
1

The Open Scripting Architecture:
Automating, Integrating, and Customizing Applications

Unpublished manuscript, 1993

Research Topic areas: Language design and implementation, tools and
environments, components and frameworks, concurrent and distributed systems,
databases and persistence.

Abstract
The Open Scripting Architecture combines aspects of object-oriented

programming, distributed computation, database queries, and dynamic languages
into a powerful and practical system for automation, integration, and customization
of applications and system services. Applications are integrated together with
distributed messaging. The messages operate upon user-level application objects,
like windows and spreadsheet cells that are identified by queries over properties and
document containment structure. A general-purpose scripting language automates
message sending and handling, and supports persistence and mobile objects.
Applications call on scripting services to customize the behavior of their objects
through a generic script management API.

1 Introduction
The Open Scripting Architecture (OSA) is a comprehensive infrastructure

for automating complex or repetitive tasks, integrating distributed applications and
system services, and customizing application behavior. These end-user benefits are
supported by a synergistic combination of technologies: distributed messaging and
referencing of application objects, object-oriented scripting languages, and script
development and management tools. Object-oriented concepts are used throughout
the architecture, in the scripting language, the system, and the applications.

The OSA is unique in several respects. First, it decouples the clients of
scripting services (applications) from the providers of those services (language
processors like AppleScript™). This decoupling allows for uniform scriptability
across all applications in the same way a graphics toolbox provides a uniform GUI.
Furthermore, it allows scripts from different language processors to be mixed within
applications. Second, it treats familiar applications as libraries of functionality that
users can draw upon to create custom solutions. Third, its object-referencing model
allows scripts to interact with live applications, accessing and manipulating their
internal objects and invoking their methods. This differs from “shell” languages that
can launch, kill and redirect I/O to and from processes, but cannot otherwise interact
with their internals.

William R. Cook
Apple Computer

Warren H. Harris
Apple Computer

2

The OSA currently runs on the Macintosh, but is being ported to other
platforms as part of the OpenDoc effort. Over 80 applications, from many major
vendors, support the OSA.

In this paper we describe the OSA architecture. Section 2 presents a
motivating example illustrating the degree to which application automation,
integration and customization can be achieved. Section 3 describes the OSA inter-
application referencing and object model. Section 4 discusses scripting under OSA,
and presents several unique features of the AppleScript language that harmonize
with the OSA architecture. Section 5 defines the OSA API, by which applications
interact with scripting services. Finally, Section 6 relates the OSA to similar
systems.

2 Motivation
A motivating example of the power of OSA is the automation of a catalog

publishing system. An office-products company keeps all its product information in
a FileMaker Pro™ database. The database includes descriptions, prices, special
offer information, and a product code. The product code identifies a picture of the
product in a Kudos™ image database. The final catalog is a QuarkXPress™
document that is ready for printing. Previously, the catalog was produced manually.
This task took a team of twenty up to a month to complete a single catalog.

Using the OSA, a script automates the entire process. The script reads the
price and descriptive text from the FileMaker Pro database and inserts it into
appropriate QuarkXPress fields. The script applies special formatting: it deletes the
decimal point in the prices and superscripts the cents (e.g. 3499). To make the text fit
precisely in the width of the enclosing box, the script computes a fractional
expansion factor for the text by dividing the width of the box by the width the text
(this task was previously done with a calculator). It adjusts colors and sets the first
line of the description in boldface type. Finally, it adds special markers like “Buy 2
get 1 free” and “Sale price $1799” where specified by the database.

Once automated, one person produces the entire catalog in under a day, a
tiny fraction of the time for the manual process. It also reduces errors during
copying and formatting. Of course, creating and maintaining the scripts takes time,
but it is far less than the production of a single catalog.

A custom front-end to the catalog production system is created using an
interface builder. The consultant draws the interface elements (buttons, fields, etc.)
and then attaches scripts to them, which drive the entire process. On field specifies
the percentage sale price, which the script uses to compute sale prices. The custom
front-end along with its associated scripts that drive the process can be saved as a
mini-application—a script stored in a document that, when double-clicked, initiates
the catalog publishing process.

The automation is achieved through a single common scripting language,
reducing the need to learn application-specific languages. Integration allows one to
move away from the “kitchen-sink” application model. Instead, smaller applications
work together, and users combine the best features of each application. Other

3

services like spell checking need not be provided with each application, but drawn
on from the distributed environment and applied uniformly everywhere they are
needed.

3 Distributed Messaging and References
The foundation of the OSA is a mechanism for distributed messaging and

referencing of application data, called Apple events and Apple event objects [2].
By supporting messages and references, an application makes its

functionality and objects visible to clients. Once it supports Apple events, use of the
application can be automated by sending it a series of events. Given multiple
applications supporting Apple events, integrated solutions can be created by sending
events to coordinate processing and exchange data.

An application the supports Apple events has handlers for each event type
and a mechanism for decoding references [3]. If an application does not handle an
event, then it may be handled by a system event handler. System event handlers are
installed on the system via “Scripting Additions” that are loaded when the system
starts up.

3.1 Descriptor Format for Data and Events
All data and events to be transported between applications are stored in

descriptors, a standard data format. Descriptors use a self-describing, structured,
flattened data format. The format is designed to be easily transported or stored.

Apple event descriptors are a pair of a type code and a data handle, allowing
them to store arbitrary data. Descriptors can either contain primitive data, a list of
descriptors, or a record of descriptors (record elements are named by unique IDs).
Primitive data types include numbers (small and large integers and floats), pictures,
styled and unstyled text, process IDs, file references, aliases, etc.

An Apple event is a special kind of record consisting of an event code (event
class and event id), a direct parameter, and a record of parameters with keywords
IDs and values. All of the IDs in an event is stored in four-byte enumeration code.
Events may be sent synchronously or asynchronously.

3.2 The Object Model
The Apple event object model specifies the structure of objects in an

application or document. The objects being specified are user-level objects like
documents, words, text styled, graphic objects, colors, etc. They are not necessarily
related to lower-level implementation objects within the application.

The basic structure of application data is specified by a simple combination
of elements and properties, as illustrated in Figure 1. Elements are a set of objects,
like windows in an application or words on a page, that may be either empty or have
many instances. Elements are specified by a class, which defines which kind of
objects are to be located. A given object may have many classes of elements, and
classes may have subclasses. The containment structure is not necessarily strict, in
that a document object has both page and paragraph elements, neither of which

4

strictly contains the other. Properties, on the other hand are labels for unique
aspects, like the style of a word, or the name of a window, which must always exist.
They correspond to instance variables defined by classes.

Document

Paragraph

Word

Character

Size Style

Size Style

Size Style

Name

Property

Element

A

B

A contains B

Key:
Root

Figure 1: An example object model containment hierarchy.

3.3 Object Specifiers
An object specifier is a reference or query that specifies one or more objects

in an application. Object specifiers locate objects in an application by their position
or properties, relative to a container. There are four basic forms of object specifiers:

Property: Property object specifiers specify the name of a property to be
accessed relative to a container. The name may either be an application-
defined code, or a user-defined string.

Index: Index object specifiers specify a particular element of a given class. The
index is either an integer or the special value middle or any. If negative,
the element is taken relative to the end of the list.

Range: Range object specifiers specify a sequence of elements between two
indices. The two endpoints are also object specifiers.

Test: Test object specifiers specify a set of elements of a given class that satisfy
a Boolean predicate. These correspond to queries against the object
containment hierarchy.

Object specifiers are represented in Apple events as nested record structures.
Each object specifier form is a record with fields for the class, property name,
index, and container. The container is either another object specifier record or null,
representing the default or root container of the application.

5

3.4 Standards
Standard events and reference structures are defined in the Apple Event

Registry. The Registry is divided into suites that apply to domains of application.
Suites contain specifications for classes and their properties, and events. Currently
there are suites for core operations, text manipulation, databases, graphics,
collaboration, word service (spell checking, etc.). The Registry is effectively the
scripter’s API to applications whose routines are used as libraries.

The design and specification of the Registry was crucial to the success of the
OSA in that, when correctly implemented by applications, it enables a consistent
scripting interface between similar applications. In this way the Registry is
analogous to the Macintosh Human Interface Guidelines. For example, the same
script may be useful for manipulating text in a word processor’s paragraphs, and a
for fields in a database. An application framework which ensures a higher degree of
consistency than is provided by the specification is much needed. Such a framework
would also make the task of building scriptable applications easier.

3.5 Recording User Actions
In addition to being controlled by external events, applications can record

events that correspond to user interactions. This allows automatic generation of
scripts for repeated playback of what would otherwise be repetitive tasks. Recorded
scripts can be subsequently generalized by users for more flexibility. This approach
to scripting alleviates the “staring at a blank page” syndrome that can be so
crippling to new scripters. Recording is also useful for learning the terminology of
basic operations of an application. Recording connects the iconic and “active”
levels of understanding directly to the higher symbolic layer.

Recording with high-level Apple events is very different from traditional
systems that record low-level user-interface input events. Low-level recording is
inherently tied to positions on the screen or in a window. But these positions are
subject to whimsical change, making the recorded script useless. Apple events
depend upon the contents of the document and its object model, making the
recorded events more generic and robust. Of course, the document structure may
change enough to obsolete recorded Apple events, but this is less likely.

One of the inherent difficulties of recording is the ambiguity of object
specification. As the language of events becomes more rich, there may be many
ways to describe a given user action, since the intent of the action is not known. For
example, when closing a window named “Example”, is the user closing the front
window, or the window specifically named “Example”? Depending upon the
context in which the events are played back, one or the other kind of event might be
better. If the events are played back in an interactive context, then references to the
front window or current selection are appropriate. But if the events are played back
in a batch mode, then more explicit references are better. To avoid recording modes,
the OSA guidelines favor recording for interactive contexts.

6

4 Scripting in OSA
Scripting is the term we use for programming in the distributed messaging

environment. Scripting allows routine or complex tasks to be automated.
The term “scripting” originates from HyperCard™, and was intended to

convey the idea that this particular sort of programming was easy for end-users,
consultants and in-house developers—people who do not otherwise consider
themselves programmers.

However, scripting connotes more than just programming. It is
programming directly in terms of the applications that are to be controlled—at a
level that is sufficiently abstracted from the machine, the maintenance of common
data structures, and the details of memory management. Furthermore, it is “safe” in
the sense that incorrect constructions will not crash the computer or operating
environment. This safe and direct nature of scripting enables rapid and productive
creation of “custom solutions” by a larger number of people.

Applications play a key role in OSA, serving as high-level libraries of
operations and data structures. Because of the familiarity users already have with
the capabilities of particular applications via their visual interface, automation of
tasks involving the application can be readily accomplished by directly mapping
these concepts into the verbs and nouns that the application provides to the scripting
interface.

4.1 The AppleScript Language
The AppleScript language [1] provides the basic “computer science

boilerplate” that works in harmony with applications’ library-like functionality. This
includes common data types like lists, vectors, records and numbers and simple
primitive operations on them, as well as common control constructs for iteration,
conditionals, functional abstraction, exception handling. A simple yet flexible
object system with persistence manifests itself as first-class “script objects” in the
language. Script objects facilitate the customization of applications, and enable
“remote programming.”

4.1.1 Language-level Application Terminology Integration
The AppleScript parser integrates the terminology of applications with its

built-in language constructs. This means that when targeting Microsoft Excel™ for
example, spreadsheet terms are known by the parser—nouns like “cell” and
“formula,” and verbs like “recalculate.” This allows Apple events messages to be
constructed that correspond to commands and object specifiers to be constructed
which correspond to references. When a script targets an application, enough
information is stored in the script to find the application if the script or application
are moved to another machine or renamed.

Parser-level integration eliminates the need for libraries of “glue” routines
that construct and send events for each application. The AppleScript tell statement
causes the parser to read the terminology resource of an application when it can be
derived from the target of the tell statement at parse time. This causes identifiers to

7

be created for the message, class and enumerated constant names which are scoped
within the body of the tell. For example:

tell application "Microsoft Excel"
 quit saving yes
end tell
Here, the quit message is known to correspond to the particular event code

that Excel accepts, and the yes constant is translated into a particular enumeration
code. Furthermore, whenever a message name is encountered, the parser knows to
look for particular argument keywords (in this case saving) and map them to their
corresponding codes, while flagging other keywords as illegal for that message.

4.1.2 References
Certain application terms, particularly class names, allow AppleScript to

parse references to application data as noun phrases in the grammar. These
references correspond to object specifiers transported by Apple events. Here are
some examples:

the first word of paragraph 22
name of every figure of document "taxes"
the modification date of every file whose size > 1024
These references can be parsed because their identifiers are known to be of

particular types at parse time. Word, paragraph, figure and file are known to be class
names, whereas name, modification date and size are known to be property names.
The following syntax description shows a subset of what is possible:

<noun phrase> ::=
 <class> <expr> -- element class indexed by
position
 | some <class>
 | middle <class>
 | <class> named <expr> -- element class indexed by a
property
 | <class> id <expr>
 | every <class> -- ranges of elements
 | <class> from <expr> to <expr>
 | <class> <expr> thru <expr>
 | <noun phrase> whose <expr> -- elements satisfying a test
expression
 | <noun phrase> of <expr> -- subparts of container:
 | <expr>'s <noun phrase>
At runtime, when events are sent that contain references, equivalent object

specifiers are constructed for references that contain the appropriate Apple event
codes.

The application reference is specially recognized by AppleScript. Application
references are used to determine the allowable terms at parse time, as well as the
recipient of a remote message at runtime. This makes it possible not only to target a
series of commands to a particular application, but also to flow data from one
application to another:

copy the name of the first window of application "Excel" to ¬
 the end of the first paragraph of app "Scriptable Text Editor"

8

This technique as well as using local variables to hold intermediate results
enables scripts to operate independently of the user's global clipboard – the normal
mechanism for inter-application transfer.

4.1.3 Handlers and Properties
In addition to sending messages to remote applications, AppleScript allows

functions and procedures to be defined within scripts. We call these handlers
collectively.

Handlers may have names which are user-defined, or which come from
application terminology. They may have positional parameters, or prepositional
(keyword) parameters. Handlers are defined by the to or on construct:

to square(x)
 return x * x
end
on quit x saving s
 if ask("Really quit?") then
 continue quit x saving s
 end
end quit
Here, square is a user-defined handler whereas quit comes from application

terminology and has the saving keyword parameter.
Handlers can be invoked by sending messages. Messages are targeted to the

script itself, unless some other object or application is targeted with a tell statement.
The special variables me and it (or correspondingly my and its) can be used to
disambiguate whether to send a message to the current script or the remote target:

tell app "Microsoft Excel"
 set cell 2 to my square(cell 1)
 quit me saving no
end
This script will retrieve cell 1 from Excel, square its value using the local

script's square handler, and put the result in cell 2. Then it will quit the current script
without saving. Had the me been omitted, the script would have quit Excel instead.

Properties can be defined in scripts which may be used as persistent global
variables:

property numberOfTimesRun : 0
When the program that loaded the script quits, it saves the script out to disk,

saving along with it all its updated global properties.

4.1.4 Script Objects
Scripts may also be treated as first-class values within the language by

bracketing a group of handlers and properties within a script construct. When
executed, this construct creates a script object. Script objects are a natural extension
of the top-level script concepts, and are easier to grasp by scripters than the more
complex class/instance model.

9

Script objects may be targeted by tell statements which allow them to
receive messages. This allows simple object-oriented programming. Script objects
also allow single inheritance by delegating unhandled commands to the value in
their parent property. For example:

script point
 property x : 0
 property y : 0
 on move...
end
script coloredPoint
 property parent: point -- inherit properties and handlers from point
 property color : red
end
New instances can of these scripts can be constructed by copying them.

Copying recursively copies all properties, including the parent. A more class-like
notion can be obtained by writing handlers that construct and return script objects.

Script objects play a central role in customizing applications. Some
applications allow entire scripts to be attached to their objects thereby modifying
default behavior. For example:

script myButtonScript
 on hilited ...
end
set the script of button 1 of window "Welcome" of app " " to myButtonScript
Since the destination of the above set statement is a remote application, a

copy of the myButtonScript along with it's current properties will be transported over
the network to the destination and reconstituted as an equivalent script object. This
ability to migrate entire programs around the network has been popularized
Telescript [8] is termed remote programming. AppleScript differs from Telescript
in that scripts do not themselves “go” while retaining their execution state, but must
be explicitly sent by some other script, and then executed when they arrive.

4.1.5 Dialects
More than half of Apple’s market is international, and we felt that it was

inappropriate to limit the script-writing populous to only the English-speaking.
Dialects were introduced as a way to internationalize AppleScript.

A dialect specifies the syntax of AppleScript. The examples in this paper are
presented in the English dialect of AppleScript. Other dialects exist for Japanese
and French, while others are under development. For example, here are translations
of scripts into other dialects:
English the first character of every word whose style is bold

Japanese

French le premier caractère de tous les mots dont style est gras

Professional { words | style == bold}.character[1]

Dialects work by dynamically loading lexing and parsing tables, and printing
routines. The parser calls constructors to create a parse tree in Universal

10

AppleScript—a dialect-independent representation of AppleScript's language
constructs. The nodes also contain formatting information to specify details of the
printed representation (e.g. whether to use is or =). The dictionary of events and
objects read from an application's terminology resource (discussed in section 4.1.1)
are tagged with bits a dialect can use to indicate plurality, masculine/feminine, etc.
As a result, the syntax of an AppleScript dialect can closely approximate the
structure of a natural language. A “Professional” dialect is also under development,
which resembles C++.

5 Script Management
Script management is supported by an application program interface (API)

that allows an application to create, execute, display, and store scripts [2]. The OSA
API is a generic interface between clients of scripting services and scripting systems
that support a scripting language. Each script is tagged with the scripting system
that created it, so clients that are only using scripts can handle multiple kinds of
script without knowing which scripting system it belongs to.

At its simplest, the script management API supports the construction of a
basic script editor that can save scripts as stand-alone script applications. A second
level involves attaching scripts to objects in an existing application. These scripts
are triggered during normal use of the application. Finally, complete interface
builders can be created that construct applications from interface parts with scripts
to provide behavior. By embedding OSA into the operating system, scripting
becomes a pervasive scripting service.

5.1 The OSA API
The OSA API is centered around the notion of a script, as shown in Figure

2. A script is either a data value or a program. Many of the routines in the API are
for translating between scripts and various external formats: script text, formatted
strings, storage format, and Apple event descriptors. The most important routines,
however, are for executing a script or sending a message to a script.

11

Integers
Lists

Strings

Compile

GetSource

Display

Data

CoerceFromDesc

CoerceToDesc

Scripts

Execute

Storage
Format

Load

Store

ExecuteEvent

Text Objects

CommandsScript
Text

Data
Key: Interface

…
…

Figure 2: Schematic of the OSA script management API.

Execute/ExecuteEvent: Request that a script handle a message. Execute sends
the run message to a script whereas ExecuteEvent invokes a handler in a
script which corresponds to an incoming Apple event. In the course of
handling the message, the script will typically send or delegate more
messages (to itself or remotely), and then produce a value. Execution
may be suspended and interleaved with other executions to support
threaded scripts.

Compile/GetSource/Display: Convert between scripts and text. The difference
between GetSource and Display is that the former prints strings as
programs (with quotes and special characters), while the latter prints
them in a more human-readable format.

Load/Store: Load and store support persistence. The scripts may contain
properties with associated data; these properties are stored and loaded
along with the rest of the script.

CoerceFromDesc/CoerceToDesc: Convert between scripts and binary data in
the form of Apple event descriptors. For example, after executing a
script, a numeric result may be retrieved in binary form using
CoerceFromDesc.

5.2 Uses of the OSA API
5.2.1 Script Applications

A script application is a script stored in a document that runs within a simple
application shell. They can be double-clicked by users, or placed into a startup
folder to launch when the machine starts up. Script applications pass all events sent
to the application directly to the script they contain. The script may handle the

12

standard Open Application, Open Documents, Print Documents, and Quit events
sent by the Macintosh System 7.

5.2.2 Customizing Applications
Since scripting is a pervasive system service, applications may use it as their

“macro” language rather than implement their own. By doing so they reduce the
burden on the application developer to provide all the scripting power a user might
want, and the burden on users to learn many special-purpose languages. The
application can also use the OSA API to attach scripts to its existing objects. These
scripts are executed during the normal operation of the application, allowing users
to customize its behavior. The interesting situation is determined by the
application.

Mail systems: The arrival of mail of a certain priority or with a certain sender or
topic.

Speech recognition: Recognition of a certain speech element. The executions
may be chained to build up a larger-scale representation of the phrase.
The Macintosh AV™ speech recognition system uses the OSA, thus any
scriptable application can be driven using speech.

Calendars: Triggering based on time: repeating or intermittent execution.
Calendar programs already have well-developed user interfaces for
dealing with time. The addition of scripting services greatly expands the
capabilities of these systems.

5.2.3 Interface Builders
The most sophisticated use of the OSA API is in generic interface builders.

These programs provide generic interface elements. The interface elements post
messages when user interacts with them. The user arranges the elements into
windows, menus, and dialogs. Scripts may be attached to any object in the interface
to intercept the messages being sent by the interface elements and provide
sophisticated behavior and linking between the elements. Several interface builders
have been implemented with OSA support, including HyperCard™; Frontmost™, a
window and dialog builder; and AgentBuilder™, which specializes in
communication front-ends.

5.3 Script Systems and Packaging
Any language processor (compiler or interpreter) that supports script

management operations can be registered as a scripting system within the open
architecture, because the API is generic. Clients load, store, execute and display
scripts using the API, without having to deal with the different scripting systems
involved. Scripts are tagged with a “creator code” that is used by the generic
dispatcher to locate the correct scripting component. Only script editors, which
create scripts, need to select what scripting language they desire.

AppleScript is just on of many scripting systems that have already been
implemented, by multiple vendors, including UserLand Frontier™, CE Software’s
QuicKeys™.

13

Scripting systems may either be packaged as system extensions, or as
complete applications. The AppleScript extension is shared by all clients, and takes
up between 500K and 800K of memory depending on whether it is executing or
compiling scripts. It can run with as small as an 8K application script heap.

6 Related Systems
6.1 The Unix Shell

The Unix shell [5] is based on two simple and powerful concepts: streams
and files of bytes. Programs are filters that take input from streams and produce
output in streams. Files are stores for streams, and all system data and attributes are
reified, or made concrete, as files. The need for structure is satisfied by encoding
structure into streams, leading to a pervasive use of parsing. The scripting languages
(shells) also tend to be text-based. Their semantics is given by text substitution
rules. Since there is no distinction between programs and data, complex quoting and
unquoting mechanisms are required. As a result, the languages have little referential
transparency: an expression that works in one place will very likely not do the same
thing if moved to a similar location. The absence of standard argument notation for
programs also leads to arbitrary idiosyncrasies that a user must master.

6.2 OLE 2.0 Automation
OLE 2.0 Automation [7] is similar in goals to the distributed messaging

portion of OSA. Other aspects of OLE are beyond the scope of this paper; visual
embedding, for example, is comparable to the multi-vendor OpenDoc effort to
define an embedding architecture. OLE lacks standards for application messages
and object structures. Nor does it have an open script management API.

One technical difference between the systems is that OLE allows messages
to connect directly to the low-level objects and methods in an application. Apple
events in the OSA are more abstract, and must essentially be interpreted by the
receiving application. There are merits on both sides of this design choice. OLE
makes more assumptions about the application architecture, allowing it to define a
framework for marshalling objects being sent remotely. The OSA, on the other
hand, supports more high-level services like recording.

6.3 CORBA
Although the high-level goals of CORBA [6] and OSA are similar, the

approach taken is significantly different. While CORBA has focused on low-level
infrastructure and efficiency of messaging and transparent object migration, OSA
has taken a broad approach that connects user-level scripting with basic messaging
and reference constructs. The technical differences appear in the relationship
between remote messaging and procedure calls. A stated goal of CORBA is full
scalability, including support for small-scale implementation objects that migrate
and have persistent global IDs. One might imagine splitting an application down the
middle, putting half its objects on one machine, and half on another. This is not a
goal of OSA, which clearly distinguishes messages from procedure calls. An OSA
programmer knows when they are building in the flexibility and power of remote

14

messages, and they are willing to support its cost. Instead of global persistent object
references, the OSA relies upon the host operating system to provide references to
large-scale objects (documents and applications), whose internal objects are
referenced by queries. Persistent references may or may not be supported by
individual applications, but this is not mandated by the OSA.

7 Conclusion
The Open Scripting Architecture is a significant step toward a revolution in

end-user computing similar to the one caused by adoption of graphical user
interfaces ten years ago. That earlier revolution introduced users to the power of
spontaneous computing through windows, menus, and icons. Good metaphors,
simplicity and uniformity across applications were key elements. The next
revolution will allow them to automate, integrate, and customize their computing
processes through references, messages, and scripts. The metaphor of structured
objects covers all data, preferences, system attributes on the machine and network.
Again, uniformity and simplicity are key. The Open Scripting Architecture and
AppleScript provide the infrastructure for this revolution.

References
1. Apple Computer. AppleScript Language Manual, English Dialect.

Addison-Wesley, 1994.
2. Apple Computer. Inside Macintosh Volume 7: Interapplication

Communication. Addison-Wesley, 1993.
3. Clark, Richard. Apple Event Objects and You. Develop, the Apple

Technical Journal. Issue 10 (May) 1992.
4. Cook, William and Harris, Warren. Designing a Modern Scripting

Language. University Video Communications, 1993.
5. Unix User’s Manual. Berkeley, CA 1984..
6. Common Object Request Broker: Architecture and Specification.. Object

Management Group. Document Number 91.12.1, 1991.
7. Object Linking and Embedding 2.0. Microsoft, 1993.
8. White, James. Telescript: The Foundation for the Electronic

Marketplace. General Magic, Inc., November, 1993.

