

1 ≥
∏

p<εk/n
p prime

(
1 − ω(p)

pn

)
≥

∏
p<εk/n
p prime

1

pn
≈ 1

e2εk
,

and thus this product is not large enough to be significant in the end result, if ε is
sufficiently small.

It therefore only remains to estimate

Prob((L1(a) . . . Lk(a), p) = 1 : 0 ≤ a1, . . . , an ≤ p − 1)

in the range εk/n < p < k.
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Each prime pattern requires different, and nontrivial, combinatorial arguments to
estimate these probabilities, and a full explanation is perhaps beyond the scope of
this article. However I find the result in Section 2.6, on consecutive prime values of
polynomials, to be the most interesting, so let us work out this one final case.

4.3. Initial polynomial values. We write our polynomial as

f (X) = X d +
d−1∑
i=0

ai Xi

with d ≥ 2, and assume that each ai is a nonnegative integer, so that n = d. To en-
sure that f (0), f (1), . . . , f (k − 1) ≤ x we want (k − 1)d + ∑d−1

i=0 ai (k − 1)i ≤ x
(so we take x substantially larger than (k − 1)d ); the number of such sets of integers
a0, a1, . . . , ad ≥ 1 is about

1

d!
d−1∏
i=0

x

(k − 1)i
= xd

d! (k − 1)d(d−1)/2
,

so that cL = 1/(n! (k − 1)n(n−1)/2), which is negligible if we take k ≥ 4(d log d)2.
We now determine

Prob(( f (0) f (1) . . . f (k − 1), p) = 1 : 0 ≤ a0, a1, . . . , ad−1 ≤ p − 1).

Since f (r + p) ≡ f (r) (mod p) for each r , this is equal to

Prob(( f (0) f (1) · · · f (� − 1), p) = 1 : 0 ≤ a0, a1, . . . , ad−1 ≤ p − 1),

where � = min{k, p}. Define g(X) := ∑p−2
j=0 b j X j where b j = ∑

i : i≡ j (mod p−1) ai , so
that f (n) ≡ g(n) (mod p) whenever 1 ≤ n ≤ p − 1, since ni ≡ n j (mod p) for all
0 ≤ j ≤ p − 2 and i ≡ j (mod p − 1). As f (0) ≡ a0 (mod p), we therefore wish to
determine

Prob((a0g(1) · · · g(� − 1), p) = 1 : 0 ≤ a0, a1, . . . , ad−1 ≤ p − 1)

For 0 ≤ j ≤ J := min{p − 2, d − 1} the value of b j (mod p) runs equally often
through each value (mod p) as the ai , i ≡ j (mod p) do: to see this, simply fix ai , i ≡ j
(mod p − 1), i > j , and notice that b j (mod p) runs through each value (mod p) as a j

does. Now if d < p then g(0) = b0 = a0 and so we want

Prob((g(0)g(1) . . . g(� − 1), p) = 1 : 1 ≤ b0, b1, . . . , bJ ≤ p).

If d ≥ p then b0 (mod p) runs equally often through each number (mod p) as the ai ,
i ≡ 0 (mod p − 1), i > 0 do, independent of a0 (to see this, modify the above proof
but this time fix all the ai , i 
= p − 1) and so we want

Prob((g(1) · · · g(� − 1), p) = 1 : 1 ≤ b0, . . . , bJ ≤ p)

× Prob((a0, p) = 1 : 1 ≤ a0 ≤ p).

The matrix that determines the values g(0), g(1), . . . , g(� − 1) from b0, b1, . . . , bJ

is a Vandermonde matrix and therefore of full rank. Hence, as we run through the set
of all possible values of (b0, b1, . . . , bJ ) (mod p) we run through all possible values
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of (g(0), g(1), . . . , g(� − 1)) (mod p) each exactly pJ−�+1 times. Therefore our prob-
ability equals (1 − 1/p)� (in both cases). This implies that the product over primes in
(4.2) is exactly

∏
p<k

(
1 − 1

p

)−(k−p)
, which can be evaluated using Mertens’ theorem

and the prime number theorem.
Thus (4.2) is about (λeγ )k when x = (λk/n)k/n, and so we deduce (2.6) with d

replaced by n.

5. CONCLUDING REMARKS. The purpose of this article has been to exhibit how
the amazing result of Green and Tao, that there are infinitely many k-term arithmetic
progressions of primes, yields some entertaining consequences, allowing us to prove
that there are primes in all sorts of mathematically and aesthetically desirable pat-
terns. But their work has not stopped with [4]. Indeed Green and Tao are audaciously
planning an assault on arguably the greatest of all conjectures about the primes, the
extended prime k-tuplets conjecture. They have, of course, already succeeded when
the set of linear forms is a + jd, 0 ≤ j ≤ k − 1, but, in mid-2006, they released a
preprint [6] in which they describe a plausible program for going much further. There
are certain cases that they are unable to attack as yet: that there are infinitely many
pairs of primes p, p + 2 (the twin prime conjecture); for any large even integer N
there are pairs of primes p, N − p (the Goldbach conjecture), and that there are in-
finitely many pairs of primes p, 2p + 1 (Sophie Germain twins). Note that these are
all examples of difficult pairs of linear forms, L1, L2, in that there exist nonzero inte-
gers a, b, c for which aL1 + bL2 = c. Green and Tao now believe that they will prove
the extended prime k-tuplets conjecture for any admissible k-tuple of linear forms that
does not contain a difficult pair.

In their preprint [5], Green and Tao take a first giant step towards their ambitious
program, proving results that go well beyond [4]. Peter Sarnak has informed me of
several delightful applications of the results in [5]:

5.1. Pythagorean triples. It is well known that any solution to x2 + y2 = z2 in co-
prime integers must be of the form

x = r 2 − s2, y = 2rs, z = r 2 + s2,

where r and s are coprime integers with r + s odd. The area of the right-angled triangle
with sides x, y, and z is given by

A = xy

2
= rs(r + s)(r − s), (5.1)

and must be divisible by 6 since one of r and s must be even (as r + s is odd), and
since one of r, s, r 2 − s2 must be divisible by 3. Hence we can ask how few prime
factors can A/6 have? In (5.1) we saw that A is the product of four factors which are
linear polynomials in r and s, so there can be only finitely many pairs r, s for which
A/6 has fewer than three prime factors. Calculations reveal that A/6 = 1 only for the
(3, 4, 5) triangle, and that A/6 has exactly one prime factor only for the (5, 12, 13)

triangle. The only Pythagorean triples for which A/6 has exactly two prime factors are

(8, 15, 17), (7, 24, 25), (12, 35, 37), (20, 21, 29), (11, 60, 61), and (13, 84, 85).

We believe that there are infinitely many Pythagorean triples for which A/6 has ex-
actly three prime factors, since the prime k-tuplets conjecture predicts that there are
infinitely many prime triplets p − 6, p, p + 6 and, when we do have such a triplet,
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we can take r = p and s = 6 above. Unfortunately we still cannot prove that there are
infinitely many such prime triplets.

What can now be proved unconditionally is that there are infinitely many Pythago-
rean triples such that A/6 has exactly four prime factors; for instance when r = 2p
and s = 3q where p, q, 2p + 3q, and 2p − 3q are all prime. A consequence of [5] is
that there are indeed infinitely many such prime quadruplets. (This all appeared in Ben
Tsou’s junior undergraduate thesis at Princeton.)

5.2. Matrices of a given determinant. The determinant of an n-by-n matrix of odd
integers must be divisible by 2n−1. Nevo and Sarnak [8] have shown that for any integer
m divisible by 2n−1, there are infinitely many n-by-n matrices of determinant m whose
entries are distinct (odd) primes, for any n ≥ 3.

If Green and Tao can indeed prove the extended prime k-tuplets conjecture for any
admissible k-tuple of linear forms that does not contain a difficult pair, then this will
be an even more widely applicable theorem than any of their remarkable results to date
(for example, from this one can deduce that there are infinitely many monic polynomi-
als of degree d for which the first k values give distinct primes). Green and Tao even
believe that they will be able to prove that (4.2) is an accurate approximation for the
number of such prime k-tuples. This is another leap forward far beyond the horizon,
and will no doubt give rise to many other extraordinary patterns of primes.
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