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Abstract. View an n-vertex, m-edge undirected graph as an electrical

network with unit resistors as edges. We extend known relations be-

tween random walks and electrical networks by showing that resistance

in this network is intimately connected with the lengths of random walks

on the graph. For example, the commute time between two vertices s

and t (the expected length of a random walk from s to t and back)

is precisely characterized by the e�ective resistance Rst between s and

t: commute time = 2mRst. As a corollary, the cover time (the ex-

pected length of a random walk visiting all vertices) is characterized

by the maximum resistance R in the graph to within a factor of logn:

mR � cover time � O(mR log n). For many graphs, the bounds on

cover time obtained in this manner are better than those obtained from

previous techniques such as the eigenvalues of the adjacency matrix. In

particular, we improve known bounds on cover times for high-degree

graphs and expanders, and give new proofs of known results for multi-

dimensional meshes. Moreover, resistance seems to provide an intu-

itively appealing and tractable approach to these problems.
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1. Motivation and Summary

A random walk on a graph is the following discrete-time stochastic process:

from a vertex, the walk proceeds at the next step to an adjacent vertex chosen
uniformly at random. The study of random walks in graphs has many appli-

cations in the design of algorithms | in the study of distributed computation
(Broder & Karlin 1989), space-bounded computation (Aleliunas et al. 1979,
Borodin et al. 1989), time-space tradeo�s (Barnes & Feige 1996, Broder et al.
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1994, Feige 1993), and in the design of approximation algorithms for some hard

combinatorial problems (Dyer et al. 1991, Jerrum & Sinclair 1989).

Doyle & Snell (1984) exposed many interesting connections between random

walks and electrical network theory, and traced the origins of the topic back

into the nineteenth century. Building on this work, we extend the known

connections to include several new properties, with an emphasis on questions

about cover and commute times.

Doyle & Snell (1984) view an undirected graph as an electrical network in

which each edge of the graph is replaced by a unit resistance. As an example

of the interplay between electrical and probabilistic notions, their work related

the e�ective resistance between nodes a and b in the electrical network to the
probability, in a random walk starting from vertex a, of escaping to vertex b

before returning to a. In particular, this probability equals 1=(d(a)Rab), where
Rab is the e�ective resistance between a and b, and d(a) is the degree of a.
Their work deals with �nite as well as in�nite graphs, and highlights many

tools from electrical network analysis that are useful in the study of random
walks. However, they do not discuss the number of steps in a random walk,

which will be our primary focus.
The main subject of our study will be the cover time of a graph, which is the

expected number of steps for a random walk to visit all the vertices in a graph

(the maximum being taken over all starting vertices). To this end we de�ne the
electrical resistance of a graph to be the maximum e�ective resistance between

any pair of vertices. We show that this quantity captures the cover time to
within a factor of O(logn): for n-vertex, m-edge graphs of resistance R,

mR � cover time � O(mR logn): (1:1)

The key to showing this correspondence is a result we prove about the commute

time of a random walk: for a given pair of vertices s and t, this is the expected

length of a walk from s to t and back to s. We give an equality for commute
time in terms of the e�ective resistance between s and t. This equality (like the
equalities of Doyle and Snell) reiterates the fact that the electrical properties

of the network underlying a graph are innately tied to the random walk.

Prior work in the study of the cover time of graphs has used techniques

from Markov chain theory (Aleliunas et al. 1979, G�obel & Jagers 1974), from
combinatorics (Kahn et al. 1989), from linear algebra (Broder & Karlin 1989)

and from graph theory (Jerrum & Sinclair 1989). The electrical approach used

here provides an intuitive basis for understanding a variety of phenomena about

random walks that had hitherto seemed counterintuitive.

As an example, a simple and plausible conjecture is that adding more edges
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to a graph can only reduce its cover time since they make it \easier" to reach

vertices missed so far. This is shown to be false by the following counterex-

ample: an n-vertex chain has cover time �(n2), but by adding edges it can be

converted to a \lollipop graph" (an n=2-vertex chain connected at one end to

an n=2-clique) which has cover time �(n3). This can be easily explained from

resistance arguments. By examining Equation 1.1 we see that adding edges so

as to reduce the resistance R can decrease the cover time; but adding edges in

a region of the graph where R is largely una�ected will increase the cover time.

In addition to a number of new results, our methods yield alternative proofs

(and often improvements) of earlier results on cover times. An added advantage

of our approach is that our results are robust : minor perturbations in the
graph (such as the deletion or addition of a few edges) usually do not change
the electrical properties of the graph substantially. Following appearance of

a preliminary version of this paper (Chandra et al. 1989), Tetali (1991) has
extended our ideas to establish a number of new relations between hitting

times and e�ective resistance.

The rest of this paper is organized as follows. In section 2 we relate elec-
trical resistance to commute and cover times. Section 3 studies the electrical
resistance and the cover time of dense regular graphs. Section 4 studies the

relation between the maximum resistance of a graph and the eigenvalues of its
adjacency matrix. We then obtain a tight upper bound on the cover time of ex-

panders in section 5. We conclude with a study of the resistance and the cover
time of multidimensional meshes in section 6. The remainder of this section is
devoted to a technical summary of our results and a comparison to previous

work.

A commute between two vertices s and t is a random walk from s to t

and back to s; and the commute time between s and t is the expected length

of a commute between the two vertices. Aleliunas et al. (1979) showed that

the commute time between s and t is bounded above by 2mdst, where dst is

the distance between s and t. We re�ne this, showing that the commute time

is exactly 2mRst, where Rst is the e�ective resistance between s and t. Note

Rst � dst, with equality if and only if there is a unique simple path from s to
t. On the other hand, for some graphs Rst may be smaller than dst by almost

a factor of n. (Kn is a simple example.) Thus, resistance not only gives exact

values for commute times, these values may be much better than the estimates

provided by Aleliunas et al. (1979). (Section 2, Theorem 2.1.)

These results also generalize in various ways. For example, we extend the

results to characterize the expected costs incurred for walking around a di-

rected cycle, even when edge costs are arbitrary and transition probabilities
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are nonuniform. (Section 2, Theorems 2.2 and 2.3.)

Using commute time, we are able to bound the cover time to within a factor

of O(logn), as in (1.1) above. Letting Rspan be the minimum resistance of a

spanning tree of G, we get an alternative upper bound on cover time:

cover time � 2mRspan: (1:2)

For many graphs this provides a better bound than (1.1). For example, Rspan =

O(n) for the n-vertex chain and lollipop graphs, hence their cover times are

O(n2) and O(n3), respectively, which happen to be tight. Since Rspan � n� 1

for any graph, this result re�nes the 2m(n�1) upper bound given by Aleliunas

et al. (1979). Again, Rspan may be much smaller than n� 1, as small as O(1),
in fact. The graph consisting of a pair of n=2-cliques connected by a single edge
provides a simple example: Rspan = O(1), hence cover time is O(n2), which is

better than the bounds given by Aleliunas et al. (1979), or (1.1). (Section 2,
Theorem 2.4.)

For d-regular graphs, the Aleliunas et al. bound for cover time is O(dn2).

Kahn et al. (1989) improved this bound for d-regular graphs to O(n2). Reex-
amination of their proof reveals that it supports the stronger statement that

Rspan = O(n=d) for any d-regular graph, hence cover time is O(n2) by (1.2).

Kahn et al. (1989) also give examples, for any d � bn=2c�1, of n-vertex, d-
regular graphs with maximum resistance 
(n=d), and hence by (1.1) with cover

time 
(n2). For d = n� 1 (the clique), the cover time is much smaller, namely
O(n logn). One might expect a gradual decline in cover time as d increases
from bn=2c � 1 to n� 1. Much to our surprise, this is not the case | there is

a sharp threshold at d = bn=2c. We show that in going from d = bn=2c � 1 to
bn=2c the maximum resistance drops from 
(1) to O(1=n), hence by (1.1) the

cover time drops from 
(n2) to O(n logn) (where it remains for all d � bn=2c).
This result has a very simple and intuitive proof. (Section 3, Theorem 3.3.)

We relate the resistance of a graph to the second smallest eigenvalue �2
of a matrix closely related to its adjacency matrix, thus obtaining some of the
results of Broder & Karlin (1989) as corollaries. Again, we show that (1.1) gives

tighter bounds on cover time than are possible in terms of �2 alone. Speci�cally,

we show that
1

n�2
� R � 2

�2
;

and exhibit graphs where each inequality is tight. Thus, �2 only weakly cap-

tures resistance, hence is also weak in estimating cover time (whereas resistance
captures cover time to within an O(logn) factor). (Section 4, Theorem 4.2.)
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One interesting application of our approach is to the cover time for d-regular

expander graphs. Using the eigenvalue approach, Broder & Karlin (1989)

showed that such graphs have cover time O((n logn)=(1� �2)) = O(dn logn),

where �2 = 1� �2=d. No better bound is possible using their approach, since

there are d-regular expanders having second eigenvalue �2 = 1 � �(1=d). We

are able to show that the resistance of an expander is �(1=d), and hence the

cover time is O(n logn).

Expanders have potential practical application in the design of e�cient,

fault-tolerant communication networks, where the expansion properties of the

graph make it likely that many communication paths will remain open even in

the face of congestion and/or failure of certain links. Larger degree translates
to greater robustness to failure and/or congestion. The cover time of the graph

is an appropriate metric for the performance of certain kinds of randomized
broadcast or routing algorithms. Thus, it is pleasant that increased robustness
can be had without signi�cantly increasing the cost of these algorithms| cover

time is essentially independent of degree. (Section 5, Theorem 5.2.)
Using resistance, we also derive upper bounds for covering d-dimensional

meshes. We show that a 2-dimensional mesh of size
p
n � p

n has resistance
�(logn), whereas d-dimensional meshes for 3 � d � log2 n have resistance
�(1=d). Random walks on meshes have been previously considered by many

authors, including some studies of cover times by Aldous (1983, 1993), Cox
(1989), and G�obel & Jagers (1974) (the later only for d = log2 n, i.e., hyper-

cubes). Although our conclusions about cover times of meshes were previously
known, our approach is novel and potentially illuminating. For example, the
resistance of a graph will generally not be changed signi�cantly by the inser-

tion or removal of a few edges, so our results naturally suggest bounds on cover
times for \imperfect" meshes, which are more di�cult to treat by more classical
analytical techniques. (Section 6.)

Our last application couples resistance-based commute bounds to the proof
technique of Aleliunas et al. (1979) to derive new upper bounds for universal

traversal sequences, namely O(mR log(ng)), where g is the number of labeled
graphs in the family under consideration. This gives improved upper bounds

for universal traversal sequences for many classes of graphs, including dense

graphs and expanders. (Section 2, Theorem 2.6.) We also �nd the �rst known
family of labeled graphs with a tight bound on UTS length. (Section 6.)

2. Basic Relations

Let G = (V;E) be an undirected connected graph on jV j = n vertices with

jEj = m edges. Let N (G) be the electrical network having a node for each
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vertex in V , and, for every edge E, having a one Ohm resistor between the

corresponding nodes in N (G). For two vertices u; v 2 V , Ruv denotes the

e�ective resistance between the corresponding nodes in N (G), i.e., the voltage

induced between u and v by passing a current 
ow of one ampere between

them.

Let Huv (the hitting-, or �rst passage time) denote the expected number of

steps in a random walk that starts at u and ends upon �rst reaching v. We

de�ne Cuv, the commute time between u and v, by Cuv = Huv +Hvu.

Theorem 2.1. For any two vertices u and v in G, the commute time Cuv =

2mRuv.

Proof. For any x in V , let d(x) denote the degree of x in G. Let �uv denote
the voltage at u in N (G) with respect to v, if d(x) units of current are injected

into each node x 2 V , and 2m are removed from v. Let N(x) denote the set of
vertices in V that are adjacent to x in G. We will �rst prove

Huv = �uv 8u 2 V: (2:3)

By Kircho�'s current conservation law, Ohm's law, and the fact that all edges

have unit resistance, the �uv satisfy

d(u) =
X

w2N(u)

(�uv � �wv) 8u 2 V � fvg: (2:4)

By elementary probability theory,

Huv =
X

w2N(u)

1

d(u)
(1 +Hwv) 8u 2 V � fvg: (2:5)

Equations (2.4) and (2.5) are both linear systems with unique solutions; fur-

thermore, they are identical if we identify �uv in (2.4) with Huv in (2.5). This

proves (2.3). To complete the proof of the theorem, we note that Hvu is the
voltage �vu at v in N (G) measured with respect to u, when currents are in-

jected into all nodes and removed from u. Changing signs, �vu is also the
voltage at u relative to v when 2m units of current are injected at u, and d(v)

units removed from all nodes v 2 V . Since resistive networks are linear, we

can derive an expression for Cuv = Huv+Hvu by superposing the two networks
on which �uv and �vu are measured. Currents injected into and removed from

all nodes except u and v cancel, resulting in Cuv being the voltage between u

and v when 2m units of current are injected into u and removed from v, which

yields the theorem by Ohm's law. 2
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D. Aldous, A. Z. Broder, P. G. Doyle, A. R. Karlin, and J. L. Snell all have

derived alternative proofs of Theorem 2.1 using similar methods from renewal

theory. We sketch this alternate proof below. For any vertex u, let T be a

random time at which the walk from u returns to u. By standard techniques

from renewal theory (e.g., Ross 1989, Prop. 7.4.1), for any vertex x (or directed

edge (x; y)) the expected number of visits to x (traversals of (x; y)) before T is

exactly E[T ] times the steady-state probability of visiting x (traversing (x; y),

respectively). Choosing T to be the time of �rst return to u after visiting v, and

x = u, and noting that the steady-state probability of visiting u is d(u)=(2m),

we conclude that the expected number of returns to u during a commute to v

is E [T ]d(u)=(2m) = Cuvd(u)=(2m). The result mentioned in our introduction
from Doyle & Snell (1984, Section 3.3) implies that during a random commute

from u to v, the expected number of returns to u is d(u) �Ruv. Combining these
expressions yields the result.

Although Theorem 2.1 su�ces for most of our applications, it is interesting

to note that it easily generalizes to walks on graphs with self-loops, and with
non-uniform transition probabilities and costs. With each ordered pair of ver-

tices (u; v) 2 V �V we associate a positive real resistance ruv = rvu. Non-edges
are represented by in�nite resistances. Additionally, let each directed edge have
a real cost fuv. (We do not require that fuv equal fvu, unless, of course, u = v.)

We now consider a random walk on G de�ned by the following discrete-time
process: when at a vertex u 2 V , step to vertex v with probability inversely

proportional to ruv (the resistance of edge fu; vg), i.e., with probability

puv =
1=ruvP

w2V 1=ruw
:

For a T�step walk traversing the sequence of (not necessarily distinct) directed
edges (u0; u1); (u1; u2); : : : ; (uT�1; uT ), the cost of the walk is de�ned to bePT

j=1 fuj�1uj . Note that the standard random walk on a graph is the special

case where all costs are 1, all edges have resistance 1, and all non-edges have
in�nite resistance.

Let N (G) be the electrical network derived from G as follows: there is a
node in N (G) for each vertex in V , and for every pair of vertices fu; vg in V ,

there is a resistor between the corresponding nodes in N (G) whose value is ruv.

Again, for two vertices u; v 2 V; Ruv denotes the e�ective resistance between
the corresponding nodes in N (G).

Let Hf
uv denote the expected cost (relative to cost function f) of a random

walk that starts at u and ends upon �rst reaching v, and let Cf
uv = Hf

uv +Hf
vu.

The surprising fact is that even in this general setting, commute costs are
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still determined by e�ective resistances, although the constant of proportion-

ality is no longer simply 2m.

Theorem 2.2. Let F =
P

(x;y)2V�V fxy=rxy. For any two vertices uv in G, the

commute cost Cf
uv = F �Ruv.

Proof. The proof is identical to that of Theorem 2.1, except that the current

injected into node x is fx =
P

y2V fxy=rxy for all x 2 V . 2

Theorem 2.1 is obviously a corollary when there are no self-loops and all

edges have resistance and cost 1 (F = 2m).

Aleliunas et al. (1979) showed that during a commute between u and v,
every directed edge is traversed the same expected number, � , of times. This
follows easily from Theorem 2.2 by setting all resistances to one, and all costs

to zero, except for an arbitrary directed edge, which is given cost one. Further,
we �nd that � = Ruv.

For non-unit resistances, Doyle & Snell (1984) have shown that the class

of random processes considered here is exactly the class of \reversible ergodic
Markov chains." Thus, with general resistances, but unit costs, Theorem 2.2

determines the number of steps in commutes in such chains. Our results below
can then be used to bound the cover time for reversible ergodic Markov chains,
a problem also considered by Broder & Karlin (1989).

We can generalize Theorem 2.2 to the expected cost of a trip around a
directed cycle (a commute being the special case where the cycle has length
two). Let D = (v1; v2; : : : ; vk+1 = v1) be a sequence of vertices in G. Let Cf

D

denote the expected cost of a random walk starting at v1 and stopping upon
returning to v1 after visiting v2; : : : ; vk in order.

Theorem 2.3. Let F be de�ned as in Theorem 2.2, and letRD =
Pk

i=1Rvi;vi+1
.

Then C
f
D = F �RD=2.

Proof. Let D0 = (v1 = vk+1; vk; vk�1; : : : ; v1). Now

C
f
D + C

f
D0

=
kX
i=1

Hf
vi;vi+1

+
1X

i=k

Hf
vi+1;vi

:

The right-hand side can be re-written as

kX
i=1

Cf
vi;vi+1

= F �
kX
i=1

Rvi;vi+1
= F �RD:
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Because the Markov chain corresponding to our walk is reversible, the prob-

ability of walking any cycle is equal to the probability of its reversal (Doyle

& Snell 1984, Exercise 3.1.3), and so the expected lengths of random walks

traversing D and D0 are equal. Applying the renewal theory result cited below

the proof of Theorem 2.1, we see that edge costs accrue at the equilibrium rate

during either walk, hence Cf
D = C

f
D0
, which yields the result. 2

Throughout the remainder of the paper, unless otherwise stated, graphs are

assumed to be unweighted, i.e., we will consider only the basic unit-resistance

version of the random walk problems.

We now turn to cover times. Known relationships between cover time and

hitting time allow us to frame a nearly tight relationship between cover time
and resistance.

Let R = maxu;v2V Ruv. Let N 0(G) be an edge-weighted complete graph
having a vertex u0 for every vertex u in V , and having an edge fu0; v0g of
weight Ruv for each pair of (not necessarily adjacent) vertices u; v in V . Let

R� be the weight of a minimum spanning tree in N 0(G). Let Cu denote the
expected length of a walk that starts at u and ends upon visiting every vertex
in G at least once. Let CG be the cover time of G, i.e., CG = maxuCu.

Theorem 2.4.

mR � CG � 2m �min(R(1 + lnn); R�)

Proof. The lower bound follows from Theorem 2.1, the fact that there exist

vertices u; v such that R = Ruv, and the fact that max(Huv; Hvu) � Cuv=2.
Matthews (1988) has shown that the cover time is at most Hhn, where H =
maxuvHuv, and hn is the nth harmonic number, hn =

Pn
i=1 1=i � 1 + lnn. The

�rst upper bound follows from the observation thatH � maxuv Cuv = 2mR. (A
similar upper bound with a somewhat larger constant can be obtained from a

simple argument like that used in Theorem 2.6 below.) The proof of the second

upper bound follows directly from the spanning-tree argument of Aleliunas et

al. (1979), which is a special case of Theorem 2.3. 2

Let Rspan be the minimum, over all spanning trees T of G, of the sum of

the e�ective resistances of T 's edges. Rspan is often easier to determine than
R�. However, since R� � Rspan, we also have the following corollary.

Corollary 2.5. CG � 2mRspan.

Note that the bounds in Theorem 2.4 cannot in general be improved by

more than constant factors; the upper bounds are tight for the complete graph
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and the chain, respectively, and the lower bound is also tight for the chain.

There are also graphs for which none of the bounds above is tight.

Let G be a family of labeled d-regular graphs on n vertices. Let U(G) denote
the length of the shortest universal traversal sequence for all the labeled graphs

in G. (See Aleliunas et al. 1979 or Borodin et al. 1992 for de�nitions.) Let R(G)
denote the maximum resistance between any pair of vertices in any graph in G.

Theorem 2.6. U(G) � (4 + o(1))mR(G) log2(njGj).

Proof. The proof is by a probabilistic argument similar to that in Aleliunas

et al. (1979). Given a labeled graph G 2 G; let v be a vertex of G, and

let t = b4mR(G)c + 1. Consider a random walk of length kt, divided into k

\epochs" of length t. Let Ai be the event that the walk fails to visit v during
the ith epoch, 1 � i � k. Then, for 1 � i � k, the probability of event Ai is less

than 1=2 by Theorem 2.1 and Markov's inequality, regardless of the vertex of
G at which the epoch began. If these events were independent, the probability
that the full walk would fail to visit v would be less than 2�k. Unfortunately,

the events are not independent, since obviously epoch i starts at the vertex
where epoch i � 1 ends. However, we will show by another method that the

2�k upper bound is still valid.
Let p(a; b) be the probability that a walk of length t starting at vertex a

ends at vertex b and fails to visit v. Note that for each �xed b 6= v, given that

epoch i� 1 ends at vertex b (and consequently epoch i starts at b) the events
\fails to visit v during epoch i � 1" and \fails to visit v during epoch i" are

independent, by the Markov property of random walks. So, assuming epoch

k � 1 starts on vertex a 6= v, we see that the walk fails to visit v during the
last two epochs with probability

Pr(Ak�1 ^ Ak j epoch k � 1 starts at vertex a 6= v)

=
X
b;c6=v

p(a; b)p(b; c)

=
X
b6=v

p(a; b)
X
c6=v

p(b; c)

<
X
b6=v

p(a; b)(1=2)

< (1=2)(1=2) = 1=4:

Proceeding similarly, we can show that the probability that v was not visited

during any of the k epochs is less than 2�k. Choosing k = dlog2(njGj)e, we
see that the probability of avoiding v is less than (njGj)�1. Summing this
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probability that v is not visited over all n choices of the vertex v and all jGj
choices of the graph G, the probability that the random walk (sequence) is

not universal is less than one. Thus there is a sequence of this length that is

universal for the class. 2

The techniques of Matthews (1988) can be used to give a di�erent proof of

Theorem 2.6.

We study one �nal random variable associated with a random walk on G:

let CE denote the expected number of steps to traverse every edge of G at least

once, taking the maximum of the expectations over all starting vertices. By a

traversal we mean that each edge can be traversed in either direction; a simple

extension of the method applies to the case when we require each edge to be

traversed in both directions.

Let G0 be the graph derived from G by inserting a new vertex in the middle
of each edge of G. More precisely, G0 is de�ned as follows: there is a vertex v

in G0 corresponding to each vertex v in G; call these real vertices. In addition,

there is a vertex uv in G0 corresponding to each edge fu; vg in G. Thus G0 has
m+ n vertices in all. The edges of G0 are as follows: for each edge fu; vg in G
there is a pair of edges fu; uvg and fv; uvg in G0.

We draw a correspondence between a walk on G traversing all its edges

and a certain walk on G0 visiting all its vertices. Consider a random walk on
G0. Each time we take a step out of a real vertex, say v, we proceed to a

vertex vw that is not real; from there, we proceed to another real vertex w

with probability 1=2, or return to v with probability 1=2. Call a pair of such
steps useful if we proceed to a new real vertex such as w, and wasted if we

return to v. Thus, each pair of steps is useful with probability 1=2.

We consider a modi�ed random walk on G, one in which at each step the
walk may choose to idle in its present vertex with probability 1=2; clearly in this
modi�ed walk the expected number of steps (including idle steps) to traverse

all the edges is 2CE. We now draw the obvious correspondence between this

modi�ed walk and walks on G0 starting at the same (real) vertex: each wasted

pair of steps in the walk on G0 corresponds to an idle step in the modi�ed

walk on G. A useful pair of steps v � vw � w in the walk on G0 corresponds
to the traversal of edge vw in G. Conditioned by the probability that a pair

of steps is useful, the probability distribution on the real vertex w we reach
is the uniform distribution on the neighbors of v in G. In a walk on G0, if

every non-real vertex is visited during a useful step pair, then every edge of

G has been traversed in the corresponding modi�ed walk on G. Thus every
sequence of idle and edge-traversal steps in the modi�ed walk on G has the

same probability measure and number of steps as the corresponding sequence
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of wasted and useful step pairs in the walk on G0. From this we can prove the

following result.

Theorem 2.7. CE is O((m+ n)(R + 1) logn):

Proof. The proof is very similar to that of Theorem 2.6. The maximum

resistance in G0 is O(R+ 1), and the maximum commute time in it is O((m+

n)(R+1)). For a �xed non-real vertex vw, the probability that it is not visited

in an epoch of length O((m+n)(R+1)) is a constant, and so is the probability

that it is not visited during a useful pair of steps. Thus, by calculations similar

to those in the proof of Theorem 2.6, the probability that a walk of length

k((m+ n)(R+ 1) logn) does not cover all edges declines exponentially with k.

2

Note that CE is within a factor of logn of CG, except perhaps when R =

o(1). Zuckerman (1991) shows that CE, like CG, is O(mn) for all graphs.

3. Dense Graphs

In this section we demonstrate for d-regular graphs the threshold in resistance,
and hence cover time, at d = bn=2c.

A simple fact we will use several times to help bound resistances is the
following.

Proposition 3.1. (Rayleigh's \Short/Cut" Principle, Doyle & Snell 1984,

Maxwell 1918.) Resistance is never raised by lowering the resistance on an

edge, e.g., by \shorting" two nodes together, and is never lowered by raising

the resistance on an edge, e.g., by \cutting" it. Similarly, resistance is never

lowered by \cutting" a node, leaving each incident edge attached to only one

of the two \halves" of the node.

As one very simple application, notice that in a graph with minimum degree
d, R � 1=d: short all nodes except the one of minimum degree. This lower

bound will prove useful later.

Another simple application is the following lemma.

Lemma 3.2. If G contains p edge-disjoint paths of length less than or equal to

l from s to t, then Rst � l=p.

Proof. Extract from G a network H as follows. Cut all edges not on one of
the p paths. Split nodes if necessary to make the paths vertex-disjoint. Note
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that the paths are edge-disjoint, so it is possible to do this without duplicating

edges. Raise the resistance of each edge in a path of length l0 < l to l=l0 Ohms.

Clearly Rst is exactly l=p in H. Hence, by the \short/cut" principle, Rst � l=p

in G. 2

When n is even and d = bn=2c � 1, there are d-regular graphs having

maximum resistance �(1). To see this, take two n=2-vertex cliques, remove

one edge (ai; bi) from clique i; 0 � i � 1, and join the two cliques with

edges (ai; b1�i); 0 � i � 1. By the \short/cut" principle above, the resistance

between any two vertices not in the same n=2-clique must be at least 1/2 Ohm

| shorting all the nodes in each clique leaves a two-node network with two 1

Ohm resistors in parallel. Thus, by Theorem 2.4, the cover time for this graph
is 
(n2); this bound is tight by the results of Kahn et al. (1989). A similar

construction works for odd n and d � bn=2c � 1.
When d = bn=2c, the situation changes radically. Intuitively, one can't add

another bn=2c edges to the graph above without making it so highly connected

that the resistance drops sharply. This is proved below.

Theorem 3.3. For any n-vertex graph G with minimum degree d � bn=2c,
R � 4=d = O(1=n). Hence CG = O(n logn).

Proof. The key point is to show that there are d edge-disjoint paths of length
at most 4 between any pair of vertices. The result then follows by application
of Lemma 3.2. Consider any two vertices s and t. Let k be 1 if fs; tg 2 E, else

k = 0. Let k0 be the number of vertices (6= s; t) mutually adjacent to both s

and t. Then there are at least j = d � k � k0 vertices which are adjacent to

s but not to t, and vice versa. Choose any j of each, and call them s1; : : : ; sj
and t1; : : : ; tj, respectively. Let k

00 be the size of a maximum matching between
the si's and the ti's, and wlog assume that f fsi; tig j 1 � i � k00g are the

matching edges. Because d � bn=2c, every pair of vertices in G either are

neighbors or have a common neighbor. In particular, si and ti have a common
neighbor mi, k

00 < i � j. Thus, we have d paths of length at most 4 from s to

t, namely k of length 1, k0 of length 2, k00 of length 3 (hs; si; ti; ti; 1 � i � k00),
and d � k � k0 � k00 of length 4 (hs; si; mi; ti; ti; k00 < i � j). Note that the

mi's are not necessarily distinct from each other or from the other vertices

mentioned. Despite this, it's not hard to see that the d paths are edge-disjoint.
Thus, there are d edge-disjoint paths of length at most 4 from s to t, hence

Rst � 4=d = O(1=n) by Lemma 3.2. 2

Theorem 3.3, when combined with Theorem 2.4, shows a sharp threshold in

cover time at minimum degree d = bn=2c. Speci�cally, the cover time may be
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(n2) when d = bn=2c� 1, but drops to O(n logn) when d = bn=2c. Applying
Theorem 2.6 we see that the length of universal traversal sequences for d-regular

graphs, for any d � bn=2c, is O(n3 logn). This bound was previously known

to hold only for cliques (d = n � 1). Interestingly, lower bounds for universal

traversal sequences (Borodin et al. 1992) are 
(n4) for linear d � n=3 � 2.

Thus, length of universal traversal sequences also declines somewhere between

d = n=3 � 2 and d = bn=2c; whether there is a sharp threshold at d = bn=2c
as in the case of cover time is unknown.

4. Resistance and Eigenvalues

Let G be a connected graph with vertices numbered 1; 2; : : : ; n, and a positive
real resistance rij associated with each edge. The conductance of edge fi; jg
is de�ned to be the reciprocal of its resistance: 1=rij. Let N (G) be the corre-
sponding electrical network, as de�ned immediately above Theorem 2.2. Let

d(i) be the sum of the conductances connected to node i, and let D be the
diagonal matrix whose ith diagonal entry is d(i). Let A be the matrix whose
ij-th entry is the conductance on the edge from i to j. De�ne K = D � A.

Since K is a real symmetric matrix, all its eigenvalues are real and it has a
set of n orthonormal eigenvectors. (See, for example, Franklin 1968.) It is
easy to verify that zero is an eigenvalue of K, and that the vector of all ones

is a corresponding eigenvector. By Gershgorin's theorem (Franklin 1968) zero
is also the smallest eigenvalue. Using the same theorem and the fact that G

is connected, it can be shown that zero is an eigenvalue of multiplicity one.
De�ne �(G) to be the second smallest eigenvalue of K.

It is worth pointing out that if G is a graph with unit resistances, then d(i)
is the degree of vertex i in G, A is the adjacency matrix of G, and K is the
Laplacian.

We will use the following inner product in this section.

Definition 4.1. Let x = [x1; x2; : : : ; xn] and y = [y1; y2; : : : ; yn] be vectors of
n components. The the inner product of x and y, denoted by (x;y), is given

by
Pn

i=1(xiyi). The length of x, denoted by kxk, is given by
q
(x;x).

Let �1 < �2 � �3 � : : : � �n be the eigenvalues of K, and let u1;u2; : : : ;un
be the corresponding orthonormal eigenvectors, i.e.,

(ui;uj) =

(
1 if i = j, and

0 otherwise.
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It is well known that all components of uj can be chosen to be real. By the

discussion above �1 = 0, and all components of u1 are equal to 1=
p
n. Also,

note that �(G) = �2.

Let U be the n � n unitary matrix whose jth column is uj, and let � be

the n� n diagonal matrix whose ith diagonal entry is �i. Then U
TU = I, and

K = U�UT .

Let uij be the i
th component of uj.

Theorem 4.2. If G is a connected graph on n vertices, then

1

n�(G)
� R � 2

�(G)
:

Proof. For any distinct pair of vertices s and t, let v = [v1; v2; : : : ; vn]
T

be the vector of voltages in N (G), relative to node t, when a unit current is
injected into node s and removed from node t. Clearly, vt = 0, and 0 � vk � R

for all k. Let c = es � et, where ek is an n component vector whose kth

component is one and all other components are zero. Then, as in the proof of
Theorem 2.1, Kv = c, and therefore

v = �u1 +
nX

k=2

�k

�k
uk; (4.6)

where � is
p
n times the average voltage in the network, and �k = (c;uk) =

usk � utk. Notice that �1 = 0 and
Pn

k=1 �
2
k = kUTck2 = kck2 = 2.

For the upper bound, choose s and t above so that R = Rst. Note that

R = vs = vs � vt, so by Equation 4.6, we get

R = vs � vt

=
nX

k=2

�k(usk � utk)

�k

=
nX

k=2

�2k
�k

� 1

�(G)

nX
k=2

�2k

=
2

�(G)
:

For the lower bound, proceed as above, this time choosing s and t so that
(c;u2) � 1=

p
n. Such a pair exists since some component of u2 must have
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magnitude at least 1=
p
n, and not all are of the same sign, since (u1;u2) = 0.

Note that 0 � vi � R, so kvk � R
p
n. But

kvk =
vuut�2 + nX

k=2

�
�k

�k

�2
� �2

�2
� 1

�2
p
n
:

This implies that R � 1=(n�(G)). 2

Theorem 2.4 immediately implies the following corollary.

Corollary 4.3. If G is a graph with unit resistances and unit costs, then

CG � (4 + o(1))m lnn=�(G).

We need the following lemma to compare the preceding theorem to some
previously known results. Let P be the transition matrix of the Markov chain

corresponding to the random walk on a graph G. Since P = AD�1 and
Q = D�

1
2AD�

1
2 = D�

1
2AD�1D

1
2 are similar matrices, they have the same

set of eigenvalues. Moreover, all these eigenvalues are real because Q is a real

symmetric matrix. Let �1 > �2 � : : : � �n be the eigenvalues of P (and Q).
For an ergodic Markov chain, it is well known that 1 = �1 > �2. Observe that

the �i's are arranged in the descending order whereas the �i's are arranged
in the ascending order. Since Q is symmetric, it has a set of orthonormal
eigenvectors w1;w2; : : : ;wn where D�

1
2AD�

1
2wi = �iwi.

Lemma 4.4. LetG be a connected graph with minimum and maximum degrees

given by dmin and dmax, respectively. Then, for all 1 � k � n,

(1� �k)dmin � �k � (1� �k)dmax:

Proof. Coppersmith devised the following elegant proof of this lemma.
If B is an n�n symmetric real matrix with real eigenvalues �1 � �2 � � � � �

�n, and corresponding orthonormal eigenvectors v1;v2; : : : ;vn, then Rayleigh's

principle (Franklin 1968) gives the following expressions for the eigenvalues:

�i = min
x?fvi+1;vi+2;:::;vng

xTBx

xTx
; (4.7)

= max
x?fv1;v2;:::;vi�1g

xTBx

xTx
: (4.8)

Note for later use that x ? fv1;v2; : : : ;vi�1g if and only if x is in the span of
fvi;vi+1; : : : ;vng.
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With the ui's as before, consider the set of n+ 1 vectors

fuk;uk+1; : : : ;un;D�
1
2w1;D

�
1
2w2; : : : ;D

�
1
2wkg:

Since there are more than n vectors in this set, they are linearly dependent,

i.e., there exist constants ak; ak+1; : : : ; an; b1; b2; : : : ; bk, not all zero, such that

nX
i=k

aiui = D�
1
2

kX
i=1

biwi: (4:9)

Let us denote the left hand side of this equation by z. If z = 0, then ak =

ak+1 = � � � = an = 0, and b1 = b2 = � � � = bk = 0 because each of the two sets of

vectors fuk;uk+1; : : : ;ung and fw1;w2; : : : ;wkg are independent. Therefore,

z 6= 0, and without loss of generality, we may assume that z is a unit vector.
Equation 4.7 implies that

�k � zT (D�A)z; and

�k � (D
1
2z)T (D�

1
2AD�

1
2 )(D

1
2z)

zTDz
:

The �rst of these two inequalities yields an upper bound on zTAz. Substituting
this upper bound in the second inequality, we arrive at �k � zTDz(1 � �k).
Finally, observe that zTDz � dmax, which establishes the upper bound on �k
asserted in the statement of the theorem.

The lower bound can be proved in a similar manner by starting with the set

of n + 1 vectors fwk;wk+1; : : : ;wn;D
1
2u1;D

1
2u2; � � � ;D 1

2ukg and using Equa-
tion 4.8 instead of Equation 4.7. 2

The following example will be useful in showing where the inequalities in

Theorem 4.2 are tight.

Definition 4.5. Let Zn = f0; 1; : : : ; n � 1g. For n1; n2; : : : ; nd � 2, the n1 �
n2 � � � � � nd d-dimensional (toroidal) mesh is an undirected graph G = (V;E)

where V = Zn1 � Zn2 � � � � � Znd, and any vertex (k1; k2; : : : ; kd) is connected

to vertices (k1; : : : ; ki�1; ki � 1 mod ni; ki+1; : : : ; kd), for each i = 1; 2; : : : d.

A k�k�� � ��k d�dimensional mesh will be called a (k; d) mesh for short.

Theorem 4.6. The multiset(
2

dX
i=1

cos

 
2�ki

ni

!
: (k1; k2; : : : ; kd) 2 Zn1 � Zn2 � � � � � Znd

)

contains all the eigenvalues (with correct multiplicity) of the adjacency matrix

of the n1 � n2 � � � � � nd d-dimensional mesh.
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Proof. Let !i be the nth
i root of unity and let n =

Qd
i=1 ni. Choose any

(k1; k2; : : : ; kd) 2 Zn1 � Zn2 � � � � � Znd. Let u be a vector of n components

whose component corresponding to vertex (j1; j2; : : : ; jd) is given by
Qd

i=1 !
kiji
i .

Check that u is an eigenvector of the adjacency matrix of the n1�n2�� � ��nd
mesh, with eigenvalue

Pd
i=1(!

ki
i + !�kii ). 2

Corollary 4.7. If G is the n1 � n2 � � � � � nd d-dimensional mesh, then

�(G) = 2(1� cos 2�
ni
) � (2�

ni
)2, where ni is the largest of the nj's.

We now discuss some consequences of Theorem 4.2. The lower bound on

resistance given by Theorem 4.2 is tight to within a constant factor for the

n-node cycle (the (n; 1)-mesh). Observe that for this graph R = �(n), and
from Corollary 4.7 �(n-cycle) � (2�

n
)2. The upper bound on resistance given

by Theorem 4.2 is exactly tight for the n-node complete graph. Observe that
for this graph R = 2=n, and �(Kn) = n. In view of the last two remarks, it
is not possible to improve the inequalities in Theorem 4.2, except perhaps the

constant factor in the lower bound, for all graphs. On the other hand, both the
inequalities in Theorem 4.2 are weak for (n1=d; d)-meshes, for any d � 2. The
maximum resistance in multidimensional meshes can be determined by other

techniques. This is the subject of Section 6.
Theorem 4.2 also improves a bound due to Landau & Odlyzko (1981) (and

Corollary 17 of Broder & Karlin 1989). Landau & Odlyzko proved that (1 �
�2) � 1=((dmax + 1)�n) where dmax and � are the maximum degree and the
diameter of G, respectively. Using the resistance bound from Theorem 4.2, and

Lemma 4.4, we get (1 � �2) � 1=(dmaxRn). This is an improvement because
� � R, and may be a large improvement. For example, for Kn, � = 1 and

R = 2
n
.

Some upper bounds on cover times due to Broder & Karlin (1989) are
implied as a consequence of Theorem 4.2. For example, Corollary 4.3 and

Lemma 4.4 imply that CG � ((4+o(1))m lnn)=(dmin(1��2)). For most graphs,

this is stronger than Corollary 8 of Broder & Karlin (1989), which states that
CG � (1+o(1))n2 lnn=(1��2). For example, note that 4m=dmin < n2 whenever

dmin � 2 or dmax < n=2.
Finally, Theorem 4.2 also implies that the resistance between any pair of

vertices in any family of bounded degree expander graphs (see the next section,

or Alon 1986) is bounded by O(1).
In the rest of this paper we study resistance in two graph families: (i)

families of expanders whose maximum degree may be a function of n; and (ii)
multidimensional meshes. Neither the results in Broder & Karlin (1989) nor

Theorem 4.2 yield good bounds on the cover time of these graphs.
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5. Expanders

We will use the following de�nition of expanders, also used by Broder & Karlin
(1989)

Definition 5.1. An (n; d; �)-expander is a graph G = (V;E) on n vertices,

of maximal degree d, such that every subset X � V satisfying jXj � n=2 has

jN(X)�Xj � � � jXj. Recall N(X) = fv j fu; vg 2 E for some u 2 Xg.

Note that � � 1, and � > 0 if G is connected.

There is some inconsistency in the literature concerning the de�nition of

\expanders." For instance, Alon (1986) calls graphs with the above property
\magni�ers," reserving the term \expander" for bipartite graphs with a similar

property. He shows very close connections between the two notions, so there
seems to be no essential loss of generality in choosing the above de�nition,

which is more convenient for our purposes. Further, Rubinfeld (1990) has
shown a result analogous to our Theorem 5.2 for graphs which are \expanders"
according to the de�nition of Peleg & Upfal (1989), giving further evidence

that the basic result of this section is reasonably insensitive to variations in the
de�nition.

Alon (1986) has shown that if G is an (n; d; �)-expander, then �(G) �
�2=(4+2�2), hence by Theorem 4.2, R � 4(2+�2)=�2. The main result of this
section sharpens this estimate, reducing it by a factor of order d. For large d,

this considerably improves the bounds of Broder & Karlin (1989) on the cover
time of these graphs.

Theorem 5.2. A connected (n; d0; �)-expander G, with minimum degree d,

has resistance at most 24=(�2(d+ 1)).

Proof. Let s; t be two vertices in G such that Rs;t = R. In the electrical net-

workN (G), connect a unit voltage source between s and t, with t grounded. We
will show by contradiction that the current 
ow from s to t in N (G) is at least

�2(d+ 1)=(8(1 + �=2)(1 + �)), implying R � (8(1 + �=2)(1 + �))=(�2(d+ 1)),

which is at most 24=(�2(d+ 1)), since � � 1.

The basic idea is that any set T of \low voltage" nodes has a relatively large

set U of neighbors, since G is an expander. Further, the bulk of the nodes in U
must be at voltages \near" those in T , for otherwise there would be a \large"

current 
ow from U to T . Repeating this argument inductively, we show that,

unless the current is \large", more than half the nodes have voltage less than
1/2; a similar argument for sets S of \high voltage" nodes shows that more
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than half have voltage greater than 1/2, a contradiction. Thus the current

must be \large". These ideas are quanti�ed and made precise below.

Let

c =
1

2

 
1X
i=0

(1 + �=2)�i
!�1

=
�

4(1 + �=2)

vk = c
kX
i=0

(1 + �=2)�i; for all k � 0;

and de�ne

Tk = fa j node a of N (G) has voltage < vkg
Sk = fa j node a of N (G) has voltage > 1� vkg
tk = jTkj
sk = jSkj:

Note that 0 < v0 < v1 < � � � < 1=2.

First we make the following claim.

Claim 5.3. t0 � (d+ 1)(1 + �=2)=(1 + �), and for all k � 1, if tk�1 � n=2
then tk � (1 + �=2)tk�1, and so tk � (1 + �=2)k+1(d+ 1)=(1 + �).

The claim is proved by induction on k.

Basis (k = 0): Suppose t0 < (d+ 1)(1 + �=2)=(1 + �). Then at least

(d� (t0 � 1)) of t's neighbors are at voltage at least v0, hence the current 
ow
into t is at least

(d� (t0 � 1))v0 >

 
d�

 
(d+ 1)

(1 + �=2)

(1 + �)
� 1

!!
�

4(1 + �=2)

= (d+ 1)

 
�

2(1 + �)

!
�

4(1 + �=2)

=
�2(d+ 1)

8(1 + �=2)(1 + �)
;

contradicting the assumption that the current is less than the later quantity.

Induction (k � 1, and tk�1 � n=2): If tk�1 � n=2, then by the fact that G
is an expander, U = N(Tk�1)�Tk�1 has size at least �tk�1. If Tk is small, then

more than half of the nodes of U are not in Tk, hence at voltage at least vk. In
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this case, the current 
ow from U to Tk�1 would be too large. More precisely,

if tk < (1 + �=2)tk�1, then the current will be greater than

�

2
tk�1(vk � vk�1) � �

2

 
(d+ 1)

(1 + �=2)k

(1 + �)

!
(c(1 + �=2)�k)

=
�2(d+ 1)

8(1 + �=2)(1 + �)

again contradicting the assumption that the current is less than the later quan-

tity. Thus, tk � (1 + �=2)tk�1. This completes the proof of the claim.

As a consequence of the claim, there is a k � 0 such that tk > n=2, i.e., more

than half the nodes have voltage strictly less than 1/2 volt. By a similar argu-
ment about the high-voltage sets Si, there is a k

0 such that sk0 > n=2, i.e., more
than half the nodes also have voltage strictly greater than 1/2, an impossibility.

Thus, the current from s to t must be at least �2(d+ 1)=(8(1 + �=2)(1 + �)).

2

It is unknown whether the quadratic dependence on 1=� is necessary.

We will brie
y sketch an alternative proof of Theorem 5.2. It is in some
ways more complex than the foregoing, but still intuitive, and also seems con-
siderably more general. In fact, we originally proved both the dense graph

result and a somewhat weaker version of the expander result (Theorems 3.3
and 5.2) using the approach outlined below, before �nding the more direct
proofs given above. The technique is also similar to the one we use in the mesh

proofs in Section 6. Peter Doyle (personal communication, 1988) contributed
an important re�nement to the technique.

Let G = (V;E); s; t be as above. Build an auxiliary layered graph H, with
2l + 1 layers (l de�ned below), each layer consisting of a copy of V , and with
an edge between vertices u and v in adjacent layers if and only if fu; vg is an

edge in G. Delete all vertices not on a shortest path (length 2l) from s0, the

copy of s in the topmost layer, to t0, the copy of t in the bottommost layer.
We will �rst estimate the resistance between s0 and t0 in an electrical network

derived from H.

Intuitively, we hope that when a voltage is applied between s0 and t0 the

layers of H will be good approximations to the equipotential surfaces, and in

fact we can adjust resistances, using the \cut" principle, so that this becomes
true.

Edges are given capacities, exponentially decreasing towards the middle

layer. Speci�cally, all edges between layers k and k + 1, (counting from the
nearer of s0 and t0), are given capacity ck = (1+�)�k. The expansion property



22 Chandra, et al.

of G prevents H from having a small s0-t0 cut, since edge capacities are decreased

at the same rate as expansion increases the number of relevant edges. More

precisely, let S (T ) be the set of vertices connected to s0 (t0) after the cut is

made. If the cut is small, then not enough edges have been cut to prevent

some expansion within S from one layer to the next. Choose l large enough

so that S contains more than half of the middle layer. By the same argument

T contains over half of the middle layer, too, a contradiction. Hence by the

max-
ow/min-cut theorem there is a large (�(d)) s0-t0 
ow D.

Next, convert the 
ow to an electrical current 
ow by constructing an elec-

trical network N (H) from H by assigning each edge of capacity ck carrying 
ow

f � ck a resistance (ck=f) � (ck)�1=2. Then the 
ow in H is exactly the electri-

cal current 
ow in N (H), and there is a voltage drop of exactly c
1=2
k between

layers k and k + 1. Thus, the resistance between s0 and t0 in N (H) is exactly

2(
Pl

k=0 c
1=2
k )=D = O(1=(�d)).

Finally, short together all copies of each vertex in G. The result is essentially
a subgraph of G, except with up to 2l parallel edges for each edge of G. Since

ck=f � 1 above, it is easily veri�ed that the e�ective resistance of any such

set of parallel edges is at least 1=(2
Pl

k=0 c
1=2
k ) = 
(�) . Thus, by the \short"

principle, Rst in G is bounded above by Rs0t0=� inN (H), which gives the result.

Rubinfeld's proof (1990) uses yet a third technique: she applies a result of
Friedman & Pippenger (1987) to �nd large trees in G rooted at s and t, uses

the max 
ow/min cut theorem to �nd many short paths joining the leaves of
the two trees, and �nally uses the short/cut principle to bound the resistance.

6. Meshes

In this section we consider the resistance of regular meshes. Recall, from Sec-

tion 4, that a (k; d) mesh is a d-dimensional (toroidal) mesh of side k, hence
n = kd vertices.

Resistance of in�nite meshes has been previously considered. In particular,

it is the focus of a portion of Doyle and Snell's monograph (1984). They show
that the resistance from the origin to in�nity in an in�nite two-dimensional

mesh is in�nite, but in a three (or higher) dimensional mesh resistance is

bounded. Their motivation for this question was to obtain an elementary proof
of P�olya's beautiful theorem that random walks in two dimensional meshes are

recurrent while those in three or higher dimensions are transient. Resistance

of the in�nite mesh settles this question, since, as Doyle and Snell also show,
the resistance to in�nity determines the probability of escape to in�nity.
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Resistance of �nite meshes seems not to have been considered before. We

give a direct proof, although the results below largely follow from Theorems 2.1

and 2.4 and known results on hitting and cover times for meshes (c.f. Aldous

1983, 1993, Cox 1989, and G�obel & Jagers 1974, for example). Our proof

technique, which is similar to (Doyle & Snell 1984, Section 8.7), is of interest,

and, unlike the more \classical" analysis of hitting time for meshes, can likely

be extended to less symmetrical graphs which remain \mesh-like."

It is easy to see that a (k; 1) mesh has resistance n=4�O(1=n). For higher

dimensions we have:

Theorem 6.1. The (k; d) mesh with n = kd nodes has resistance

RG =

(
�(logn) for d = 2,
�(1

d
) for d � 3:

Before outlining the proof of this theorem, we need to develop some ma-
chinery from circuit theory. The following triangle inequality for resistances

proves useful.

Proposition 6.2. For any three vertices u; v; w in G,

Ruv � Ruw +Rwv:

Definition 6.3. Given an electrical network (V;E; r), with resistance r(e) for

each edge e, a 
ow c is a function from V �V to the reals, having the property

that c(u; v) = 0 unless fu; vg 2 E, and c is antisymmetric, i.e., c(u; v) =
�c(v; u). The net 
ow out of a node will be denoted c(u) =

P
v2V c(u; v), and

the 
ow along an edge e = fu; vg is c(e) = jc(u; v)j. A source (respectively,

sink) is a node u with c(u) > 0 (respectively, c(u) < 0). Given two 
ows c1, c2,

we can obtain a new 
ow c = c1 + c2 given by c(u; v) = c1(u; v) + c2(u; v). The

power P (c) in a 
ow is P (c) =
P

e2E r(e)c
2(e). A 
ow is a current 
ow if it

satis�es Kircho�'s voltage law, i.e., for any directed cycle u0; u1; : : : ; uk�1; u0,Pk�1
i=0 c(ui; ui+1modk) � r(ui; ui+1modk) = 0.

Proposition 6.4. (The Minimum Power Principle, Synge 1951; also known

as Thomson's Principle, Thomson & Tait 1879, Doyle & Snell 1984, Section

3.5.) For any electrical network (V;E; r) and 
ow c with only one source u,

one sink v, and c(u) = �c(v) = 1, we have Ru;v � P (c), with equality when

the 
ow is a current 
ow.
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Also, for a 
ow c with one source u and more than one sink, Ru;v � P (c)

holds for all sinks v, provided that c(v) = �1. This is easy to see by noting that
the 
ow to all sinks except v can be returned to the source without increasing

the 
ow through any edge.

Lemma 6.5. For any two 
ows c1, c2 in an electrical network,

P (c1 + c2) � 2(P (c1) + P (c2)):

Proof. Straightforward. 2

Proof (of Theorem 6.1). To prove the upper bound, construct a 
ow

c0 in a (k + 1; d) mesh as follows. For any node u = (k1; : : : ; kd), ki < k + 1,
let its length from the origin be de�ned as l(u) =

P
ki. For any node v =

(k1; k2; : : : ; kd), and u = (k1; k2; : : : ; ki � 1; : : : ; kd), with ki � 1, l = l(v) � k,

we let c0(u; v) = �c0(v; u) = ki=(l
�
l+d�1

d�1

�
). The 
ow in all other edges is

zero. The 
ow c0 has the following properties: (a) the only source is the origin

u0 = (0; 0; : : : ; 0) with c0(u0) = 1; (b) the sinks are nodes u at length k from

the origin, each with c0(u) = �1=
�
k+d�1

d�1

�
; and (c) P (c0) = O(logn), if d = 2,

and P (c0) = O(1=d), if d � 3. To verify the conditions (a), (b), note that

for a node u = (k1; : : : kd) with l = l(u) < k, the sum of the 
ows from u

to all adjacent nodes at length l + 1 is
P

i(ki + 1)=((l + 1)
�
l+d

d�1

�
), which is

(l + d)=((l + 1)
�
l+d

d�1

�
) = 1=

�
l+d�1

d�1

�
. Likewise, if 0 < l = l(u) � k, the sum of


ows to u from all adjacent nodes at length l�1 isPi ki=(l
�
l+d�1
d�1

�
) = 1=

�
l+d�1
d�1

�
.

To verify (c), consider �rst the case d = 2. There are O(l) edges between nodes
at length l and l + 1, each carrying 
ow O(1=l), for a cumulative contribution

of O(1=l) to the power, and hence P (c0) = O(logn). For the case d � 3, the

d
�
l+d�1

d�1

�
edges between nodes at length l and l + 1 carry 
ow no more than

1=
�
l+d

d�1

�
each, for a total power of O(1=d), the dominant contribution being the

edges where l = 0.

To prove the upper bound in the theorem, it su�ces to prove the resistance

bound in a (k; d) mesh from the origin u0 to an arbitrary vertex u = (l1; : : : ; ld).

We construct three 
ows c1, c2, c3, each with power O(1=d) (O(logn), if d = 2),

such that the sum of the three 
ows has a single source u0, c(u0) = 1, and a
single sink u. The result then follows from Lemmas 6.4 and 6.5.

Flow c1 is obtained from c0 by identifying vertices of the form

(0; 0; : : : ; 0; k; 0; : : : ; 0)
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in the (k + 1; d) mesh with u0 in the (k; d) mesh: for 0 � ki < k,

c1((k1; : : : ; kd); (k1; k2; : : : ; (ki + 1) mod k; : : : ; kd)) =

c0((k1; : : : ; kd); (k1; k2; : : : ; (ki + 1); : : : ; kd)):

Since c0 has nonzero 
ow only incident on nodes at length no more than k,

P (c1) = P (c0). Flow c1 has a single source at the origin u0 with c1(u0) =

1 � d=
�
k+d�1

d�1

�
. Flow c2 is de�ned to be the reverse of c1, except the origin is

translated to vertex u: c2(v; w) = c1(w + u; v + u) where + is understood to

be componentwise addition mod k. Clearly P (c2) = P (c1). Finally, 
ow c3
connects up c1 and c2 as follows. Let P = (u0; u1; : : : ; ur = u) be the path

from the origin u0 to u where ui is at length i, and if (ui; ui+1) is an edge

along dimension d0 then (ui+1; ui+2) is an edge along dimension � d0. The only
positive 
ows in c3 are as follows. For any node v at length k there is a 
ow of
1=
�
k+d�1

d�1

�
along path P + v = (u0 + v; : : : ; ur + v), i.e., c3(v + ui; v + ui+1) =

1=
�
k+d�1

d�1

�
, and a 
ow of d=

�
k+d�1

d�1

�
along P + u0 = P . Note that all the above

paths P +v; P +u0 are edge disjoint. Since r < kd and the number of nodes at

length k is no more than
�
k+d�1

d�1

�
, we have P (c3) � kd=

�
k+d�1

d�1

�
+kd3=

�
k+d�1

d�1

�2
=

O(1=d) for k; d � 3 (and is O(1) for d = 2). Finally, it can be checked that


ow c = c1 + c2 + c3 indeed has a single source u0 with c(u0) = 1 and a single
sink at u. This completes the proof of the upper bound.

For the lower bound it is immediate that the resistance between the origin

and any other vertex is at least 1=2d (by shorting all other vertices to one
another). For d = 2, the resistance between the origin and (k=2; k=2) is seen to

be 
(logn), by shorting, for each l � 0, vertices at length l from the origin. 2

Theorem 6.1 implies the following upper bounds on the cover times of
d�dimensional meshes: O(n log2 n) for d = 2, and O(n logn) for d > 2.

These upper bounds are tight due to matching lower bounds of Zuckerman
(1992). The upper bounds on cover time were known previously for some cases:

e.g., G�obel & Jagers (1974) for d = log2 n (the hypercube), and Aldous (1983,
1993), and Cox (1989) for general d. An advantage of our proofs is that they

are fairly robust under the insertion or deletion of edges since the resistance of a

mesh is also robust under these operations. For example, from the proof of The-
orem 6.1, it can be seen that the resistance Ru0;u between two arbitrary nodes

is not much a�ected by the deletion of several edges, provided they are not too
close to u0 or to u | speci�cally, an edge whose endpoints are at distance at

least l from both u0 and u, carries a 
ow of no more than 2=
�
l+d

d�1

�
+ d=

�
k+d�1

d�1

�
,

and edges carrying total 
ow of (1� c) may be deleted without increasing the

upper bound by more than a factor of 1=c.



26 Chandra, et al.

From Theorems 6.1, 2.4 and 2.6, we have:

Corollary 6.6. Minimal length universal traversal sequences for the family

of labeled graphs de�ned by an n vertex mesh under all labelings are given as

follows:

1. If G is a two dimensional mesh, then U(G) = O(n2 logn).

2. If G is a d-dimensional mesh, 3 � d � log2 n, then U(G) = O(n2d log d).

3. If G is a hypercube, then U(G) = O(n2 logn log logn).

Note that we do not have matching lower bounds on universal traversal

sequence lengths for meshes, so it remains possible that these lengths are the
same for two- and three-dimensional meshes, even though the resistances di�er.

We close with a class of graphs for which we do have a tight bound on the

length of universal traversal sequences covering all members of the class under
all labelings. This is the �rst known class with this property. In fact, we show

several such classes.
Fix d � 3. Let H be any family of d-regular labeled graphs such that (1)

H contains 2O(n) members with n vertices, and (2) each member of H has a

set of 
(dn) edges, called switchable edges, whose removal leaves a (connected)
graph with R = O(1). Let G be the set of all graphs formed in the following

way from some H 2 H and some non-empty subset X of H's switchable edges:
join two copies H1 and H2 of H via the criss-crossed edges dictated by X, i.e.,
for each edge (u; v) in X, delete the corresponding edges (u1; v1) and (u2; v2)

from H1 and H2, respectively, and replace them with the criss-crossed edges
(u1; v2) and (u2; v1).

Families H with the properties required for this construction exist. For

example, let A be a (k; d0)-mesh, d0 � 3, and let B be an arbitrary n0 =
kd

0

vertex d0-regular graph. Connect A to B by an arbitrary matching. The

resulting graph H is an n-vertex, d-regular graph, (n = 2n0; d = d0+1) with the

desired properties (Theorem 6.1), when the switchable edges are taken to be
the edges of B. Alternatively, A could be a d0-regular expander (Theorem 5.2).

Theorem 6.7. Let G be any family of labeled, d-regular graphs constructed

as described above. The shortest universal sequences for G have length �(n2).

Proof. By the Short/Cut Principle, each of the 2O(n) n-vertex members of G
has resistance O(1), hence by Theorem 2.6, G has universal traversal sequences

of length O(n2). From techniques of Borodin et al. (1992), G can be shown to

have UTS length 
(n2). 2
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